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Abstract

In this paper, we establish the semi-local convergence theorem of the Brent
method with regional estimation. By an in-depth investigation in to the algorithm
structure of the method, we convert the Brent method into an approximate Newton
method with a special error term. Bsaed on such equivalent variation, under a
similar condition of the Newton-Kantorovich theorem of the Newton method, we
establish a semi-local convergence theorem of the Brent method. This theorem
provides a sufficient theoretical basis for initial choices of the Brent method.

1. Introduction

It is well known that the Brent method for solving systems of nonlinear equations
F(z) =0, F:DcR*— R" (1.1)
i8 to solve the following system: |
J (%), )y (g k1) _ z(*)) F(z'®) = o,
Iz, A)e; = [F(z® + hMe;) — Pa®/p®, p® 2,

R _ [hf"),---,hff)], ot [0,-'-,0,1,0,---,0],

i=1,2-,n; k=0,1,2,---, (1.2)

by making use of the orthogonal triangular factorization. Suppose that we have an

approximation (%) to z”, a solution of (1.1). Then the k-th iterative procedure can be
described as follows [1]:

Step 1. Let ;" = 2(®,Q{¥ = Q¥ D(or Q¥ = ),
Step 2. Compute the vector
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(k) _ 1 0

: 1.3
J hi | fj(y;;k) + thgk)ej) - fj(y;s*k)) R

I fj(y;(,-k) + thEik)En) = fj(yﬁ-k)) J

where h # 0 is the difference step corresponding to the index k (we will discuss the
choices of hi in Section 4). Construct an orthogonal matrix (usually by the Household
transformation)

y® - [ ;j—l %}H } . (1.4)
such that
: (ﬁ.gk))TU}k) = o'g-k)e?, agk) = 5 ||ﬁ§k)||. (1.5)
Let

Qi = au;” (1.6)

Step 3. Compute
W2 = - i (17)

J

Step 4. If j <m,let j:=j+1,g0to Step 2; otherwise, let plk+1) = ygf*)_l.

Brent!!! applied the Shamanskii technique at each iteration to improve the efficiency
of the algorithm. However, it is not essential to the discussion of this paper.

Brent!l] proved that the above algorithm converges locally to z* with a quadratic
convergénce order. Since for each iteration the number of function evaluations of the
algorithm is ﬂﬂ;—:;l, which is nearly half of what 1s needed by the Newton method,
and since it is also of satisfactory numerical stability, the Brent method has long been
regarded as a most effective aumerical method for solving nonlinear systems.

The main purpose of this paper is to establish the semi-local convergence theorem
of the Brent method with regional estimations. Because of the complexity of the algo-
rithm structure, the classical Kantorovich method can not be applied to this method.
By investigation into the algorithm structure of the method, we convert the Brent
method into an approximate Newton method with a special error term. Based on such
equivalent variation, under a similar condition of the Newton-Kantorovich theorem of
the Newton method, for the Brent method we establish an existence-convergence the-
orem (semilocal convergence theorem), which provides a sufficient theortical basis for
s nitial choices of the Brent method but has not been proved for nearly twenty years.
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2. Equivalent Variation of the Brent Method

In this paper, we take the Frobenius norm as matrix norm and the Euclidean norm
as vector norm.

Denote
. fl(ygk))
"F(yi )! (k)) o : Y
fn(y(k))
i (y; ) 4 th;(,; ey) — f;—(y}"’)
(ky _ 1 . .
&; = 7— : ;?:1:2:”':”!

L. (k) (k) A
fj( +thj en)_fj(yj )

k 1 (&
Bi = | thQg e, (k)QLlle"] € AL,

_ [@®), .-, alb] € L(&")

Using the above notation, we can equivalently express Steps 1-4 of the Brent method
in 1 as

{ 2*+D) = 20 — B F (", 0h"), 8 =2®), (2.1)

k=0,1,2,-

Suppose that F'(z*))™" and A;! exist for all k. Then, we can further express (2.1)
in the following equivalent form:

k=0,1,2,-,

where
R = Wi + A, 'V, (2.3)
Wi = [F'(®) 7" — 471 F(=®), (2.4)
Vi = F(e®) - &BuF @, 4). (2.5)

From (2.2), we know that the Brent method is equivalent to an approximate Newton
method with an error term.

Now, we need to estimate the error term H;,.

First of all, by the structure of the orthogonal matrix U}k) and the definition of
matrices Ap and By, we can prove the following lemmas.

Lemma 2.1. The multiplication of Ay, and By, is a lower triangular matriz, that
18,
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where

() fi(ygk) + h’kQEk)ej) — fi(ygk})
¥ o h
4

Proof. It is easy to see from the definition of U}k) that
Ui-(k)Tej =gn @y (2.6)
For i < j, we have
i = o o
/

1 )T, (k)& k
- _(_T ( ) U( )Uf_}_% UJE )ej_ (2.7)
g,

1 T T AV E
)Q(+IEJ (ﬁ:) E ) QS’“) Q(k)U{k) }k)ej (QE ) ng) = I)

From (1.5) and (2.6), we have

T
o uWy) ... UJ{":) = o®e,T.

Thus, from (2.7) we obtain

IE;F) = :(lk) agk)egTej = 0, i < J
“a

For i = j, we have

T 0Tl 1 T )T 1
1*) = o). Q¥ EJEE)QEi)lei- o o QW QWY P, = — 5 o®eTe; =1,

For ¢ > j, we have

k T (T 1 (& 1 T, T BT (% k k k
P = A" mae = @ PTU® - U8l Qe @ =D
3
LSV .. g®* O
= )% : Uf—l U}+1 by = _(;;j“i . €i
7; J
_ _1_ fi(y,(rk) b thEkjﬂj) - fi(’y("’)) . (k) T (k) _ T
L), ' hs , 123 Qi1 G T
J

Therefore, the lemma, is proved.
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In order to estimate the error term Ry, we make the following assumption on func-
tion F(z): (A) (1) F: D C R® — R" is continuously differentiable in an open convex
set Dp C D. There exists z(®) € Dy such that F’ (z(9)-1 exists and | F( a:(”))_lﬂ = p.

(2) There exists a constant L > 0 such that

| (=) — F'(y)|| < Lliz - yll, Vz,y € Dy. (2.8)

Lemma 2.2. Suppose that (A) holds. Then there exists a closed neighborhood
So(z9,r0) = {z € R* | ||z — z©) | €70} C Dy and a constant a > 0, such that for any
Zlyirry2m € Sg(a:(u),ru), the matriz

[ ?fl (Z1)T ]

f(zlj...,zﬂ)—_—

vfﬂ(zn)T

15 wnvertible and satisfies
, |F (21, 20) 7Y < @, (2.9)

where a = By /(1 — v/nBoLry).
Proof. From (2.8), we have

F(21, -y zn) — F'(z )| < vnL||z; — 29| < v/nLr.
3

By the Banactherturhation lemma, if we take r¢ < 1/+/nLB3y, then the matrix
F(z1,++,2n)" ! exists and satisfies

1F" (21, -, 20)|l < Bo/(1 — v/RLBorg) = a.

Therefore, the lemma, is true.
Lemma 2.3. Suppose that (A) holds. Then for any z € So(x9), rg), F'(z)™" exists
and satisfies

IF@) Y <e (2.10)

Letting 2y = -+ = z,, = = in Lemma 2.2, we obtain Lemma 2.3.

Lemma 2.4. Suppose that F : D ¢ R® — R" is continuously differentiable
in Dy C D, and that F'(z) satisfies (2.8). If m(k),yf;k),y_gk) + thgk)e, € Dy,
1,2,---,m;8=1,2,..-,n, then the following inequality holds:

T
las” — Q8 V(™) < vAL(y® — 2@ + [ha)). (2.11)
Proof. Denote

Q" =@, @™, (P)er, i=1,2,n
Then
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[ — QP 7 £

= S0 + e~ 6N - &), V@)Y

=1

- T
= Z[v f; (y-gk) + 6, thgk)e!)Tng) e, —Vf; (m(k)) ng) B,]2

s=1

< Y IVHEE +6,huQ; ) - v 1@ 1@} el

a=1

<3 L(yf — =P+ 1hal)* = nL2(lys" — 2@ + hil)?,

a=1

where 6, € (0,1), HQ?)E,H = II(QE-")LN — 1. Therefore, (2.11) is direct from the above

inequality.
Lemma 2.5. FetV
Then for any 1,

= (v;;) € L(R") be a nonsingular and lower triangular matriz.

1'!.?{,1',' 2 1/"V—1”! 1= 112: c ey T

The proof is very simple. We refer the readers to [1].
Lemma 2.6. Suppose that (A) holds, and that there exisi constants € > 0,6 > 0

satisfying
0 < |h| <8, nPLBo(n3"Vé+e) <1.

o constant C1 > 0 such that for any i, whenever yEk) & S’E(a:(o),s) =

Then there ezists
.. 4, the following estimate holds:

{:EERﬂl ":B-—:I‘:(U)H‘SE}, ,=1,2,-
6P| >C1 >0, 1<8<7

Proof. Let

- a-g’l’)

(k)_ E = . e P
Mj ! : ?

b

where I,,_p41 880 (n— P+ 1) x (n — p+ 1) unit matrix, and

k
tg;) = EEF’(:B(D))Q_E; _gleq. |
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Since for any i,

‘h B (k) 4 thgn)e ) — foly (k))] - pr(y},k))TQg,k)ei

r;_pr(y;k) + e QPes) = fou8) — V fol(yy?) Q@ el,

1
< V57 + 0 m@e:) - Y NI Qe
1
lh |L‘a(k)th(k)e!"HhKQ(k)Ei" < lh I"h Q(k)e-:.”z - Llhk‘

where 9( ) € (0,1), from the definition of E,, we have
mTEP — [D,...,ijp,. . .,a:“]
for any z = [z1,- -+, zn] € R". Then we obtain
R T
@R - Q% F'(589)ep)” Epll® < n(Lihxl)”.

Since
UPTe® = o®el, UPe,=e,,  Vi>p,

for any 7 > p,
* )T, ) T BT (k) _ _(k
U™ Uss U,ﬁ . “ér ) = f’§ ey
It follows from the definition of M _,Ek) that

UP U ... U@ PN E, = oMl B, = e,T M{VE,
By the definition of U, and FE,, it is easy to see that
U,Ep = EgU,, Vg 2 p.
Thus, from (2.14) and (2.15), we have

leZ[MP — P (y)QW B, = (X MV E, — ef F' (4) Q5 1 Byl

= ”ﬁg‘)T U(k)U(k) _ UG’)EP TFI (y(k))Q(k) U(k) U(k) : U}’“JEP||2

e T k k
== |]a(k) EPU;Ek}U(i)l (k) TF:( (k)) (k)E U(k)U( ) -U} )”2

T
— H[a(k) e T Ff(y(k‘))Q(k)] EPU(E}U(") U}HHQ
k k
< I8 - P GQWIBUPTE, -+ U

< n(L|he))?n™ = n™T1L2 Ry )2,

(2.12)

(2.13)

(2.14)

(2.15)
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It follows that
k i
leT(M®) — F(=)Q 1Bl

& i k K

< 1T MP - F8NQ® B, + e TF (4) Q5% — F'(z) QS E, |
n+1i

< 0 Likw| + |1 F' ) — F'@@)[I1Q55 I Exl

< nyTlL|hk\ + nL"yﬁk) —z0| < n"F L6 + nLle = nL(nEi_lﬁ + ). (2.16)

Indeed, the above inequality is an estimation of the last n — p + 1 components of
the p-th row of matrix (M}k) — F' (a:(“))Q?ﬂl). By the definition of M }k), the first p—1

components of the p-th row of (M}k) == F’(m(n))t;’g’f}_)l) are zeroes. Thus, by (2.16), we
have

' n—1
|eZM® — Pl = 18 ~ P @)QEIB < nL(™ T8 +e) (217)

for any p < j. Since the last n — j rows of Mj(-k) and F (m(o))Qg{?l are identical, by
(2.17) we have = *

(M® — F@@QR | < VinL(n"T6+¢) < niL(n"T 6 +e).
1t follows that
. kY 71— 2
I (z@)QP, 1 1MP — P/ ®)Q§%h |

k) —1 < k
< Q% T IF @) HIMP - FE@)Q5
< \/ﬁﬁon%L(n%ﬂﬁ +£) = 260L(n£§*16 + €).
By the Banach perturbation lemma, (M }k))"l exists, and

M® 7 < vnbo

= 1—n2LBy(n"F 6 + e)

From the special structure of M }k), we can find an orthogonal matrix H with the

form _
a4 "
0 H

such that MJEHH is a lower triangular matrix. Then by Lemma 2.5, for any 1 < 8 < 7,
we have

- | 1 1 1- nzLﬁo(nﬂ%ﬁ + €)
o807 > > — > =
(PR T () Ve Vo

1~ nzLﬁo(n"Tﬂﬁ + €)

5o = Cy > 0.
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Therefore, the lemma is proved.
From (2.8), it is easy to see that there exists a constant Cs such that

|F'(z)] < C2, = € So(z(?, r). (2.18)

Lemma 2.7. Suppose that (A) holds, and that there exist constants 0 < r; <
min{re,e},n > 0, and § > 0 such that

|F(z™) =m <n, 0< ]|k <8,

Cil 1+ CCT) —1n+ 71 <&, n2LBy(n"T 6+¢) < 1.

Ifz®) € 81z, r)) = {z € R" | ||z — 20| < 7} € Dy, then for any j, (i) ]fj(y_gk))\ <
A+ COTYY RV, @) lyihy - o1 < e + ooty - 1] Fe®)|), (i)
Y5 € Se(z@,e).

Proof. By induction. For 7 = 1, since
y

917 ~ 2| = 28 — 2| < 7y <,

by Lemma 2.6, we have
Iﬂ{k)‘ > C1 > 0.

(i) obviously holds. Since

1 —
) AGNQPey|| < CTYFE™)),

k k 1 k
lvy” =1l = || - <5 F16 Qe | < —
0, |U1

(ii) also holds. For (iii)._.
lus” — 2@ < Jlg5® — 40 + 3P - 2@ < CTHFE®)) + 71 < CPlp+1 <.

It implies that y® € S,(z(@,¢).
Suppose that Lemma 2.7 holds for any j < m. By Lemma 2.6, we have

ol <C1, 1<s<m+1.
Then for j = m + 1, making use of (2.18), we have
k k
|t Wi )] S Vs 10 1) = Frnir W) + 1 0] < g, — o)

+ IFW)| < C2C5 (1 + CoCT Y™ — 1][|F (™) + || F ()|
< (14 C:07H™| F (™).
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For (ii), we have
lyinra "’llsnyfﬂz o1+ Nt — yi |
=| (,,) Frurr @)%, e | + llwirs — 11°

m+1

k k
= \ ST | fmtr () | @raemall + lw®, — o)

< G711+ G Y™ IF(™)| + C (14 CaCT )™ - || F (=)
= N1 + Cery™t = 1 FEP).

For (iii),
), — 2] < (15 — 5§20+l — 200 < G311+ eaey )™ — WFEON
+l2® — 2O < g (1 + caey )™ — Un 1 <€
It implies that y,(,:l;e S.(z(®,¢). Thus, (i)-(iii) also hold for j = m + 1. Therefore,

the lemma is proved.
Lemma 2.8. Suppose that the assumptlions of Lemma 2.7 hold, an

v =ndLCy {1+ CCT ) — 1+ Cy6} < 1. (2.19)

d that

Ifz'® ¢ S1(z(%,r1), then
) A - F'@®)|| < n32LC {1+ CoCT )" - 1](|F(«®]| + Calhl},

(ii)  Agis invertible, and satisfies
|4l € @/(1 =)
Proof. (i) By Lemma 2.4, for any j, we have
[ — QP V5™ < VRL(ly;” - =P + lha)
< JAL{C; (1 + GOy = IF ) + [hal}-

It follows that
4 &
1QWal® — V5= < 1@ el — Q5 V(=™

< V- VALCSHI( + GOy = || F ()] + Calhel}
= nLCH{[(1 + C2CTH)" ™" - 1){|F (™) + Calhxl}-

Thus,
1A — F'(a®)| < n®2Le7{[(1 + Coor ) = WIFES) + Calhl}:
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(ii) By (i) and (2.19), we have
| (2®) 1|l Ak — F'(z®)]) < an® 2L H{[(1 + CoCr )" = 1+ Cab} = v < 1.
Then by the Banach perturbation lemma, A; exists, and
4G < IF' @)/ —7) < /(1 —).

Therefore the lemma is true.
Theorem 2.1. Suppose that the assumptions of Lemma 2.8 hold. If k) ¢

S1(z(®,r1), then there exists a constant C3 > 0 such that
IRl < Co{[(1 + C2C7Y) = UIF D) + ColhuHIF ()] (2.20)
Proof. By (2.4), we have
[Will < 4% 1l 4x — F' @)IIF @) I F*)]

2
o - o
= T A32LCTH((1 + G0 )™ = )| F(@®)|| + Calha HIF (=)

€ o2n32LCTH{[(1 + C.0T Y™t = 1|F(z®)]| + Cal e HIF (2*))]I.
(2.21)

Denote [Vi]; as the j-th component of V. Then by (2.5) and Lemma 2.1, we have

j—1
Vil = £5@®) = [ 18 £8%) + £65)]

t=1

j=i ® o p 0@y _ iy
1) — B = 5 by BTG S SO0 )

t=1 0y

k k k
= Vf;(y; )+ 657 (0t ™ yf)))’r('yi"’) -y ;
=1

Z (k)vfj( (k)+ (k)h Q(H )TQ(k)Etf (y(k))
t=1 7

= V(" + ﬂf,-"’)(yf“) g )T Z (,,) —— fi( ) Qe

31-1

1 :
= NOMILZ g E(k)h ng)et)Tng)ﬂtft(yf(;k))

=] Ut

J.—.
k i k
= YAV + 60010 - )T e

t=1

_vf.?( %) +€(k)h Q(k) )TQ( )Et} (k) fi( ik))s (2.22)
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where BJ(-"), (k) € (0,1). Since for t <,

k)

e, = GTIUE, - Ve = A

t41 t+1

then

[vk],|<):uva “"+e""(y"" yM) = Y + €5 mQi e

Qe (,,)ft(yﬁ)\ <L2(u 8 _ o) + el Qe

=1
+ CCT Y — 1| F(eW)] < LETHC; (1 + GO 151 4 F )]

f—1
+ Ihkl}bil + oy — 1| Fe®) < Le7H{((1 + G207
t=1

_ 1)) + Colhel}(1 + G207 = 1) FE®)
It follows that

Vil € VRLCFH[(1+C2C7 )" _1)IIF@®)||+Calhe}(1+C2CT ) -1 F (2 ).
(2.23)

Combining (2.3), (2.21) and (2.23); we obtain

2
IRell < 1WAl + 45 VAl < {7 2= n*2LO7" +nM2LC7 (1 + CaCT '™ ~ 1)

A1 + Gy = 1| F (W) + oz|m|}||F(m<">)||.~

Let

o2
Cs = 1—-—;713"21;02'1 +n2LCT(1 + C2C7Y) - 1],
We can see that (2.20) holds, which completes the proof.
The above discussion implies that the Brent method is an inexact Newton method
with an error term satisfying (2.20).

3. The Semi-Local Convergence Theorem

Since the Brent method was presented, the semi-local convergence theorem of the
method has not been proved. Here, by making use of the equivalent variation of the
Brent method derived in the last section, we establish the semi-local convergence the-
orem of the method, which is a complement of the convergence theory of the Brent
method and provides a theoretical basis for initial choices of the method.
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First of all, we introduce the following notations:

Cy = {C5n3fﬂaLC;1 +n 20731 + Cae A — 1]},
a

Cy = ma.x{l ' 1}, Cg= max{Cs, 1}.

It is easy to see that C3 < Cy.
Lemma 3.1. Suppose that the assumptions of Lemma 2.8 hold, and that

0304{[(1 -+ Czcl_l)n_'l - 1]?}' g 026} < 1. (3.1)
If %) € 8§ (29, r) C D, then

Ca

2(¥)
[F (@ = T C2C3{[(1 + C2CT )1 — 1]y + C26)

[xFt1) — gl (3.2)

Proof. By the definition of Cy, Cs and Cg together with (3.1), it is easy to verify
that (2.19) holds. Thus, the assumptions of Theorem 2.1 hold. From (2.2), we have

F(z®) = F'(z8))(zF) — 2ty 4 F' ("R,

It follows that

IF@®)| < |17/ @®)][[1z® — 2&+D)| 4 || B @@ Re|| < Colla®+D — 28|
+ 0203{[(1 -+ Czcl)ﬂ_l — 1]n + Cgﬁ}”F(m(k))”.
Also by the definition of Cy, Cs and Cs together with (3.1), we obtain

Ca2C3{[(1 + Cgcl_l)“ﬂ'l ~ 1ln + Cy6} < CeCye{[(1 + 0201_1)"—1 — 1l + C26} < 1.
Therefore, we have

Cr
1-CaC3{[(1 + C20 )"~ ~ 1]n + C26}
The lemma is true.
We can easily prove the following lemma by simple calculation.
T 2—T i
2. = . — stk
Lemma 3.2. Let g(t) 2(1_1’_)+t+ TR P~ 0<t<1,0<7<1. If
0<1<t<1/4(l —171), then g(t) <1 — 7.
Consider z(8) € 8;(z(9), ry).If F'(z*))~1 exists, we assume

IF ()] <

”m(k+1) L m,(k)” _

1F' ()| < By

Let
A =g**D _g® ¢ = B L|All, Cr=max{4Cq,1}.
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Theorem 3.1 (Semi-local convergence theorem). Suppose that (A) holds, and that

0 < |hi| < 6, oo 0L, W (3.3)
Co = BoLl| Aol € T < 1/2, (3.4)
(3.5)

n2LGo(n"T 6 +¢€) < 1,

; (E = T1)Cg T 4~ — 1 a5
< , , C1/4a<Fy <1, (36
o < minl S AR e D -

0704{[(1 + Czci_l)"'_l — l]ﬂn + 026} < 1-—2T.

Then, starting from £(0) the sequence {:c“‘)} generated by the Brent method remains in
S, (z(®,r1), and converges to the unique solution z* of (1.1) in 5i(z®, 7).
In order to prove Theorem 3.1, we establish the following lemmas.

Denote
I =|(1+CaCr )" — 1m0 + C2o.

3.3. Suppose that the assumptions of Theorem 3.
*,a:(") € Sl(a:(“),'rl), the follounng inequality holds:

=1,2,-,k.

Lemma 1 hold. Then for any k,

g,f m(l), 17(2), iy

Tls i ’7%—1 5
= 0, it is easy 10 verify that, under the assumptions

Proof. By induction. For k
of Theorem 2.1 hold. However, at this moment, 7 is

of Theorem 3.1, the assumptions
replaced by 7o. Thus, from Theorem 2.1, we have

F(z) = F(m(li) — F(z'9) - Ff(a:(ﬂ))(m(l) — z0) + F'(z\®)Ro.

It follows that
m = [|[Fe)| € 1/2) L=
+ Rol? + CallRoll = (1/2)L(IF (=
= (1/2)L(al| F(=?)|| + CsTII F (zO)[))? + C2CsTIF (=N
By (3.7), we have
Cal' € C4I' € C7C T <1 - or <1, C2

(1) — )2 4 Cof|Roll < (1/2)L]l - F'(z®) " F(z®)

(D))_IHNF(“’(D))" + ”R{,")2 + C2|| Rol
(3.8)

1 1 1
{ -5, 3 I‘ p— r— _.
OsT S 701C4T < Z(1-21) < 3

Hence, from (3.8) and (3.7), we obtain
1 1 1 -1 1

< | = Z - < |- 2, - = 10.

m < [ZL(a + 1) 70 + 4]1?0 < [2L(a+ D im0 4]7}0 Y7o
k < m. We can easily prove that the
., hm- Then, by the

Suppose that Lemma 3.3 also holds for any
assumptions of Theorem 2.1 hold when 7 is replaced by m1,M2,°"

same argument as in the case k = 0, we can prove

Tm+1 < ¥1im-
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Therefore, the lemma is proved by induction.

Lemma 3.4. Suppose that the assumptions of Theorem 3.1 hold. Then, for any k,
if 21, 2@ ... k) 2(k+1) g 5'1(:1:(”), r1) and 0, € T, the following inequality holds:

[Ak41]l < (1 —T7)A]. (3.9)
Proof. Since xx, Zr4+1 € S1(2(%,71), then F/(x(F)~1, F’(x(kF+1))~1 exist. Let

G = F'(z"))71[F'(2®) - F(z(**Y)].

Since
|Gkl < IF (@ ®) | I1F' (&) — F'(**)|| < BuLlja® — a*+V)|| = B Li|A| = G,
by the Neumann lemma, we obtain
17— G) 7l < 1/(1 = ).

Let B4 = ;3;:/({- (x). From the identity

Ff(m(k-i-l))—l s (I - Gk)_lF’(:t:(k))-l,
we have

|7 @ D)1 < (7 = G IF @)Y < Be/(L — &) = Bror.
'By Lemma 3.3, if (1) 2(2) ... ,:I:("‘},;:(k+1) € S1(z(?,ry), then
s <7, 8=1,2,---,k+1.

Thus, the assumption of Theorem 2.1 and Lemma 3.1 hold for s = 1,2,---,k, k + 1.
Then, we have

F(z*t)) = P+ — p(a®)) = F/(a®)) (25D — 20 4 Pz R,
It follows that
Aprq = __F'(x(k+1))—1F($(k+1)) + Rips = —(I — G)~LF (z®) 1 [F(z e+

— F(e®)) — F'(zUN) (% +D) — 2060 4 B (2N Ri] + Riys

= —(I = Gp)"{F'(@®)[F(z**) - F(z®) - F'(2®)

(@D — 2 + Ri} + Riyr. (3.10)
Since

| Ri41]| < G| F(*+D)|| < CT(||F (%) — F(=*)| + | F ("))
< GG (|2 *+Y) — 2| + C3T|| F (™)),
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then
1 3
1A+l < 7 erw[\ll*"’(-'irﬁ("’)) HIF@®D) - F(z®) — F'(2®)) () - z || + || R l]

1
+ | Rl £ 72 A (Be(1/2)L|jz* Y — 2®)|2 + C5T' || F ()]

1 C
(BN < 2
+ CoCT| Akl + GTIFE®) < =7 [(1/2)6 1Akl + OT 5 A
Co _ Gl 2—G CaCsl
+ CoGaTl|AN + Gl 4 mlldul = ooy ¥ 10, " 1-Gi6of
T | 2—17 CyCsll
< : ; 11
+ C2C3T|| Akl < [2(1 5t CoOsl + +—— 7= Czcar]llﬁk” (8.11)
Since
CoCaTl < (1/4)C7C T < (1/4)(1 —27),
by Lemma 3.2, we olata.in
[Ag+1]l < (1 = 7)IA]-
Therefore the lemma 1s true.
Now we prove Theorem 3.1.
Proof First,we prove by induction that for any k, i) &G < 7, (ii) glkt+1) ¢
Sl (m(u)i 1"1) :
For k = 0, (i) obviously holds. Since
18q]| = [| - F'(z@) 1) + Ro|| < |F (=) |F )| + CoTIIF ()]
< Bone + C3D|| F(z®)|| < Bomio + C7Cal'no < (Bo +1 — 27)m0 < 771
(3.12)

< 71,

(ii) holds for k = 0.
Suppose that (i) and (ii) hold for k¥ < m. Then for k = m + 1, by the inductive

assumptions and Lemma 3.4, we have

|Apill < 1-DAl, 1Ss<m (3.13)

It follows that

(st = B L Amaal| € 722 LU = )| Al < B LBl = Gm < 7
7

Moreover, from (3.13) and (3.12), we have

m-+1 m-+1 m+1
|zt — 2@ < T 2+ — 2@ = 3 Al < 3 (1 - 7)Ao
a=(0 a=0 a=()
— \, 1 1
<Y (- 7)180ll = =l Aol € —Trm =1, (3.14)

a=0
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It implies that 2™+2 € §1(z(?, ;). Thus, (i) and (ii) hold for any k. Then, by Lemma

3.4, we have
|Aksall < (2 = P)Aw]l, V.

Hence, -
1Akl < (1= 7)|Ap-1]l € -+ < (1 = 7)*||Ag].

It follows that ||Agl| — 0 as k — oo, which implies that z(*) is a Cauchy sequence.

Therefore, {z{¥)} is convergent.
Suppose that z\¥) — z*. Letting m — oo on both sides of (3.14), and making use

of (3.12), we have

lz* — 29| < Z A < Z(l ~ 7)Aol = —H&uH <71
s=0 a=0

It implies that z* € S1 (2@, ry).
From Lemma 3.1, we have

Ca

- 17 (™)) < S {TG.GiT

[A]l.
Letting k — oo, we have

Jim |F(z*))|| = 0.

By the continuity of F'(z), F(z*) = 0, that is, z* is a solution of (1.1).
Suppose that there exists another solution # € S;(z(?), r1). By the mean value
theorem, we have

fi(@®) = f£;(z®) - £;(2) = V£;z® + 6P (3 - 2@)T(=® - 5), vj,
where 9_5 - (0,1). It follows that

| Vfi(e® + 6 (5 — 20T
F(z®) = : (z®) — ). (3.15)
| Via(@® +6.7(& — a®)T

Since z(*) € $;(2(%, ) C So(z9, rg), then a:(k)+9( )(n: :17(")) € S1(z\?, ro) V4. Thus,
by Lemma 2.2,

V(=™ + 6} )(a,- z(*)))T
By =
V fn(z® + e‘*) (& — =0))T _
= [VA(E® +67(F - 2®)), -, Vfule® + 885 — 2®))T
is invertible, and satisfies | B, !|| < a. Hence, from (4.10), we have

z®) — & = BZ1F(z).



18 WANG DE-REN AND HUANG ZHI-JIAN

It follows that
let®) — Z|| < IBSHIF () < al|F(z* )]l

Letting k — 0o, we obtain

o - & < Jim allF(e®)] = &l F(z)] = 0,

It implies that & = =*. Therefore, 2™ is the unique solution of (1.1) in 51(z9, ).

4. Choices of the Step Length h;

In the above discussion, we assume that the step length satisfies
0< |he] <6, Vk.

Such an assumption brings certain convenience 10 the discussion of the semi-local con-
vergence of the Brent method. But it does not reveal the real convergence rate of the
method. In fact, the choice of the step length plays an important role in the conver-
gence rate of the method. In this section, we discuss several choices of the step length
for practical applications of the method.

Choice 1. Brent Step length [1]

-1y-1 _
ol o AEY) i fi(e®) #0,
(¢ is sufficiently small, otherwise

where # is the termination condition, that is, if |F(z®)|| < &, the computation i8

terminated.
Choice 2. Self-adaptive step length

b, = { O(f1(m(k))), if fl(m(k)) £0, |

I fl(m(h)) = b = fn(ﬂa’(k)) = 0, then (k) is a solution of (1.1). If fl(a:(k)) = «es =
fi—1(z®)) = 0, and f;(z'*)) = 0, then by the algorithm structure of the Brent method,
we have y&k) = e = ygk) = z{*®), Thus, fj(y_gk)) = f; (z(*)). Hence, it is easy to see

that such a choice does not increase the amount of function evaluations. In practical
computation, for a sufficiently small £ > 0, if max{|f;(z"*)|,i = 1,2,--- i} < &, and
Fian(@®)] 3 & we take by = O(fz42(e®))), and 37 = -+ = g0y = o®). Tt is of
self-test property, and is superior over the Brent step length.

Choice 3. Steffenson step length

b = O(|F (™)),

Theorem 4.1. Suppose that the assumptions of Theorem 3.1 hold. Then for choices
1-3, there exists a constant Cg > 0 such that

IRl < Call F(=*)II*.
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Proof. For choice 1, if f; (:I:U‘)) # 0, then

hul < 10807 £1(2®)] < TP D)), (A1)
If f1 (:1:("‘)) = 0, since the computation is not terminated, then,
by =& < ||F(z®)]. (4.2)
For choices 2 and 3, it is easy to prove that there exists a constant & > 0 such that
‘hk| < K[|F (8. (4.3)
Thus, for choices 1-3, we have
|hi| < max{C7*, K, 1}||F(z¥)]. (4.4)

Hence, from (2.20), we obtain
|R:|| < Ca{l(1 + C2C7T )™ — 1]|F(=™)|| + Comax{CT, K, 1}|| F(z®))||}|| F(=*))|
= C3[(1 4+ G207 )" — 1+ Comax{C; ', K, 1}]|| F(=™)|.

Let Cs = C3[(1 £ C2C71 )1 — 1 + Cymax{C;},K,1}]. Therefore, the theorem is
proved.

Based on the above estimation, we can prove the local convergence rate of the Brent
method under the regional estimation conditions.

Theorem 4.2. Suppose that the assumptions of Theorem 3.1 hold. Then, starting
from 0 the sequencé %) generated by the Brent method converges quadratically to
the unique solution xz* of (1.1) in S, (m(o),rl).

Proof. From Theorem 3.1, we know that the sequence z(*) converges to the unique
solution z* of (1.1) in §;(z(®, r;).

From the iterative procedure,we have

g * 1) — g* = 28 _ p* _ F'(2)"1F(c™) + R, = ~F ("N F(2)) — F(z*)
- F'(z®)(@® - 2*)] + By = —F' (a™)"[F(z®) - F(2*)
- Fa®)(@® - 27)] + Fe®)[F) - F@®)|® - o*) + Re.
Thus
|z — 2*|| < [|F'(@®) | F(z®)) - F(z*) — F'(2*)(z® ~ z*)|
+IF @ ®) T IF () - FE®)12® — 2| + || Re
< o(1/2)L]2® - 2*||? + aL|ja®) - 2*|? + Cs||F (™))

aLllz® — z*||* + Cs| F(z®)) - F(a")|?

IA

IA
MW B

3
aLljz® - z*|[? + CsCfllz™®) — 2*|* < (FeL + CsC3) = — z*|1.
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It implies that z(%) converges quadratically to z*.
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