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Abstract

A new approach for stochastic approximation in real time is developed. A
number of processors are simultaneously active to carry out a computing task. All
processors work on the same system with different starting time. After each itera-
tion, computed data are passed to the next processor on line. Interacting tasks and
iterative instructions are carried through pipelining of computation and communi-
cation. Asymptotic properties of the algorithm are developed, and comparisons of
the performance between the new algorithm and the classical one are made.

1. Introduction

The objective of this work is to study stochastic approximation in real time. A pipe
line approach is suggested. Asjrmptotic properties of the procedure are developed, and
comparisons of rate of convergence with the classical algorithms are made.

Let z € RY, and f (+) : RY — RL. The traditional stochastic approximation meth-
ods deal with the problem of finding the roots of f(z) = 0 by using noisy measurements
Y; via the recursive procedure

Xat1 = Xa +anYs, Ya = f(Xp) + 6 (1.1)

where the gains aj satisfy a3 > 0, Yay = oo, “ﬁ"a?“ - »(, and &; represent the

measurement errors. Various successful applications of the stochastic approximation
methods have been reported(!»2].

The Robbins-Monro (RM) algorithm (1.1) can be thought of as a two phase opera-
tion. For each iteration, the first phase is to take measurement Y;, and the next step is
to form the new estimate X1 by means of addition. Usually, most of the computation
time is spent on the process of collecting data Y;. The second step X, + a,Y; is less
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time consuming. This feature is, however, not reflected in (1.1) since 7 represents the
iteration number rather than real time.

In recent years, parallel processing methods have drawn much of attention. Starting
from [3], several stochastic approximation algorithms have been developed for parallel
and distributed computing[‘l'“ﬁ]. An extensive survey can be found in {7]. In view of
the recent developments, and motivated by the idea of pipelining of computation for
large scale parallelization[31 , a new algorithm for stochastic approximation in real time
is suggested here. In lieu of using a single processor alone as in the traditional setting, a
number of identical processors are utilized to update the same system. The processors
are lined up as on a production line. After one step iteration is completed, the newly
computed data are passed to the next processor on the line. Each processor, repeatedly,
executes the same instruction on successive observed data and data received from the
preceding processor. |

Assume that a single processor needs r units of time for a phase one operation and
{ unit of time for an addition; 1t n denote real time. Instead of algorithm (1.1), 7 +1
processors will be usgd to carry out the compr:ting task. All r+1 processors work on the
same system vector X, and communicate with each other through pipe line structure.
In spite of different time indices, the scheme is the same for all the processors. Thus,
it suffices to use a single formula to describe the procedure. The initial conditions are
given for X1, X2, Xr42. The observation at time n is Y,,. The algorithm is given by

Xng1 = Xp + Qn—rYn—r (1-2)

where the gains a,, are as before with n replaced by n. When r = 0, the above algorithm
formally reduces to the classical stochastic approximation procedure.

In the proposed algorithm, the overall system consists of a nurmber of parallel pro-
cessors connected through communications. The length of a computation cycle is equal
to the number of processors participating in the computation, which is also equal to
the time required for a single processor to complete one iteration. The notation {Yn—_-}
means that the measurement was begun r (time) units before, and completed at time
. We shall call such measurements “delayed” measurements. In fact, in various situ-
ations, the observed signals are rarely available immediately without any delays. For
example, for the Viterbi decoding algorithm, the desired signals are not available until
several symbol intervals later. Therefore, even for a single processor alone, an algorithm
with delay seems to be a more natural model.

The remainder of this paper is arranged as follows. A modified algorithm is given
first, and the strong convergence is obtained. An order of magnitude estimate of the
algorithm is derived in Section 3, and asymptotic normality 1s proved in Section 4.
Further discussions and comparisons of rates of convergence are given in Section 5.
Finally, an appendix is included. In the sequel, “" stands for the-transpose of a
matrix; g-(-) denotes the gradient of a function g(-) and K denotes a generic positive
constant with possibly different values.
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2. A Modified Algorithm

Let f(-) : R” — RY be a continuous function. Denote the set of zeros of f by
Z = {x € RY; f(z) = 0}. The following conditions are needed in the subsequent
development.

(A1) &, = ap, + Bn such that >~ a,an converges a.s. and 8,0 a.s.

(A2) There is a twice continuously differentiable Liapunov function V'(-) : R~ R,
such that (1) V(z) > 0, Vx, and V{z) — oo as || — oo; (2) For some z*, there exists
a M > 0, with |z*| < M. V(z*) # inf ,—» V(). Moreover, there exists a é; > 0, such
that

6, € (V(:z:*),lmilrifM) U (|m1115+4 V(m),V(m*)) —{Vi(z);z € Z}.

(3) VI(z)f(z) <O, forall x € Z.

The consistency of stochastic approximation algorithms without assuming a priori
boundedness on f(-) was proved in [9]. We adapt the truncation method in our paper
to prove the convergence for the real time stochastic approximation algorithm.

Let {M,} be a sequence of increasing positive real numbers, such that M,—-c0.
Let {o(n)} be 4 sequence of random variables given by

o(0) = 0, o(n+1) = 0() + I Xutban_rYo_r|>Mym} 2.1)

where I4 denotes the indicator function of a set A. (2.1) provides us with a sequence
of truncation bounds. Now, define the algorithm with randomly varying truncations as

Xn+1 = (Xn + @nr Yo iX0 tan—r Yoo r|<Mogmy} T E I ({Xntan_o Yoo s> My} (2:2)

Theorem 2.1. Under (Al) and (A2), for any initial conditions, X;,1 < 3 <r+2,
iMoo d(Xpn, Z) = 0 a.s. where d(-,-) denotes the distance function.

To prove the theorem, we first state a lemma, which is a modification of Lemma 1
and Lemma 2 in {9]. The detailed proofs are omitted. |

Lemma 2.2. Let {X,, } be a convergent subsequence of {Xn}, andlet X, 5,7 <7
be bounded uniformly in k. Suppose that the conditions of Theorem 2.1 are satisfied.
Then there exist cy,co > 0, A > 0; and for any n with 0 < 5 < A, there exists a K,),
such that for any k > K,), and for m(n,n) = max{m; > iL, a; < 1},

L]
I z ﬂj—ry}—r < ¢, meE [nk — Ty M(ﬂk, n)]i (23)
J=ng
I-Xm — Xﬂk‘ < can, M€ [nk — 1y m(nk: 7?) i 1] (24)

It is easily seen that o(n) is a non-decreasing sequence. Thus, either o(n)—0o a
finite limit a.s., or it grows without bound. We demonstrate that the first alternative
holds. |

Lemma 2.3. Under the conditions of Theorem 2.1, o < 00 a.s.

Proof. Without loss of generality, we may assume that V(z*) < infj;-p V(z).
As a consequence, there exists [61,82] C [V(z*),inf|p=pr V(z)] and & > V(z*),62 <
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inf,_a V(z),6; € V(E), for, if Lemma 2.3 were not true, then starting from z*, X,
would be across the sphere {z;|z| = M} infinitely often, and hence V(X,) would be
across the interval [61, §2] infinitely often from the left. Thus, there exist subsequences
{Xi}, {Xn.} and {X,} of {X,}, such that

b <ng <my, X, =2% X; <M, Vk, I <i<np—1, (2.5)
V(Xp,-1) <8 SV(X;) €02 V(X ), Ve, ne <8< my — 1L (2.6)

From (2.2) and (2.5), it is clear that
Xipg — Xj—aill, % & [lpymal. (2.7)

The continuity of V(-) then implies that V(Xﬂk)—i-}ﬁl. Since |X,,| £ M, we can
extract another convergent subsequence with limit #. For notational simplicity, we still
denote this sequence by {X,, }. By virtue of (2.6), V(&) = 6;. Owing to (2.8), {Xn,}
is a subsequence which satisfies the assumption of Lemma 2.1. From here on, we can
use the same arguments as in [9]. Some details are omitted.

It follows from the above lemma that there is a %7 > 1, such that for all n 2> ki,

»
| Xp| € My and X1 = Xy + Gn—pYn—r. (2.8)

Thus, eventually the truncations will be terminated, and the algorithm is bounded
uniformly for large n with probability one.

Proof of Theorem 2.1. Owing to (2.8) and (Al), and the fact that only finitely
many terms are involved between time n — 2r and n — r, for some K3 > &3 + 2r and all
n 2 K2,

n—r n—r n—r

Ky = Kpup = Z a; f(X;)+ Z a;; + Z ajﬂjlrﬂ a.s. (2.9)
j=n-—-2r j=n—2r J=n—2r
The continuity of f(-) then yields f(X,) — f(Xn—r)—0 a.s. Next, for n > x2, rewrite
(2.8) as

X1 = Xn + anf(Xpn) + @nén (2.10)
where
Eﬂ =y + Bﬂ- with &, G;—r Qn—r :.
~ Qn—y — Qn Un—r .
o= SO )+ (F(Knr) = F(K)) + 22

The choice of the gain {a,} implies that (a@n—r — an)/arn—0. Therefore, the bounded-
ness of X,,_, and the choice of a,, imply that the first term 1n Bﬂ, tends to 0 a.s. The
argument following (2.9) then implies that the second term also tends to zero. Noticing
that an_r/a, is bounded, (A1) then yields that the third term goes to 0. As a conse-
quence, 3, —0 a.s. It is readily seen that D_; a0 converges a.s. Owing to (2.10)}, for
all n > Ko, the algorithm can be viewed as a standard stochastic approximation algo-
rithm with measurement noise {£,}. The technique of the ODE approach (cf. [1, 2]) is
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in force. By using this approach and similarly as in [9], we obtain d(X,, Z)—50 a.s.
as desired.

3. An Order Estimate

For simplicity, we shall assume a,, = % henceforth. A similar result can be obtained
tor a,, = f;, 0 <k £ 1, and C a positive constant. It is well-known, for the classi-
cal stochastic approximation algorithm with a single processor and with r = 0, that
v#i(X441 — 6) converges in distribution to a normal random variablel11911 We show
that a similar result still holds for the “real time” algorithm considered in this work.
The asymptotic covariance matrix is a standard measure of rate of convergence and
can be used as a basis for comparison of different algorithms.

In what follows, the rate of convergence is studied in two steps. In this section, we
derive an order of magnitude estimate which is important in the subsequent develop-
ment. Then, in Section 4, the asymptotic normality is established. In addition to (Al)
and (A2), assume |
(A3) Z = {6} antff(:r) = F(z — 6) + 6(x) where 6(z) = O(|x — |117), for some ~ > 0.
Moreover, all eigenvalues of 4 = % + F have negative real parts.

(A4) Let EX» denote the conditioning on the o-algebra F,, generated by past data up

to time n. The following inequalities hold uniformly in n :

EY. SIE6r| =0(/n), BY

k=n k=n

1
SIBT nrbi—r| = O(1/m).
Remark. If the noise processes satisfy

o0 o
E Z | BT v| < 00 and E Z |E"" ¢ r€x_r| < 00 uniformly in 7,

k=n k=n
then (A4) holds. In the next section, we shall consider w-mixing processes. For such
processes, with suitable conditions on the mixing measures, the above inequalities hold.

Theorem 3.1. Let (A1)-(A4) be satisfied, and suppose that there erists a A > 1
such that V() f(z) < AV (x). Then

EV(Xn+1) = O(1/n), for sufficiently large n. (3.1)

Corollary 3.2. If there is a positive definite matrix R, such that Viz) = (z —
0)Y R(x — 8) + o|z — 8/2), then

E|Xn+1—8)> = O (1/n) for sufficiently large n. (3.2)

Proof. We prove (3.1) only. This is a modification of the result obtained in [11].
By virtue of Lemma 2.3, there is a %, such that {X,} and {V(X,)} are both bounded
for all n > k;. Owing to (2.8), for n > ko > Ky + 2r,
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E}.“V(Xn—l-l) 03 V(Xn) = %V;(Xn)f(Xﬂ) | ” 1 TV;(Xﬂ)gﬂ—r + O ( 1 )

n?
-+ V;(Xn) (1’1 _:_l_ Tf(Xn—r) o i’f(Xn)) ' (33)
Define -
Viln) = 3 = B Vi(Xa )i (3.4)
k=n
By virtue of {A4),
EVi(n)| < - (1+ V(Xa). 3.5

Define V(n) = V(X,) + Vi(n). Then

EFV(n+1)-V(n) = iVé(Xn)f (Xn) + VZ(Xn) (k—i,,:f (Xk~r) — %f (Xﬂ))

1
n—r

+0(1/n*)+ K i

k=n41
»

( - T‘E E—rbn—rl 1 o T\E =T (3.6)
Notice that

n—r-—1 n—r—1 n—r-—1
1 1 1
Xpnr— Xn=— ( 3 EF(Xk —0)+ ) Egk + ) Eﬁ(xk)) : (3.7)

k=n—2r k=m—2r k=n—2r
In view of {A3), (A4) and (3.7),

B|Vi(Xa) (s (Xner) - L)) | = oa/ma+ EVEK). (39)
By virtue of (3.5), (3.7), (3.8) and (A4), taking expectation in (3.6) yields
EV(n+1)— EV(n) < —AEV(n) + O(1/n*)(1 + EV(n)). (3.9)

(3.9) in turn yields that for some k3 > 1, A1 > 1, and all n > «3,
EV(n+1) < (1 M/n)EV(n)+0 (1/n?).

Choose x4 = max{ka,x3}. Then

EV(n+1) < f[ (1—A/k)EV(ky)+ K i % fI 1 — Xuli) (3.10)
k=rs+1 k=K4 j=k+1

Using a familiar inequality [T7—;(1 = A1/Jj) < ;I'fT? we obtain EV(n+1) < O (n"‘“) -
O (n~1) = O (n™!). Finally, in view of (3.5), Eq. (3.1) holds for n large enough. The
proof is concluded.

4. Asymptotic Distribution

We show that /n(Xn41 —8) ~ N(0,Z) in this section. It is assumed that equation
(3.2) holds throughout the rest of the paper. In addition, assume
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(A5) {&.} is a stationary stochastic process with E€; = 0, such that for some a > 0,
sup, E|€,|*** < oo a.s. Define F, = o{&:k < n}, F* = o{é;k > n}. For j 2>

1, let tp(}) be given by ¢(j) = supAe}-ﬁnEHﬂ [P(A|F,) - P(A)]ﬁ2 and suppose
>,le(i)] ™ < oo
We claim that the following lemma holds. The proof is provided in the appendix.

Lemma 4.1. Suppose that (Al)-(A3), (3.2) are satisfied, and suppose that (A5)
holds. Then there is an m > K4, such that for aelln —r > m,

Vi(Xnp1—0) = vn—r Z An—r k&k + 0(1) (4.1)

k"m

where o(1)——0 in probability and

fI (I+F/D); ifi>k

Ajr = § I=k+1
I o s b,
’
Theorem 4.2. Under the conditions of Lemma 4.1, /n(Xnt1 — 8) ~ N(0,X),

where
D= [7eMeN it with § = B(eigl) + Y B6agh) + Y Bag). (42
k=2 k=2

In lieu of examining (4.1) directly, we consider the interpolated process

[nt} 4
t
Z A[nt]kgk for t € [0, 1) (4.3)

[nt]

Wait) = \/_

where [z] denotes the largest integer which is smaller than or equal to z. We shall
first show that Wy(-) converges weakly to W(.). The proof is an application of the
functional central limit theory appmach and the methods of weak convergence in {12].

Lemma 4.3. Let B,(t) = v’_ Z;ﬂ £;. Under (A5), B, () converges weakly to B(-),

a Brownian motion with covariance tS.

Using summation by parts in (4.3),

[nt]—1
Walt) = Bal) + (T + Pl 3 gy Ba(b/m). (4

Theorem 4.4. Under (A1)-(A3), (3.2) and (A5), Wy,(-) converges weakly to

_ t
W{(-), e Gauss-Markov process with W(t) = / E_(I"'F)(l““_lnﬂdﬁ(u) and B(:) given
0
by Lemma 4.3.

Proof. The weak limit of the second term on the right of (4.4) is the same as that
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of
[nt]—1 ¢ 59
(I+F)nt) 3 k(ki e "t ) B (k/m)

k=1

1 ;
o (T4 F) / L e FIuB(ut)du. (4.5)
0 U
By virtue of Lemma 4.5, integration by parts and change of variables yield
1 t
W(t) = / e~ (P} invgpiyt) = f g~ U+F)nu—lnt)gp(y), (4.6)
D 0

Theorem 4.4 thus follows.

5. Further Discussions

The rate of convergence is determined by the largest number p, with 0 < p <1 for
which the asymptotic part of n?(X,41 — 8) converges to a non-degenerate and “stable”
process (cf. [1] Chapter VII); with the same scaling factor, the asymptotic covariance
matrices can be used for comparisons of rates of convergence.

Since r + 1 processors are used in the new algorithm and arranged in pipe line, the
iteration time for each step is one unit only as illustrated in the introduction section.
Setting t = 1 in W, (¢) and in view of Lemma 4.1,

\/T_]'(Xﬂ+1 —6) ~ N(0,%), (5'1).

with £ = E(W(D)W'(1)) = [5° eA“S A “du.
For the classical RM algorithm, let # be the iteration number. We have

VA(Xas1 — 0) ~ N(0,Z). (5.2)

Since the actual time n for 71 iterations is n = (r + 1)7, a fair comparison should
involve comparing (5.1) with /(r + D)A(Xa+1 — 8) ~ N(0,Z’). Due to (5.2) and the
well-known Slutsky’s theorem, ¥ = (r + 1)X. This indicates that the asymptotic
covariance of the traditional RM algorithm is r + 1 times as large as the algorithm
proposed in this work. As a result, the new algorithm provides a speedup with a factor
r + 1. Therefore, the new algorithm can be thought of as an acceleration procedure.
If the classical procedure is used with a single processor, then a certain amount of
time is spent on the waiting for the required data to become available. In the newly
developed algorithm, at any given time, there is always one processor doing the phase
2 computation (addition), and all the others are in phase 1—the data collection mode.
In this way, the amount of real time required for iteration is reduced from r +1 units to
1 unit only. When one processor communicates its partial result to another processor,
all other processors, including the one being communicated, are still in operation. This
fact puts the communication penalty in a relatively insignificant level. As a result, the
communication penalty will not prevent the concurrent utilization of a large number of
processors in parallel when the underlying computing task is large.
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We hope that the idea exploited in this paper will open up a new domain in studying
real time stochastic approximation problems. Such study is very important for various
applications.

Appendix

Proof of Lemma 4.1. For n — r 2 m,

n—r

\/_(Xﬂ+1 = 9) = \/‘An *rm——l(X -1 — 9) + \/_ Z An ,.kﬁ(XkJr,.)
k—m
o \/_ E _An—-rk(f(Xk) f(-Xk+r)) + ‘\/E nz_f %Aﬂ—r’kEki (3.1)
k=m

By virtue of (3.2), the first two terms on the right- ha,nd 51de Df (a.1) tend to O in
probability. As for the third term,

\/_ E "'An——rk (f(Xk) s (Xk+,-)) == ‘\/— Tf —An-rkF(Xk - Xk+r)
k—-m k—m.
- 'f pAnrab(X0) = v Y A ab(Xiss). (2.2)
k_m

It can be shown that the last two terms on the right-hand side of (a.2) tend to 0 in
probability.
Next, we examine the first term on the right-hand side of (a 2) In view of (3.7),

n-—r —Tr
1

VR ) o T W, S - = AnvicF Z F(X; =)
k=m k—-m i=k—r
k—1
1
+Z A —T‘kF z _é-.? Z & Ap_p i F Z 315(}() (a.3)
J—k-—r k=m =k—

The definition of An_r; implies that |44} < (7&;)  for some a1 > 0. Conse-

quently, for any 1 > 0, by virtue of equation (3.2) and Chebyshev’s inequality,
n—~—r k1 F2

{\fz il 45 z —(%; - 6)| > n}

s

k=m

In addition, the other two terms on the right-hand side of (a.3) tend to 0 in proba-
bility. Furthermore, using similar arguments, we can show

n=—r 1 ﬂ-—: 1
\/Ekgl 'EAn—r,kek =3 \/ﬂ' e k%;l EAn—r,kgk Vi 0(1) (&4)

with 0(1)—0 in probability. The proof of the lemma is thus concluded.
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