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Abstract. This paper introduces two novel conformal structure-preserving algorithms
for solving the coupled damped nonlinear Schrödinger (CDNLS) system, which are
based on the conformal multi-symplectic Hamiltonian formulation and its conformal
conservation laws. The proposed algorithms can preserve corresponding conformal
multi-symplectic conservation law and conformal momentum conservation law in any
local time-space region, respectively. Moreover, it is further shown that the algorithm-
s admit the conformal charge conservation law, and exactly preserve the dissipation
rate of charge under appropriate boundary conditions. Numerical experiments are p-
resented to demonstrate the conformal properties and effectiveness of the proposed
algorithms during long-time numerical simulations and validate the analysis.
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1 Introduction

A Bose-Einstein condensate (BEC) is a state of matter of bosons confined in an external
potential and cooled to temperatures very near to absolute zero. Under such condition-
s, a large fraction of the atoms collapse into the lowest quantum state of the external
potential, at which point quantum effects become apparent on a macroscopic scale. It
was first predicted in 1924. Attention has recently broadened to include exploration of
quantized vortex states and their dynamics associated with superfluidity [1, 2], and of
systems of two or more condensates [3]. By a mean-field approximation, the state of
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the BEC can be described by the wave function of the condensate to dilute systems. At
temperatures much smaller than the critical temperature for a two-component BEC, it-
s wave function can be well described by two coupled nonlinear Schrödinger (CNLS)
system [4–7]. The CNLS system also models beam propagation inside crystals or pho-
to refractive as well as water wave interactions. Solitary waves in this system are often
called vector solutions in the literature as they generally contain two components. It
has been shown that, in addition to passing-through collision, vector solutions can also
bounce off each other or trap each other [8]. As for numerical methods focusing on this
type of problem, there have been a great deal of methods to solve it [9, 10]. Symplec-
tic and multi-symplectic methods, which can preserve the geometric structures of the
original problem under appropriate discretizations, have been paid attentions in recent
decades [11–16]. In [17], the authors study the multi-symplectic Preissman scheme for C-
NLS system. Aydın and Karasözen [18], consider the integration of CNLS equation with
soliton solutions by a multi-symplectic six-point scheme. The CNLS system can be split
into a linear multi-symplectic subsystem and a nonlinear Hamiltonian subsystem, then
authors [19–21] discuss the multi-symplectic splitting methods for the problem. Besides
the multi-symplectic conservation law, multi-symplectic Hamiltonian partial differential
equations (PDEs) also have the energy and momentum conservation laws which play a
crucial role in conservative PDEs. Wang et al. [22] propose the concept of local structure-
preserving algorithms for PDEs, which are the natural generalization of the correspond-
ing global structure-preserving algorithms. Then, Cai et al. [23, 24] and Gong et al. [25]
generalize the idea of local structure-preserving algorithms and propose a lot of energy-
preserving algorithms and momentum-preserving algorithms to solve multi-symplectic
PDEs. Later, Li and Wu [26] investigate a general approach to constructing local energy-
preserving algorithms which can be of arbitrarily high order in time for solving Hamil-
tonian PDEs, including the CNLS system.

We consider the two coupled damped nonlinear Schrödinger (CDNLS) system of the
form











i(φt+δφx)+αφxx+(|φ|2+γ|ψ|2)φ+i
a

2
φ=0,

i(ψt−δψx)+αψxx+(γ|φ|2+|ψ|2)ψ+i
b

2
ψ=0,

(1.1)

where φ and ψ are complex amplitudes or ”envelopes” of two wave packets, i is the imag-
inary unit, x∈ [xL,xR] and t are the space and time variables, respectively. The parameter
δ is the normalized strength of the linear birefringent, γ is the cross-phase modulation co-
efficient which describes the minimum approximation of the transmission of light wave,
and a,b ≥ 0 are damping coefficients. As this linearly damped system, McLachlan and
Perlmutter develop a reduction conformal theory and show that conformal symplectic
methods generally preserve the conformal symplectic structure [27]. Then McLachlan
and Quispel [28] extend this theory and construct some numerical conformal method-
s that preserve conformal properties, such as symplecticity and volume-preservation.
Subsequently, Moore generalizes these results to multi-symplectic PDEs, and proposes a
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conformal multi-symplectic scheme for forced-damped semi-linear wave equation [29].
Later, Moore et al. [30] derive conformal energy, momentum and other quantities that
arise from linear symmetries conservation laws and develop conformal Preissman box
scheme and conformal discrete gradient methods. These methods are proven to preserve
the conformal conservation laws exactly. Comparing with standard structure-preserving
algorithms, conformal structure-preserving algorithms preserve the dissipation rate ex-
actly. Our aim in this article is to develop numerical methods that not only preserve a
conformal property, but also conserve the dissipation rate for the CDNLS system (1.1).

The rest of the paper is organized as follows: In Section 2, the damped multi-symplectic
formulation of CDNLS system and some of its conformal conservation laws are pre-
sented. In Section 3, some necessary operators together with their properties are given.
Then, we derive a conformal multi-symplectic algorithm and a conformal momentum-
preserving algorithm for CDNLS system. In addition, we also prove some conservative
properties of the proposed algorithms. Numerical experiments for the solitary wave so-
lutions are presented in Section 4, which show the effectiveness and advantages of these
algorithms. Finally, we make conclusions in Section 5.

2 Damped multi-symplectic Hamiltonian PDE and conformal

conservation laws

By letting

φ=q1+iq2, ψ=q3+iq4,

system (1.1) can be rewritten as a real-value system







































−(q2)t−δ(q2)x+α(q1)xx+(|φ|2+γ|ψ|2)q1−
a

2
q2=0,

(q1)t+δ(q1)x+α(q2)xx+(|φ|2+γ|ψ|2)q2+
a

2
q1=0,

−(q4)t+δ(q4)x+α(q3)xx+(γ|φ|2+|ψ|2)q3−
b

2
q4=0,

(q3)t−δ(q3)x+α(q4)xx+(γ|φ|2+|ψ|2)q4+
b

2
q3=0.

(2.1)

Introducing the auxiliary variables

αφx= p1+ip2, αψx = p3+ip4,

we can rewrite the above system as a first-order system
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−(q2)t−δ(q2)x+(p1)x+(|φ|2+γ|ψ|2)q1−
a

2
q2=0,

(q1)t+δ(q1)x+(p2)x+(|φ|2+γ|ψ|2)q2+
a

2
q1=0,

−(q4)t+δ(q4)x+(p3)x+(γ|φ|2+|ψ|2)q3−
b

2
q4=0,

(q3)t−δ(q3)x+(p4)x+(γ|φ|2+|ψ|2)q4+
b

2
q3=0,

(q1)x =
1

α
p1,

(q2)x =
1

α
p2,

(q3)x =
1

α
p3,

(q4)x =
1

α
p4.

(2.2)

Actually, system (2.2) can be written as a damped multi-symplectic formulation [30]

Mzt+Kzx=∇zS(z)+Dz, (2.3)

where

z=[q1,q2,q3,q4,p1,p2,p3,p4]
T ,

S(z)=
1

4
[(q2

1+q2
2)

2+(q2
3+q2

4)
2]+

γ

2
(q2

1+q2
2)(q

2
3+q2

4)+
1

2α
(p2

1+p2
2+p2

3+p2
4),

and

M=









J

J

0
0









8×8

, K=









δJ −I

δJ −I

I

I









8×8

, D=















a

2
J

b

2
J

0
0















8×8

,

where I is the 2×2 identity matrix and

J=

(

0 1
−1 0

)

.

Notice that, S dose not depend on the damping coefficients a, b in this case.
The damped multi-symplectic formulation (2.3) can be split into conservative part Ψ

(multi-symplectic formulation)

Mzt+Kzx =∇zS(z), (2.4)
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and dissipative part Φ

Mzt=Dz. (2.5)

For the conservative part, we apply the standard geometric integrator to discrete it, and
obtain zn+1 = Ψ∆t(z

n). For the dissipative part, we can solve it exactly, which may be
stated as zn+1 =Φ∆t(z

n). Thus, the formulation (2.3) may be solved by composing flow
maps Φ∆t◦Ψ∆t.

Following the terminology of McLachlan and Perlmutter [27], the conformal conser-
vation law has a general form with a linear dissipation

∂tP+∂xQ=−a1P−a2Q, (2.6)

where a1, a2 are non-negative real numbers, P represents a density and Q is the associated
flux. This is a local property, which is independent of the boundary conditions. Next, we
give the conformal conservation law of CDNLS system (1.1).

Proposition 2.1. The CDNLS (1.1) system admits the conformal multi-symplectic conser-
vation law (CMSCL)

−adq1∧dq2−bdq3∧dq4 =∂tω+∂xκ, (2.7)

where

ω=dz∧ 1

2
Mdz=dq1∧dq2+dq3∧dq4,

κ=dz∧ 1

2
Kdz=dq1∧δdq2+dq3∧δdq4+dp1∧dq1+dp2∧dq2+dp3∧dq3+dp4∧dq4,

and the conformal momentum conservation law (CMCL)

∂t I+∂xG=− a

2
(q1 p2−q2p1)−

b

2
(q3 p4−q4p3), (2.8)

where

I=−1

2
zT

x Mz=
1

2
(q1 p2−q2 p1+q3 p4−q4p3),

G=S(z)+
1

2
zT

t Mz=S(z)+
1

2
((q1)tq2−(q2)tq1+(q3)tq4−(q4)tq3).

The proof is similar to some references [29, 30] and is thus omitted here.

Proposition 2.2. The CDNLS (1.1) system admits the conformal charge conservation law
(CCCL)

−a(q2
1+q2

2)=∂t(q
2
1+q2

2)+∂x(δ(q
2
1+q2

2)+2α(q1(q2)x−q2(q1)x)), (2.9a)

−b(q2
3+q2

4)=∂t(q
2
3+q2

4)+∂x(δ(q
2
3+q2

4)+2α(q3(q4)x−q4(q3)x)), (2.9b)
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or equivalently

−a(q2
1+q2

2)−b(q2
3+q2

4)=∂t(q
2
1+q2

2+q2
3+q2

4)+∂x[δ(q
2
1+q2

2+q2
3+q2

4)

+2α(q1(q2)x−q2(q1)x+q3(q4)x−q4(q3)x)]. (2.10)

With periodic boundary conditions, it also admits the global conformal charge conserva-
tion law (GCCCL)

Nφ(t)=
∫ xR

xL

|φ(x,t)|2dx=exp(−at)Nφ(0), (2.11a)

Nψ(t)=
∫ xR

xL

|ψ(x,t)|2dx=exp(−bt)Nψ(0). (2.11b)

Proof. Multiplying the first line of system (2.1) by q1 and the second line of system (2.1)
by −q2 gives

0=(q1)tq1+δ(q1)xq1+α(q2)xxq1+(q2
1+q2

2+γ(q2
3+q2

4))q1q2+
a

2
q2

1, (2.12a)

0=(q2)tq2+δ(q2)xq2−α(q1)xxq2−(q2
1+q2

2+γ(q2
3+q2

4))q1q2+
a

2
q2

2. (2.12b)

Adding Eq. (2.12a) and Eq. (2.12b) leads to

− a

2
(q2

1+q2
2)=(q1)tq1+(q2)tq2+δ[(q1)xq1+(q2)xq2]+α[(q2)xxq1−(q1)xxq2]

=
1

2
∂t(q

2
1+q2

2)+
1

2
∂x[δ(q

2
1+q2

2)+2α(q1(q2)x−q2(q1)x)],

so we obtain Eq. (2.9a). Similarly, Eq. (2.9b) can also be obtained.

Integrating Eqs. (2.9a) and (2.9b) with respect to x with periodic boundary conditions
gives

∂t

∫ xR

xL

|φ(x,t)|2dx=−a
∫ xR

xL

|φ(x,t)|2dx, (2.13a)

∂t

∫ xR

xL

|ψ(x,t)|2dx=−b
∫ xR

xL

|ψ(x,t)|2dx, (2.13b)

therefore we obtain GCCCL (2.11a), (2.11b), which completes the proof.

3 Structure-preserving algorithms for CDNLS system

In this section, some operators together with their properties are briefly introduced. Then
a conformal multi-symplectic (CMS) algorithm and a conformal momentum-preserving
(CMP) algorithm are developed for CDNLS system (1.1).
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3.1 Operator definitions and properties

In order to derive the algorithms conveniently, we give some notations and operator def-
initions. We introduce a uniform grid (xj,tn)∈R2 with mesh-length ∆t in time direction
and mesh-length ∆x in space direction, and denote the value of the function z(x,t) at the
mesh point (xj,tn) by zn

j , where xj = xL+ j∆x, j= 0,··· , J, ∆x=(xR−xL)/J and tn = n∆t,

n=0,··· ,N. Define finite difference operators

D
β
2
t zn =

zn+1−exp(− β
2 ∆t)zn

∆t
, D

β
2
x zj =

zj+1−exp(− β
2 ∆x)zj

∆x
,

and averaging operators

A
β
2
t zn =

zn+1+exp(− β
2 ∆t)zn

2
, A

β
2
x zj =

zj+1+exp(− β
2 ∆x)zj

2
,

where β≥0. If we take β=0, then

D
β
2
t =Dt, D

β
2
x =Dx,

are standard finite difference operators and

A
β
2
t =At, A

β
2
x =Ax,

are standard averaging operators. Thus, we have the following properties [30, 31]:

(i) Commutative law

D
β
2
t D

η
2
x zn

j =D
η
2
x D

β
2
t zn

j , A
β
2
t A

η
2
x zn

j =A
η
2
x A

β
2
t zn

j ,

D
β
2
t A

η
2
x zn

j =A
η
2
x D

β
2
t zn

j , A
β
2
t D

η
2
x zn

j =D
η
2
x A

β
2
t zn

j .

(ii) Generalized discrete Leibnitz rule

D
β
x( f ·g)j =D

β
2
x f j ·A

β
2
x gj+A

β
2
x f j ·D

β
2
x gj,

D
β
t ( f ·g)j =D

β
2
t f j ·A

β
2
t gj+A

β
2
t f j ·D

β
2
t gj.

These discrete Leibnitz rules are essential for proving a method preserves any of the
conformal conservation laws mentioned in this article.
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3.2 Conformal multi-symplectic integrator

In this section, employing the difference and averaging operators, the implicit midpoint
rule applied to time and space derivatives of system (2.2) yields























































































D
a
2
t Ax(q1)

n
j +δA

a
2
t Dx(q1)

n
j +A

a
2
t Dx(p2)n

j +(|A
a
2
t Axφn

j |2+γ|A
b
2
t Axψn

j |2)·A
a
2
t Ax(q2)n

j =0,

−D
a
2
t Ax(q2)n

j −δA
a
2
t Dx(q2)n

j +A
a
2
t Dx(p1)

n
j +(|A

a
2
t Axφn

j |2+γ|A
b
2
t Axψn

j |2)·A
a
2
t Ax(q1)

n
j =0,

D
b
2
t Ax(q3)n

j −δA
b
2
t Dx(q3)n

j +A
b
2
t Dx(p4)

n
j +(|A

b
2
t Axψn

j |2+γ|A
a
2
t Axφn

j |2)·A
b
2
t Ax(q4)

n
j =0,

−D
b
2
t Ax(q4)

n
j +δA

b
2
t Dx(q4)

n
j +A

b
2
t Dx(p3)n

j +(|A
b
2
t Axψn

j |2+γ|A
a
2
t Axφn

j |2)·A
b
2
t Ax(q3)n

j =0,

A
a
2
t Ax(p1)

n
j =αA

a
2
t Dx(q1)

n
j ,

A
a
2
t Ax(p2)n

j =αA
a
2
t Dx(q2)n

j ,

A
b
2
t Ax(p3)n

j =αA
b
2
t Dx(q3)n

j ,

A
b
2
t Ax(p4)

n
j =αA

b
2
t Dx(q4)

n
j ,

(3.1)

where

|A
a
2
t Axφn

j |2=(A
a
2
t Ax(q1)

n
j )

2+(A
a
2
t Ax(q2)

n
j )

2,

|A
b
2
t Axψn

j |2=(A
b
2
t Ax(q3)

n
j )

2+(A
b
2
t Ax(q4)

n
j )

2.

We can rewrite (3.1) in the compact form

MD
η
2
t Axzn

j +KA
η
2
t Dxzn

j =∇zS(A
η
2
t Axzn

j ), (3.2)

where

D
η
2
t zn

j =(D
a
2
t (q1)

n
j ,D

a
2
t (q2)

n
j ,D

b
2
t (q3)

n
j ,D

b
2
t (q4)

n
j ,D

a
2
t (p1)

n
j ,D

a
2
t (p2)

n
j ,D

b
2
t (p3)

n
j ,D

b
2
t (p4)

n
j )

T,

A
η
2
t zn

j =(A
a
2
t (q1)

n
j ,A

a
2
t (q2)

n
j ,A

b
2
t (q3)

n
j ,A

b
2
t (q4)

n
j ,A

a
2
t (p1)

n
j ,A

a
2
t (p2)

n
j ,A

b
2
t (p3)

n
j ,A

b
2
t (p4)

n
j )

T.

Now, we analyze the local and global conformal properties of the proposed scheme.

Theorem 3.1. The discrete scheme (3.1) is a conformal multi-symplectic algorithm and satisfies
the discrete conformal multi-symplectic conservation law

Dα
t ωn

j+ 1
2
+Dxκ

n+ 1
2

j =0, (3.3)

where

ωn
j+ 1

2
=Axdz

n
j ∧

1

2
MAxdz

n
j , κ

n+ 1
2

j =A
η
t dz

n
j ∧

1

2
KA

η
t dz

n
j .
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Proof. The variation equation associated of Eq. (3.2) is

MD
η
2
t Axdzn

j +KA
η
2
t Dxdzn

j =∇zzS(A
η
2
t Axzn

j )A
η
2
t Axdzn

j . (3.4)

Taking the wedge product of Eq. (3.4) with A
η
2
t Axdzn

j yields

A
η
2
t Axdzn

j ∧MD
η
2
t Axdzn

j +A
η
2
t Axdzn

j ∧KA
η
2
t Dxdzn

j =0.

Noting that

A
η
2
t Axdzn

j ∧MD
η
2
t Axdzn

j

=
Axdzn+1

j +e−
η
2 ∆t Axdzn

j

2
∧M

Axdzn+1
j −e−

η
2 ∆t Axdzn

j

∆t

=
1

2∆t
(Axdzn+1

j ∧MAxdzn+1
j −e−η∆t Axdzn

j ∧MAxdzn
j )

=
1

2
D

η
t ωn

j+ 1
2
.

Similarly, we have

A
η
2
t Axdzn

j ∧KA
η
2
t Dxdzn

j =
1

2
Dxκ

n+ 1
2

j .

So we complete the proof.

In general, as a quadratic invariant, the conformal charge conservation law plays an
important role in self-focusing of laser in dielectrics, propagation of signals in optical
fibers, 1D Heisenberg magnets and so on. Therefore, it is necessary to discuss whether it
can be captured.

Theorem 3.2. The discrete scheme (3.1) is a conformal charge-preserving algorithm, which ex-
actly conserves the discrete CCCL

0=RN(xj,tn)

=Da
t [(Ax(q1)

n
j )

2+(Ax(q2)
n
j )

2]+Db
t [(Ax(q3)

n
j )

2

+(Ax(q4)
n
j )

2]+δDx[(A
a
2
t (q1)

n
j )

2+(A
a
2
t (q2)

n
j )

2

+(A
b
2
t (q3)

n
j )

2+(A
b
2
t (q4)

n
j )

2]+2Dx

(

A
a
2
t (q1)

n
j ·A

a
2
t (p2)

n
j −A

a
2
t (q2)

n
j ·A

a
2
t (p1)

n
j

)

+2Dx

(

A
b
2
t (q3)

n
j ·A

b
2
t (p4)

n
j −A

b
2
t (q4)

n
j ·A

b
2
t (p3)

n
j

)

. (3.5)
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Proof. In Eq. (3.1), multiplying the first and second lines by 2A
a
2
t Ax(q1)

n
j , 2A

a
2
t Ax(q2)n

j ,

respectively, and then, adding them together gives

0=2D
a
2
t Ax(q1)

n
j ·A

a
2
t Ax(q1)

n
j +2δA

a
2
t Dx(q1)

n
j ·A

a
2
t Ax(q1)

n
j

+2A
a
2
t Dx(p2)

n
j ·A

a
2
t Ax(q1)

n
j +2D

a
2
t Ax(q2)

n
j ·A

a
2
t Ax(q2)

n
j

+2δA
a
2
t Dx(q2)

n
j ·A

a
2
t Ax(q2)

n
j −2A

a
2
t Dx(p1)

n
j ·A

a
2
t Ax(q2)

n
j .

Applying the discrete Leibnitz rule leads to

0=Da
t [(Ax(q1)

n
j )

2+(Ax(q2)
n
j )

2]+δDx[(A
a
2
t (q1)

n
j )

2

+(A
a
2
t (q2)

n
j )

2]+2Dx[A
a
2
t (q1)

n
j ·A

a
2
t (p2)

n
j −A

a
2
t (q2)

n
j ·A

a
2
t (p1)

n
j ]. (3.6)

Similarly, multiplying the third and forth lines by 2A
b
2
t Ax(q3)n

j , 2A
b
2
t Ax(q4)

n
j , respectively,

we obtain

0=Db
t [(Ax(q3)

n
j )

2+(Ax(q4)
n
j )

2]+δDx[(A
b
2
t (q3)

n
j )

2

+(A
b
2
t (q4)

n
j )

2]+2Dx[A
b
2
t (q3)

n
j ·A

b
2
t (p4)

n
j −A

b
2
t (q4)

n
j ·A

b
2
t (p3)

n
j ]. (3.7)

Adding Eq. (3.6) on Eq. (23), we complete the proof.

Corollary 3.1. With the periodic boundary conditions, the algorithm (3.1) preserves the global
conformal charge exactly, namely

Nn+1
φ =∑

j

‖Axφn+1
j ‖2= e−a(n+1)∆tN0

φ, (3.8a)

Nn+1
ψ =∑

j

‖Axψn+1
j ‖2= e−b(n+1)∆tN0

ψ. (3.8b)

That is to say, the conformal charge-preserving method preserves the dissipation rate of charge
exactly.

In order to prove the Corollary 3.1, we only need to sum the discrete conformal con-
servation law (3.5) over all space index j and apply the periodic boundary conditions.
Because of the exponential dissipation of the global conformal charge, we use

rφ= a+
1

∆t
ln

Nn+1
φ

Nn
φ

, rψ =b+
1

∆t
ln

Nn+1
ψ

Nn
ψ

, (3.9)

to measure the dissipation rate of charge. If rφ = rψ = 0, we say the numerical method
preserves the dissipation rate of charge. Thus the algorithm we propose conserves the
dissipation rate of charge exactly. But the standard structure-preserving algorithms do
not, in general, preserve the conformal conservation law and dissipation rate; this is ex-
plained and demonstrated as [30].
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3.3 Conformal momentum-preserving algorithm

As we know, momentum conservation law is also an important invariant in physics. But
there are few conformal momentum-preserving algorithms in the literatures. Therefore,
to construct algorithms, which conserve the conformal momentum property, is very es-
sential. Next, we give a conformal momentum-preserving algorithm.

In first order system (2.2), employing the difference and average operators, and ap-
plying implicit midpoint rule to time and space derivatives, give the scheme























































































D
a
2
t Ax(q1)

n
j +δA

a
2
t Dx(q1)

n
j +A

a
2
t Dx(p2)n

j +Ax(|A
a
2
t φn

j |2+γ|A
b
2
t ψn

j |2)A
a
2
t Ax(q2)n

j =0,

−D
a
2
t Ax(q2)n

j −δA
a
2
t Dx(q2)n

j +A
a
2
t Dx(p1)

n
j +Ax(|A

a
2
t φn

j |2+γ|A
b
2
t ψn

j |2)A
a
2
t Ax(q1)

n
j =0,

D
b
2
t Ax(q3)n

j −δA
b
2
t Dx(q3)n

j +A
b
2
t Dx(p4)

n
j +Ax(|A

b
2
t ψn

j |2+γ|A
a
2
t φn

j |2)A
b
2
t Ax(q4)

n
j =0,

−D
b
2
t Ax(q4)

n
j +δA

b
2
t Dx(q4)

n
j +A

b
2
t Dx(p3)n

j +Ax(|A
b
2
t ψn

j |2+γ|A
a
2
t φn

j |2)A
b
2
t Ax(q3)n

j =0,

A
a
2
t Ax(p1)

n
j =αA

a
2
t Dx(q1)

n
j ,

A
a
2
t Ax(p2)n

j =αA
a
2
t Dx(q2)n

j ,

A
b
2
t Ax(p3)n

j =αA
b
2
t Dx(q3)n

j ,

A
b
2
t Ax(p4)

n
j =αA

b
2
t Dx(q4)

n
j ,

(3.10)

where

|A
a
2
t φn

j |2=(A
a
2
t (q1)

n
j )

2+(A
a
2
t (q2)

n
j )

2, |A
b
2
t ψn

j |2=(A
b
2
t (q3)

n
j )

2+(A
b
2
t (q4)

n
j )

2.

Remark 3.1. The conformal multi-symplecitc scheme (3.1) and the conformal momentum-
preserving scheme (3.10) only differ in the nonlinear term.

Now, we analyze the local and global conformal properties of the proposed scheme
(3.10).

Theorem 3.3. The discrete scheme (3.10) is a conformal momentum-preserving algorithm, which
exactly conserves the discrete CMCL

RM(xj,tn)=Dα
t In

j+ 1
2
+DxG

n+ 1
2

j =0, (3.11)

where

In
j+ 1

2
=Ax(q1)

n
j ·Dx(q2)

n
j −Ax(q2)

n
j ·Dx(q1)

n
j +Ax(q3)

n
j ·Dx(q4)

n
j −Ax(q4)

n
j ·Dx(q3)

n
j ,
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G
n+ 1

2
j =A

a
2
t (q2)

n
j ·D

a
2
t (q1)

n
j −A

a
2
t (q1)

n
j ·D

a
2
t (q2)

n
j +A

b
2
t (q4)

n
j ·D

b
2
t (q3)

n
j −A

b
2
t (q3)

n
j ·D

b
2
t (q4)

n
j

+
1

α
[(A

a
2
t (p1)

n
j )

2+(A
a
2
t (p2)

n
j )

2+(A
b
2
t (p3)

n
j )

2+(A
b
2
t (p4)

n
j )

2]

+
1

2
(|A

a
2
t φn

j |4+|A
b
2
t ψn

j |4)+γ|A
b
2
t ψn

j |2 ·|A
a
2
t φn

j |2.

Proof. Multiplying the first and second lines of Eq. (3.10) by 2A
a
2
t Dx(q2)n

j , 2A
a
2
t Dx(q1)

n
j ,

respectively, and then adding them together, we have

0=2[D
a
2
t Ax(q1)

n
j ·A

a
2
t Dx(q2)

n
j −D

a
2
t Ax(q2)

n
j ·A

a
2
t Dx(q1)

n
j

+A
a
2
t Dx(p2)

n
j ·A

a
2
t Dx(q2)

n
j +A

a
2
t Dx(p1)

n
j ·A

a
2
t Dx(q1)

n
j

+Ax(|A
a
2
t φn

j |2+γ|A
b
2
t ψn

j |2)(A
a
2
t Ax(q1)

n
j ·A

a
2
t Dx(q1)

n
j

+A
a
2
t Ax(q2)

n
j ·A

a
2
t Dx(q2)

n
j )]. (3.12)

By applying the discrete Leibnitz rule and commutative law, we obtain the first term

2D
a
2
t Ax(q1)

n
j ·A

a
2
t Dx(q2)

n
j −2D

a
2
t Ax(q2)

n
j ·A

a
2
t Dx(q1)

n
j

=D
a
2
t Ax(q1)

n
j ·A

a
2
t Dx(q2)

n
j −D

a
2
t Ax(q2)

n
j ·A

a
2
t Dx(q1)

n
j

+D
a
2
t Ax(q1)

n
j ·A

a
2
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n
j −D

a
2
t Ax(q2)

n
j ·A

a
2
t Dx(q1)

n
j

=D
a
2
t (Ax(q1)

n
j ·Dx(q2)

n
j −Ax(q2)

n
j ·Dx(q1)

n
j )

+Dx(A
a
2
t (q2)

n
j ·D

a
2
t (q1)

n
j −A

a
2
t (q1)

n
j ·D

a
2
t (q2)

n
j ),

the second term

2A
a
2
t Dx(p2)

n
j ·A

a
2
t Dx(q2)

n
j +2A

a
2
t Dx(p1)

n
j ·A

a
2
t Dx(q1)

n
j

=
2

α
A

a
2
t Dx(p2)

n
j ·A

a
2
t Ax(p2)

n
j +

2

α
A

a
2
t Dx(p1)

n
j ·A

a
2
t Ax(p1)

n
j

=
1

α
Dx[(A

a
2
t (p1)

n
j )

2+(A
a
2
t (p2)

n
j )

2],

and the last term

2Ax(|A
a
2
t φn

j |2+γ|A
b
2
t ψn

j |2)(A
a
2
t Ax(q1)

n
j ·A

a
2
t Dx(q1)

n
j +A

a
2
t Ax(q2)

n
j ·A

a
2
t Dx(q2)

n
j )

=Ax(|A
a
2
t φn

j |2+γ|A
b
2
t ψn

j |2)·Dx|A
a
2
t φn

j |2

=
1

2
Dx|A

a
2
t φn

j |4+γAx|A
b
2
t ψn

j |2 ·Dx|A
a
2
t φn

j |2.
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Therefore, the Eq. (3.12) can be reduced to

0=D
a
2
t [Ax(q1)

n
j ·Dx(q2)

n
j −Ax(q2)

n
j ·Dx(q1)

n
j ]+Dx[A

a
2
t (q2)

n
j ·D

a
2
t (q1)

n
j −A

a
2
t (q1)

n
j ·D

a
2
t (q2)

n
j

+
1

α

(

(A
a
2
t (p1)

n
j )

2+(A
a
2
t (p2)

n
j )

2
)

+
1

2
|A

a
2
t φn

j |4]+γAx|A
b
2
t ψn

j |2 ·Dx|A
a
2
t φn

j |2. (3.13)

Similarly, multiplying the third and forth lines of Eq. (3.10) by 2A
b
2
t Dx(q4)

n
j , 2A

b
2
t Dx(q3)n

j

respectively, leads to

0=D
b
2
t [Ax(q3)

n
j ·Dx(q4)

n
j −Ax(q4)

n
j ·Dx(q3)

n
j ]+Dx[A

b
2
t (q4)

n
j ·D

b
2
t (q3)

n
j −A

b
2
t (q3)

n
j ·D

b
2
t (q4)

n
j

+
1

α

(

(A
b
2
t (p3)

n
j )

2+(A
b
2
t (p4)

n
j )

2

)

+
1

2
|A

b
2
t ψn

j |4]+γDx|A
b
2
t ψn

j |2 ·Ax|A
a
2
t φn

j |2. (3.14)

Adding Eq. (3.13) on Eq. (3.14), we complete the proof.

Next, we present the discrete conformal charge conservation law of the CMP algo-
rithm.

Theorem 3.4. The discrete scheme (3.10) is a conformal charge-preserving algorithm, which ex-
actly conserves the discrete CCCL

0=RN(xj,tn)

=Da
t [(Ax(q1)

n
j )

2+(Ax(q2)
n
j )

2]+Db
t [(Ax(q3)

n
j )

2+(Ax(q4)
n
j )

2]+δDx[(A
a
2
t (q1)

n
j )

2

+(A
a
2
t (q2)

n
j )

2+(A
b
2
t (q3)

n
j )

2+(A
b
2
t (q4)

n
j )

2]+2Dx

(

A
a
2
t (q1)

n
j ·A

a
2
t (p2)

n
j

−A
a
2
t (q2)

n
j ·A

a
2
t (p1)

n
j

)

+2Dx

(

A
b
2
t (q3)

n
j ·A

b
2
t (p4)

n
j −A

b
2
t (q4)

n
j ·A

b
2
t (p3)

n
j

)

. (3.15)

The proof of this theorem is similar to Theorem 3.2 and is thus omitted here. Summing
the discrete conformal charge conservation law (3.15) over all space index j and applying
the periodic boundary conditions, give the following corollary.

Corollary 3.2. With the periodic boundary conditions, the scheme (3.10) preserves the global
conformal charge exactly, namely

Nn+1
φ =∑

j

‖Axφn+1
j ‖2= e−a(n+1)∆tN0

φ, (3.16a)

Nn+1
ψ =∑

j

‖Axψn+1
j ‖2= e−b(n+1)∆tN0

ψ. (3.16b)

That is to say, the conformal momentum-preserving algorithm (3.10) preserves the dissipation
rate of charge exactly.
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4 Numerical experiments

In this section, we conduct some typical experiments to illustrate the performance of the
proposed algorithms. All of the solutions are computed with time-step ∆t = 0.01 and
periodic boundary conditions in [−40,40]. We choose grid number N=499 and the time
interval is taken as [0,50] for all experiments. To test the conservative properties, we
conduct long time simulation for two solitons collision propagation. For the purpose of
numerical comparison, we apply the standard multi-symplectic Preissman (MSP) scheme
in [17] to the CDNLS system (1.1). In addition, we solve the implicit nonlinear equations
by using the fixed-point iteration method with tolerance ε = 10−13. Let the parameters
δ=0 and α=1.

As the fibre technology advanced, the interest in optical solitons grows rapidly. Var-
ious soliton collision scenarios such as transmission, reflection and creation of a new
soliton have been reported. If a system is integrable, solitary waves collide elastically;
that is, they preserve their shape after collision. However, if the system is non-integrable,
the collision may be highly non-trivial and inelastic; that is, the shapes of the solitons
change after collision. Additionally, the soliton interactions can lead to large and rapidly
decaying oscillating radiative tails. In order to describe the different soliton behaviour,
we use the following initial conditions

φ(x,0)=
√

2r1sech(r1x+D0/2)exp(iv1x/4),

ψ(x,0)=
√

2r2sech(r1x−D0/2)exp(−iv2x/4).

Here we choose the equal amplitudes r1 = r2 =1, the equal velocities v1 =v2 =1, and the
initial phase D0=20.

We exhibit in Tables 1 and 2 the L2, L∞ numerical errors of φ and ψ, and the con-
vergent rate order in time with the fixed spatial step length ∆x= 80

999 by CMS and CMP,
respectively. The parameters are fixed by a= 0.02, b= 0.01, δ= 0, T= 1 and γ= 1. As is
expected, the convergent rate is consistent with our academic analysis of O(∆t).

Table 1: Temporal convergent rate of φ and ψ with ∆x= 80
999 by CMS.

∆t
1

200
1

400
1

800
1

1600
1

3200
‖eφ‖2 1.8842e−4 8.8443e−5 4.2470e−5 2.0483e−5 9.7384e−6
Order - 1.0911 1.0583 1.0520 1.0727
‖eφ‖∞ 3.4293e−5 1.6142e−5 7.7622e−6 3.7462e−6 1.7818e−6
Order - 1.0871 1.0563 1.0510 1.0721
‖eψ‖2 1.0653e−4 4.7540e−5 2.2188e−5 1.0540e−5 4.9723e−6
Order - 1.1640 1.0994 1.0739 1.0839
‖eψ‖∞ 1.9359e−5 8.6841e−6 4.0639e−6 1.9331e−6 9.1257e−7
Order - 1.1565 1.0955 1.0719 1.0829
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Table 2: Temporal convergent rate of φ and ψ with ∆x= 80
999 by CMP.

∆t
1

200
1

400
1

800
1

1600
1

3200
‖eφ‖2 1.8848e−4 8.8462e−5 4.2477e−5 2.0486e−5 9.7398e−6
Order - 1.0584 1.0804 1.0521 1.0727
‖eφ‖∞ 3.4289e−5 1.6139e−5 7.7606e−6 3.7454e−6 1.7814e−6
Order - 1.0872 1.0563 1.0510 1.0721
‖eψ‖2 1.0659e−4 4.7556e−5 2.2193e−5 1.0542e−5 4.9730e−6
Order - 1.1644 1.0995 1.0739 1.0840
‖eψ‖∞ 1.9358e−5 8.6830e−6 4.0632e−6 1.9327e−6 9.1230e−7
Order - 1.1567 1.0956 1.0720 1.0830

Fig. 1 and Fig. 2 display the collision of two solitons with different damping coeffi-
cients a, b and nonlinear coupling parameter γ by using CMS algorithm and CMP algo-
rithm, respectively. As can be seen from the left graphs of Fig. 1 and Fig. 2, the prop-
agation of two solitary over the time interval [0,50] is travelling from left and right as
required and presenting the good preservation of the phase space structure with γ= 1.
The phenomenon indicates that the collision is elastic. But from the right graphs of Fig. 1
and Fig. 2, we can see that the collision takes place at t= 18, and then the two solitary
seems to be oscillated with γ=2. The phenomenon indicates the collision is inelastic.

(a) (b) (c)

(d) (e) (f)

Figure 1: Collision of two solitons of CMS algorithm with different damping coefficients a, b and coupling
parameter γ.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Collision of two solitons of CMP algorithm with different damping coefficients a, b and coupling
parameter γ.

(a) (b) (c)

(d) (e) (f)

Figure 3: Collision of two solitons by CMS algorithm (the top three) and CMP algorithm (the bottom three)
with different parameter δ, γ. (a) δ=0.2, γ=1; (b) δ=1, γ=1; (c) δ=0.2, γ=2; (d) δ=0.2, γ=1; (e) δ=1,
γ=1; (f) δ=0.2, γ=2.
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(a) (b)

Figure 4: The residual of conformal charge RN of CMS (left) and CMP (right) with a=0.01, b=0.02, γ=1.

(a) (b)

Figure 5: The residual of conformal momentum RM of CMS (left) and CMP (right) with a= 0.01, b= 0.02,
γ=1.

Fig. 3 displays the interaction of two solitons with different parameters δ, γ by using
CMS algorithm and CMP algorithm. It is clear that the interaction is elastic in case of
γ=1, and the parameter δ affects propagation velocity of solitons. In this numerical test,
we fix a=0.01, and b=0.02.

Fig. 4 shows the residuals of CCCL by using CMS algorithm (left) and CMP algorithm
(right) with a=0.01, b=0.02, γ=1, and the errors of them are O(10−12), which indicates
the discrete CCCL is preserved exactly.

Fig. 5 presents the residuals of CMCL by using CMS algorithm (left) and CMP algo-
rithm (right) with a=0.01, b=0.02, γ=1, and the errors of them are O(10−3), O(10−12),
respectively. From the figure, it is clear that the CMP algorithm conserves the CMCL
exactly, but the CMS algorithm does not.
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Figure 6: The error of dissipation rate of charge with a=0.01, b=0.02, and γ=1: the top two are the error of
CMS algorithm; the bottom two are the error of CMP algorithm.
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Figure 7: Comparison of the standard MSP scheme with conformal algorithms (CMS and CMP) in dissipation
rate of charge for the case a=0.01, b=0.02, and γ=1.

Fig. 6 exhibits the ability of CMS algorithm and CMP algorithm in preserving the
dissipation rate of charge. The errors of the two algorithms within the roundoff error of
machine are O(10−13), which indicate the dissipation rate of charge preserved exactly.
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In Fig. 7, we make a comparison of the CMS algorithm and the CMP algorithm with
the standard MSP scheme for CDNLS system (1.1). As can be seen in Fig. 7, the confor-
mal algorithm is significantly more accurate in capturing the damped charge than the
standard MSP scheme, i.e., the error in the dissipation rate of charge with the conformal
algorithms are O(10−13), whereas the standard MSP scheme is O(10−7).

5 Conclusions

In this paper, we derive the conformal multi-symplectic conservation law, the conformal
charge conservation law and the conformal momentum conservation law, describing the
multi-symplectic structure and the dissipation of charge and momentum, for the CDNLS
system. All these conservation laws are local. That is to say, they are independent of the
boundary conditions. Based on multi-symplectic Preissman scheme, we develop a con-
formal multi-symplectic algorithm and a conformal momentum-preserving algorithm,
which is proven to admit the discrete conformal multi-symplectic conservation law and
the discrete conformal momentum conservation law, respectively. Meanwhile, they al-
so conserve the conformal charge conservation law. With periodic boundary conditions,
these algorithms preserve the dissipation rate of charge exactly. Numerical experiments
of the two solitons collision are conducted to check the performance of the proposed algo-
rithms and verify the theoretical analysis. Compared with the standard multi-symplectic
Preissman scheme, we find that standard method applied to CDNLS system destroys the
dissipation rate while the proposed algorithms conserve exactly. Therefore, the proposed
conformal algorithms are more advantageous for long time simulation than standard
multi-symplectic method for CDNLS system.
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