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Abstract. This paper proposes a Susceptible-Infective-Susceptible (SIS) model to study
the malaria transmission with treatment by considering logistic growth of mosquito
population. In this work, it is assumed that the treatment rate is proportional to the
number of infectives below the capacity and is constant when the number of infectives
is greater than the capacity. We find that the system exhibits backward bifurcation if
the capacity is small and it gives bi-stable equilibria which makes the system more
sensitive to the initial conditions. The existence and stability of the equilibria of the
model are discussed in-detail and numerical simulations are presented to illustrate the
numerical results.
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1 Introduction

The malaria is a mosquito-borne infectious disease of humans and other animals that
is caused by protists (i.e., a type of microorganism) of the genus Plasmodium. Based
upon the current understanding, there are four species of Plasmodium which are respon-
sible for malaria in humans: P. Falciparum, P. Vivax, P. Ovale, and P. Malariae. Out of
these, the majority of deaths are caused by P. Falciparum and P. Vivax. The remaining
two, P. Ovale, and P. Malariae, cause a generally milder form of malaria that is rarely
fatal. Furthermore, the zoonotic species P. Knowlesi, prevalent in Southeast Asia, causes
malaria in macaques but can also cause severe infections in humans. Normally, malaria
is significant in tropical and subtropical regions because of several reasons. For example,
the heavy rainfall, warm temperatures, and stagnant waters provide habitats ideal for
mosquito larvae. In this regard, the disease transmission can be reduced by preventing
mosquito bites by distribution of mosquito nets and insect repellents, or with mosquito-
control measures such as spraying insecticides and draining stagnant water.
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The P. Falciparum dominates in majority of malarial related deaths in Africa and
South East Asia. It is responsible for nearly 80% of all malaria cases and nearly 90%
of deaths, [1]. However in India roughly half of the cases of malaria are caused by the
P. Falciparum, and half by the P. Vivax, [2]. In most of the tropical countries includ-
ing India, the emergence of malaria has taken place and it has become endemic in the
North-Eastern part of India, where this disease is spread by a lethal parasite called the
Plasmodium Falciparum. Though, there are several experimental studies related to the
surveys of malaria in different regions (see [3–10]), but the dynamics of malaria is very
complex and there is a strong need to understand the transmission dynamics of malaria
and the environmental factors which influence it.

Mathematical modeling is very helpful in understanding the dynamics of any infec-
tious diseases and malaria is one of the diseases which is studied efficiently using mod-
eling approaches. Sir Ronald Ross was the first to formulate a mathematical model for
the P. Falciparum malaria in India by involving both, the human and mosquito popula-
tion, [11]. This model was very simple and later it was modified by several researchers,
(see [12–20]). Mathematical modeling of control of malaria by considering different as-
pects of controls has been discussed in [21–24].

Treatment of infective is an important parameter to control the spread of the disease
related to malaria. In the classical epidemic models, the treatment rate of infectives is
assumed to proportional to the number of infectives but this fact is applicable to the
developing countries which have limited resources. As in case of limited resources, it is
not possible to provide treatment to all infectives if the size of infective class is very large.
Hence here we apply following treatment rate function which is described in [25]:

T(I)=

{

rI, if 0≤ I≤ I0,

k, if I> I0.
(1.1)

Where I denotes infective class and k= rI0. This means that the treatment rate is propor-
tional to the number of the infectives when the capacity of treatment is not reached, and
otherwise takes the maximal capacity. This describes the situation where patients have
to be hospitalized: the number of hospital beds is limited. This is true also for the case
where medicines are not sufficient.

In this paper, therefore, an SIS non-linear mathematical model is proposed and an-
alyzed by incorporating treatment. In most of the existing malaria models, the popula-
tion demography for mosquitoes has been assumed as of constant recruitment and death
type. In the present work, we assume that the density of the mosquito population fol-
lows a generalized logistic model such that its growth rate decreases but its death rate
increases as population density increases towards its carrying capacity with respect to
the environment. This assumption is more realistic and reasonable as the mosquito pop-
ulation density is high in the regions that are conducive to its growth such as rivers and
ponds as well as man-made habitats e.g., water storage tank, rice fields, barrels, irriga-
tion channels, ditches, field wells etc. We analyze the model using the stability theory of
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the differential equations. We show that the approach of reducing the basic reproduction
number R0 below one is not enough to eradicate the disease from the population and one
need to lower the R0 much below one, to have disease free equilibrium to be stable.

The remaining of this paper is organized as follows: Section 2 describes the model,
Section 3 describes the existence and stability of different equilibria of the model, Section
4 demonstrates the numerical results. The paper ends with brief discussion in Section 5.

2 The model

We consider here an SIS model, where the human population density N1(t) is divided
into two classes namely, the susceptible class X1(t) and the infective class Y1(t). The
mosquito population density N2(t) is divided into the susceptible class X2(t) and the in-
fective class Y2(t). It is assumed that mosquito population is growing logistically and the
population demography for human is of constant recruitment and death type. Keeping
in view the above and by considering the criss-cross interaction of the mosquito popu-
lation with the human population, a mathematical model can be formulated as follows:

Ẋ1=A−d1X1−β1X1Y2+ν1Y1+T(Y1), (2.1a)

Ẏ1=β1X1Y2−(ν1+α1+d1)Y1−T(Y1), (2.1b)

Ṅ1=A−d1N1−α1Y1, (2.1c)

Ẋ2=
(

b2−a′
r2

K2
N2

)

N2−
{

d2+(1−a′)
r2

K2
N2

}

X2−β2X2Y1−α2X2, (2.1d)

Ẏ2=β2X2Y1−
{

α2+d2+(1−a′)
r2

K2
N2

}

Y2, (2.1e)

Ṅ2= r2N2

(

1− N2

K2

)

−α2N2, (2.1f)

N1=X1+Y1, N2=X2+Y2, (2.1g)

X1(0)>0, Y1(0)≥0, X2(0)≥0, Y2(0)≥0. (2.1h)

And the treatment rate function is defined as follows:

T(Y1)=

{

rY1, if 0≤Y1≤ Ŷ10,

k, if Y1> Ŷ10, where k= rŶ10.

In model (2.1), A is the constant immigration rate of the human population; d1 is the nat-
ural death rate constant; β1 is transmission rate of malaria from infected mosquitoes to
susceptible humans; ν1 is the natural recovery rate coefficient of the human population;
α1 is the disease related death rate constant; b2 and d2 are the birth and the death rate con-
stants corresponding to the mosquito population; r2=b2−d2 is the growth rate coefficient
of the mosquito population; K2 is the carrying capacity of the mosquito population in the
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natural environment; α2 is the death rate of mosquitoes due to control measures (r2>α2);
β2 is transmission coefficient of malaria from infected humans to susceptible mosquito
and 0≤ a′≤1 is a constant [26], which governs the logistic birth and logistic death of the
mosquito population. Since X1+Y1 =N1 and X2+Y2 =N2, it is sufficient to consider the
following system:

Ẏ1=β1(N1−Y1)Y2−(ν1+α1+d1)Y1−T(Y1), (2.2a)

Ṅ1=A−d1N1−α1Y1, (2.2b)

Ẏ2=β2(N2−Y2)Y1−
{

α2+d2+(1−a′)
r2

K2
N2

}

Y2, (2.2c)

Ṅ2= r2N2

(

1− N2

K2

)

−α2N2. (2.2d)

Since the system (2.2) is autonomous, the effects of N2 on the spread of malaria can be
qualitatively studied by taking its asymptotic values as t→∞ in the last equation of the
system (2.2). Thus we have

for N2(0)>0, lim
t→∞

supN2=
K2

r2
(r2−α2)= N̄2.

Now it suffices to study the global behavior of the system (2.2) by the following system
of equations:

Ẏ1=β1(N1−Y1)Y2−(ν1+α1+d1)Y1−T(Y1), (2.3a)

Ṅ1=A−d1N1−α1Y1, (2.3b)

Ẏ2=β2(N̄2−Y2)Y1−
{

α2+d2+(1−a′)
r2

K2
N̄2

}

Y2. (2.3c)

3 Existence of equilibria

It is easy to visualize the disease free equilibrium E0(0,A/d1,0). An endemic equilibrium
of the system (2.3) satisfies the following algebraic equations:

β1(N1−Y1)Y2−(ν1+α1+d1)Y1−T(Y1)=0, (3.1a)

A−d1N1−α1Y1=0, (3.1b)

β2(N̄2−Y2)Y1−
{

α2+d2+(1−a′)
r2

K2
N̄2

}

Y2=0. (3.1c)

When 0<Y1≤ Ŷ10, the system (3.1) becomes

β1(N1−Y1)Y2−(ν1+α1+d1+r)Y1=0, (3.2a)

A−d1N1−α1Y1=0, (3.2b)

β2(N̄2−Y2)Y1−
{

α2+d2+(1−a′)
r2

K2
N̄2

}

Y2=0. (3.2c)
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When Y1> Ŷ10, the system (3.1) becomes

β1(N1−Y1)Y2−(ν1+α1+d1)Y1−k=0, (3.3a)

A−d1N1−α1Y1=0, (3.3b)

β2(N̄2−Y2)Y1−
{

α2+d2+(1−a′)
r2

K2
N̄2

}

Y2=0. (3.3c)

The system (3.2) admits a unique positive solution E∗(Y∗
1 ,N∗

1 ,Y∗
2 ), provided

β1β2
A

d1
N∗

2 > (ν1+α1+d1+r)
{

α2+d2+(1−a′)
r2

K2
N∗

2

}

, (3.4)

and Y∗
1 ,N∗

1 , and Y∗
2 are given by

Y∗
1 =

β1β2
A
d1

N∗
2 −C1(ν1+α1+d1+r)

β2

[

β1

(

1+ α1
d1

)

N∗
2 +ν1+α1+d1+r

] ,

N∗
1 =

A−α1Y∗
1

d1
,

Y∗
2 =

(ν1+α1+d1+r)Y∗
1

β1(N∗
1 −Y∗

1 )
.

Let

ℜ0=
β1β2

A
d1

N∗
2

(ν1+α1+d1+r)
{

α2+d2+(1−a′) r2
K2

N∗
2

} .

Then ℜ0 is the basic reproduction number for the system (2.3) and E∗(Y∗
1 ,N∗

1 ,Y∗
2 ) is an

endemic equilibrium of (2.3) if and only if

1<ℜ0≤1+

[ β1β2N∗
2

(

1+ α1
d1

)

C1(ν1+α1+d1+r)
+

β2

C1

]

Ŷ10.

Now to get the positive solution of the system (3.3), we get following from the second
and third equations respectively:

N1=
A−α1Y1

d1
, (3.5a)

Y2=
β2N∗

2 Y1

β2Y1+C1
, (3.5b)

where

C1=α2+d2+(1−a′)
r2

K2
N∗

2 .
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Substituting these values of N1 and Y2 into the third equation of the system (3.3), we get
following quadratic in Y1,

[

β1β2N∗
2

(

1+
α1

d1

)

+β2(ν1+α1+d1)
]

Y2
1 −

[

β1β2N∗
2

A

d1
−β2k−C1(ν1+α1+d1)

]

Y1

+C1k=0.

For this quadratic to have real positive roots, we first need the coefficient of Y1, say B, to
be negative, which implies

−B=β1β2N∗
2

A

d1
−β2k−C1(ν1+α1+d1)>0,

i.e.,
R0C1(ν1+α1+d1+r)>β2k+C1(ν1+α1+d1).

This gives,

ℜ0>1+
β2k−C1r

C1(ν1+α1+d1+r)
. (3.6)

Additionally we want the discriminant ∆ to be nonnegative, i.e.,

∆=B2−4kC1

[

β1β2N∗
2

(

1+
α1

d1

)

+β2(ν1+α1+d1)
]

≥0,

which implies

ℜ0≥1+
β2k−C1r

C1(ν1+α1+d1+r)
+

C2

(ν1+α1+d1+r)
=: p0 (3.7)

or

R0≤1+
β2k−C1r

C1(ν1+α1+d1+r)
− C2

(ν1+α1+d1+r)
, (3.8)

where

C2=

√

√

√

√

4k
[

β1β2N∗
2

(

1+ α1
d1

)

+β2(ν1+α1+d1)
]

C1
.

Note that coefficient of Y1 is negative under the condition (3.6), so it can be observed
that the condition (3.7) is necessary and sufficient for the existence of real positive roots
of the last quadratic in Y1. Let these positive roots are given by

Y∗∗
1 =

−B−
√

∆

2
[

β1β2N∗
2

(

1+ α1
d1

)

+β2(ν1+α1+d1)
] , (3.9a)

Y∗∗∗
1 =

−B+
√

∆

2
[

β1β2N∗
2

(

1+ α1
d1

)

+β2(ν1+α1+d1)
] . (3.9b)
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After finding these values of Y1 corresponding values of N1 and Y2 can be found using
the Eqs. (3.5a) and (3.5b) respectively. Thus we have two more equilibrium point, say,
E1(Y

∗∗
1 ,N∗∗

1 ,Y∗∗
2 ) and E2(Y∗∗∗

1 ,N∗∗∗
1 ,Y∗∗∗

2 ). And E1 is an endemic equilibrium of (3.3) if
Y∗∗

1 >Ŷ10. Similarly E2 is an endemic equilibrium of (3.3) if Y∗∗∗
1 >Ŷ10. Let us consider the

condition under which Y∗∗
1 > Ŷ10. By the definition, we see that it is equivalent to

−B−
√

∆>2
[

β1β2N∗
2

(

1+
α1

d1

)

+β2(ν1+α1+d1)
]

Ŷ10. (3.10)

This implies that

B+2
[

β1β2N∗
2

(

1+
α1

d1

)

+β2(ν1+α1+d1)
]

Ŷ10<0. (3.11)

It follows from the definition of B that

ℜ0>1+
β2k−C1r

C1(ν1+α1+d1+r)
+

2
[

β1β2N∗
2

(

1+ α1
d1

)

+β2(ν1+α1+d1)
]

Ŷ10

C1(ν1+α1+d1+r)
=: p1. (3.12)

Further, (3.10) implies that

[

B+2
{

β1β2N∗
2

(

1+
α1

d1

)

+β2(ν1+α1+d1)
}

Ŷ10

]2
>∆. (3.13)

By direct calculation it can be seen that (3.13) is equivalent to

ℜ0<1+
[ β1β2N∗

2

(

1+ α1
d1

)

C1(ν1+α1+d1+r)
+

β2

C1

]

Ŷ10=: p2. (3.14)

Hence, Y∗∗
1 > Ŷ10 holds if and only if inequalities (3.12) and (3.14) are valid. Moreover, if

ℜ0≤p1 or ℜ0≥p2, we have Y∗∗
1 ≥Ŷ10 By similar arguments as above, we see that Y∗∗∗

1 >Ŷ10

if (3.12) holds or

p2<ℜ0≤ p1. (3.15)

Furthermore, Y∗∗∗
1 < Ŷ10 if

ℜ0≤min{p1,p2}. (3.16)

Summarizing the discussion above, we have the following conclusions.

Theorem 3.1. E∗=(Y∗
1 ,N∗

1 ,Y∗
2 ) is an endemic equilibrium of (2.3) if and only if 1<ℜ0 ≤ p2.

Furthermore, E∗ is the unique endemic equilibrium of (2.3) if 1<ℜ0 ≤ p2 and one of following
conditions is satisfied:

(i) ℜ0< p0.
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(ii) p0≤ℜ0< p1.

Note that
C1r>

[

β1β2N∗
2

(

1+
α1

d1

)

+β2(ν1+α1+d1)
]

Ŷ10

is equivalent to that p1< p2. We also have the following theorem.

Theorem 3.2. E1 and E2 do not exist when ℜ0< p0. Further, if ℜ0≥ p0, we get following:

(i) If

C1r>
[

β1β2N∗
2

(

1+
α1

d1

)

+β2(ν1+α1+d1)
]

Ŷ10,

then both E1(Y
∗∗
1 ,N∗∗

1 ,Y∗∗
2 ) and E2(Y∗∗∗

1 ,N∗∗∗
1 ,Y∗∗∗

2 ) exist when p1 <ℜ0< p2.

(ii) If

C1r>
[

β1β2N∗
2

(

1+
α1

d1

)

+β2(ν1+α1+d1)
]

Ŷ10,

then E1 does not exist but E2 exists if ℜ0≥ p2.

(iii) Let

C1r≤
[

β1β2N∗
2

(

1+
α1

d1

)

+β2(ν1+α1+d1)
]

Ŷ10.

Then E1 does not exist. Further, E2 exists when p2<ℜ0 and E2 does not exist when ℜ0≤p2.

Corollary 3.1. Eq. (2.3) has a backward bifurcation with endemic equilibria when ℜ0<1 if

C1r>
[

β1β2N∗
2

(

1+
α1

d1

)

+β2(ν1+α1+d1)
]

Ŷ10

and p0<1.

Proof. This corollary is a simple consequence of (i) of Theorem 3.2.

Theorem 3.3. E0 is asymptotically stable if ℜ0<1 and is unstable if ℜ0≥1. E∗ is asymptotically
stable if Y∗

1 < Ŷ10.

Proof. It is easy to proof that E0 is asymptotically stable if ℜ0 <1 and is unstable if ℜ0 ≥
1, so we omit it. Now to check the local stability of the equilibrium E∗ which exists
only when Y∗

1 < Ŷ10, we find the following variational matrix of the system (2.3) at the
equilibrium E∗,

M∗=





−(β1Y∗
2 +ν1+α1+d1+r) β1Y∗

2 β1(N∗
1 −Y∗

1 )
−α1 −d1 0

β2(N∗
2 −Y∗

2 ) 0 −[β2Y∗
1 +C1]



.

The characteristic polynomial corresponding to matrix M∗ is

ψ3+b1ψ2+b2ψ+b3=0,
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where

b1=β1Y∗
2 +ν1+α1+2d1+r+β2Y∗

1 +C1,

b2=(β1Y∗
2 +ν1+α1+d1+r)(d1+β2Y∗

1 )+β1Y∗
2 C1+α1β1Y∗

2 +d1[β2Y∗
1 +C1],

b3=β1Y∗
2 (α1+d1)[β2Y∗

1 +C1]+β2Y∗
1 d1(ν1+α1+d1+r).

We note here that b1 > 0 and also b1b2−b3 > 0. Hence by the Routh-Hurwitz criteria the
equilibrium E∗, if it exists, is locally asymptotically stable.

4 Simulation

The system (2.3) is simulated for various sets of parameters by fourth order Runge-
Kutta method using the package XPP, [27]. In Figs. 1-6, (N1, Y1) phase planes are drawn

Figure 1: Phase plot of Y1 verses N1 showing infection free equilibrium to be stable when R0=0.78<1 for the
parameter values r=1.2, A=300, d1=0.8, β1=β2=0.0005, ν1=0.1, α1=0.01, α2=0.4, d2=3, a′=0.6, r2=5,

K2=100000, Ŷ10=200.

Figure 2: Phase plot of Y1 verses N1 showing the existence of only E∗ which is stable when 1<R0 < p2 and
R0< p0 for the parameter values r=1.2, A=300, d1=0.8, β1=β2=0.0008, ν1=0.1, α1=0.01, α2=0.4, d2=3,

a′=0.6, r2=5, K2=100000, Ŷ10=200.
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Figure 3: Phase plot of Y1 verses N1 showing the existence of only E∗ which is stable when 1<R0 < p2 and
p0<R0< p1 for the parameter values r=1.19, A=185, d1=0.8, β1=β2=0.0009, ν1=0.05, α1=0.05, α2=0.4,

d2=3, a′=0.7, r2 =5, K2=100000, Ŷ10=90.

Figure 4: Phase plot of Y1 verses N1 showing bi-stability when p0 <R0<1 and p1 <R0< p2 for the parameter

values r=1.2, A=168, d1=0.8, β1=β2=0.0009, ν1=0.02, α1=0.01, α2=0.4, d2=3, a′=0.6, r2=5, K2=100000,

Ŷ10=65.

which confer the existence and the stability of different equilibria of the system (2.3).
Fig. 1 is showing the global stability of disease free equilibrium point E0(0,375,0) when
R0=0.78<1 and other equilibria do not exist. Fig. 2 is describing the situation when only
E∗(179.82,372.75,2458.2) exists and is stable. Here R0=1.997 which satisfies the condition
mentioned in the Theorem 3.1(i). Fig. 3 is supporting the statement in Theorem 3.1(ii),
where only E∗(89.34967,225.666,1522.124) is stable for R0 = 1.7249. In Fig. 4, we have
shown bi-stability where the equilibrium E2(81.81,208.98,1274.8) and the equilibrium
point E∗(64.85,209.19,1013.5) are stable and E1(65.56,209.18,1024.46) is saddle. This sup-
ports the analytical results stated in Theorem 3.2(i). Figs. 5-6 are showing the existence
and the stability of the equilibrium E2 alone which confer the Theorem 3.2(ii) and Theo-
rem 3.2(iii) respectively. And in this case E2 comes out to be (257.434,371.782,3479.128)
and (234.076,309.574,3933.995) respectively. Here the infection free equilibrium E0 is un-
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Figure 5: Phase plot of Y1 verses N1 showing the existence of only E2 which is stable when p1 < p2, p0 <R0
and R0> p2>1 for the parameter values r=1.2, A=300, d1=0.8, β1=β2=0.0008, ν1=0.1, α1=0.01, α2=0.4,

d2 =3, a′=0.6, r2 =5, K2=100000, Ŷ10=70.

Figure 6: Phase plot of Y1 verses N1 showing the existence of only E2 which is stable when R0 > p0, p1 > p2
and p2 <R0 for the parameter values r= 1.2, A= 250, d1 = 0.8, β1 = β2 = 0.001, ν1 = 0.1, α1 = 0.01, α2 = 0.4,

d2 =3, a′=0.6, r2 =5, K2=100000, Ŷ10=70.

stable. From all these phase-plane diagram it is clear that when ever E2 exists, the number
of infectives i.e., Y∗∗∗

1 is always greater than the number of infectives corresponding to
the other equilibria if they exist. This fact is more clear from the bifurcation diagrams
(see Figs. 7-10). Fig. 7 is obtained by considering the recruitment rate A as the critical
parameter. The horizontal axis is labelled with the appropriate value of the reproduction
number R0 corresponding to this bifurcation parameter A. It is observed that when the
reproduction number R0 is between 0 to 0.480954, the infection free equilibrium alone
is stable, for 0.480954< R0 < 1 we have bi-stability where either the infection free equi-
librium is stable or the equilibrium E2 is stable. For 1 < R0 < 1.050146, again we have
bi-stability where we have two stable endemic equilibria. Here either the equilibrium
E∗ is stable or the equilibrium E2 is stable. The equilibrium E1 when it exists is always
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Figure 7: The variation of equilibrium level of the infective population with the reproduction number showing the
backward bifurcation from an endemic equilibrium at R0=1.050146 for the parameters values r=0.8, d1=0.014,
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the backward bifurcation from an endemic equilibrium at R0 = 1.056781 for the parameters r = 0.8, A = 40,
d1 = 0.014, ν1 = 0.02, α1 = 0.01, α2 = 0.4, d2 = 2, a′ = 0.7, r2 = 3, K2 = 100000 for Ŷ10 = 85 and 200 when the
critical parameter is β1 = β2.

saddle. The second bifurcation diagram (see Fig. 8) is obtained by considering the trans-
mission coefficient β1=β2 as the critical parameter. Here too we get similar plot showing
the bi-stability and the backward bifurcation. From these two plots it is clear that just
reducing the reproduction number R0 below one is not always sufficient to eliminate the
disease from the population. As there is a backward bifurcation so we need to reduce R0

well below one to make the unique infection free equilibrium to be stable. In Figs. 9-10,
bifurcation diagram is obtained by taking the threshold value of the infective population
Ŷ10 as the critical parameter. Here it is noted that this parameter is involved in the treat-
ment. As it is assumed that treatment is proportional to the number of infective until the
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Figure 10: The variation of equilibrium level of the infective population with Ŷ10 when R0=1.036636>1 for the
parameters r=0.8, A=40, d1 =0.014, β1 = β2=0.000106, ν1=0.02, α1 =0.01, α2=0.4, d2=2, a′=0.7, r2=3,

K2=100000 where Ŷ10 is the critical parameter.

infective population reaches a threshold value Ŷ10 and after that the treatment function is
a constant. Due to this fact in this figure we see that the equilibrium level of the infective
population decreases with the increase in Ŷ10 until it comes to a saturation point. Fig. 9
is describing the situation when the reproduction number R0<1 and either the infection
free equilibrium E0 is stable or the equilibrium E2 is stable. Here when we increase Ŷ10

the equilibrium level of the infective population (corresponding to the equilibrium E2)
decreases until we arrive at Ŷ10=351.34693 where increasing it further does not have any
effect and in this case only the infection free equilibrium E0 is stable. Fig. 10 is obtained
when the reproduction number R0 > 1 and we can see that the equilibrium level of the
infective population decreases with the increase in Ŷ10 until Ŷ10 =60. And increasing Ŷ10

further gives bi-stability where either the equilibrium E2 is stable or the equilibrium E∗

is stable. The equilibrium E1 is saddle in between these two nontrivial equilibria. Then
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increasing Ŷ10 further gives the stability of the equilibrium E∗ alone. This is the situation
when the medical facilities are more than sufficient and hence there is no effect of improv-
ing it further. From all these results it is clear that increasing the capacity of treatment has
positive impact in reducing the infection prevalence of the disease irrespective of R0 <1
or R0 >1. From Fig. 8, it is easy to see that there is a sift of bifurcation diagram with the
increase in Ŷ10. This tells us that the threshold value of R0 for disease free equilibrium
to be stable can be increased with the increase in the capacity of treatment. And it is
easy to visualize that with the further increase in the capacity of treatment, we may not
get backward bifurcation. Also from Figs. 9-10, it is clear that increasing the capacity of
treatment leads to decrease in the equilibrium level of infective population which leads
to reduction in infection prevalence of the disease.

5 Conclusions

This paper has presented a mathematical model for the malaria with treatment. We have
discussed different equilibria and their stability conditions and performed simulation
which is also consistent with the analytic results. Similar to the other SIS models with
treatment, the presented malaria model too shows backward bifurcation which makes
this system vulnerable to initial data and also in this case R0 < 1 is not sufficient for
system to tend to disease free equilibrium point. Since the bi-stability occurs, system
may tend to endemic equilibrium for some set of initial values. We have shown that
there is some threshold value which should be much below one, and if R0 is less than
that then only disease free equilibrium will be globally stable. Otherwise for R0 <1 too,
the local stability of disease free equilibrium point is guaranteed only when the level
of initial infectious invasion is much low. Furthermore, we have presented numerical
simulation to describe the analytical results and bifurcation results, and the simulation
results illustrate the presented model well.
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