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Abstract

While the numerical solution of one-dimensional Volterra integral equations of
the second kind with regular kernels is well understood, there exist no systematic

studies of asymptotic error expansion for the approximate solution. In this paper,
we analysesthe Nystrom solution of one-dimensional nonlinear Volterra integral
equation of the second kind and show that approximate solution admits an asymp-
totic error expansion in even powers of the step-size h, beginning with a term in
h?. So that the Richardson’s extrapolation can be done. This will increase the
accuracy of numerical solution greatly.

1. Introduction

Consider the nonlinear Volterra integral equation of the second kind
uz) = [ K@tu®)dt+ 1), @ ¢€lo] (1)
a

Here, u(x) is an unknown function, f(z) and K(z,t,u) are given continuous functions
defined, respectively, on [a,b] and D = {(z,{,u) : e <z <b, asiLz, —0<u<
oo}, and assumes that K(z,t,0) = 0. Otherwise, since

el o+ /; *(K(z,t,u(t)) - K(z,t,0))dt + f(z) + fa * K(z,t,0)dt.

we have

uz) = [ Kia,t,u(®)dt + fo) (1)

where f(z) = f(w)+f K(z,t,0)dt, K(z,t,u) = K(z,t,u) ~ K(z,t,0), so K(z,t,0) =

0. We shall discuss (1‘r )-
During the last ten years significant progress has been made in the numerical analy-

sis of the one-dimensional Volterra integral equation (see for example [1], [2]). However,
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there exist no systematic studies of the asymptotic error expansion of the approximate
solution. There is only a brief mention in [4: pp.300-309| for linear one-dimensional

Volterra integral equation. In this paper, we consider the nonlinear one-dimensional
Volterra integral equation of the second kind, and obtain asymptotic error expansion

for the Nystrom method of the equation (1). For two-dimensional Volierra integral
equations, similar results can be obtained. We shall discuss it in another paper.

2, The Nystrom Method and Its Asymptotic Expansion

Let A be an equidistant partition of [a, ]

Reag=2<tBrL< LT =Dh
and h = (b—a)/N.

The Nystrom method to (1) is: Find v* = (uk,u?,...,u% )T such that

£ t—1
u? == 2 K(mg,mo,ug)+K(m,-,:ni,u?)+22K(m¢,mj,u?) + fi, (2)
L 7=1

where f; = f(z;).

In order to guarantee the existence of a unique solution to equation (2) and obtain
the asymptotic error expansion of Nystrom method. We assume throughout this paper
that the following conditions (i)—(iii) be satisfied:

(i) K(z,t,u) € C™t(D), f(z) € C"*[a,d];

(ii) K(x,t,u) satisfies the Lipschitz condition

|K(z,t,u) - K(z,t,v)| < Llu —v;
(iii) g = Lh/2 < 1.

Under these conditions there exists a unique solution in C"*1{a, b] for equation (1).
This can be done by classical Volterra theory.

Lemma 1. Suppose that K(z,t,u) satisfies (1i)—(iii). Then the egquation (2) has
a unique solution and the estimate

1 L(b-—a))
h <
et la o < T exp (ST £l

holds for the solution of the equation (2), where ||f|la,0 = Jmax | fi].
—l—
Proof. The equation (2) is a system of nonlinear triangular algebraic equations and
its diagonal elements

h : h . hL
ul — EK(mhmia“?) > |uf] — E\K(ﬂ’iaﬂ?iau?)l > Jul| - ?\ﬂ?l = (1 — g)|ul|

differ from zero. So the equation (2) has a unique solution.
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From (2) and condition (ii} we have

y i—1
WPl < 5 (1K (@m0, )] + K @i, zs, ub)] +2 3 [K @iz ub)] | + 15
’ =1
h [ 5 t—1 " i
< > Ll|ug| + Liu?| +2L§\u ;11 + | fl
From this, using condition (iii), we have
pr -l
uf] < —— 3 luf| + ——llflla,m

Using Gronwall’s inequality (see, for example [2]) we obtain

Lh
< (1+ ) Ul ®

]_....
. i=0,1,...,N.

1 sLh 1 I{b—a
] < 7 oxp (52 ) Il < o -exp (5 ))Ilfllam

The Lemma is proved.
Lemma 2. If f(z) € C"[a,b]. Then, for anyi=1,2,...,N, we have

b | . zi—l .- d g 23 Baj 1 ¢(2j-1)
g |fle0)+ 1@ +23 1)) = [ fladda+ 3 @i/

+ O(h™t)

where B; are Bernoulli numbers. [f(x)|Zi, = f(x;) — f(a).
Using Taylor’s expansion, we can easily get the following Lemma.
5]
Lemma 3. Suppose that v(y) = Z h*?d,(y), dy(y) € Cla,b]. Then
p=0 ,

B
K(@v o)) = K(z,3,do®)) + 3 W% | - K (2,0, do(®))dp(y) + 9p(z,3)| + O+
p=1

here 5
1 /3Y\°
0@ =3 5 (5) Kewdt): T du@)
=2 sl \Ou K1+...+hks=pn=1
ki>1
5 i—1 1
Theorem 1. Let Thv; = 5 K(z;, xo,v0) + K(x:, x5, v;) + 2 Z Kz, x;,v5)| + fi,
i=1 ]

(5]
v(z) = z thdp(ﬂ?): v; = v(;). If do(z) = u(x), dp(z) satisfy the following equations

p=0
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(p = 1,2,...,[%])

" a1 e
dy(z) — f %K(m t,u(t))dy(t)dt = f go(@, t)dt + (219)‘ b K (z,t,u(t)) i
p—-1 BEk [ 5 2k—1 o =
+ X |(a)  (auK@tuObat)+ gp-k(m,t))]m. @
Then
— Tho; = O(K™Y), i=1,2,...,N. (5)
Proof. Applying Lemma 3 and Lemma 2 we have
[%] i—-1 1
vi — Thvy = Z thdp(mi) - 2 EK(% Zj+1, do(Zj+1))
p=0 §=01=0
[%] 1-—1 1
- Z b E Z ( K(z, Tj+1, d0($3+1))dp($3+1) + gp(mu ﬂ?3+1))
p=1 2=01=0
= fi +-O(H" ™)

s iy — f " Kl b doliN i — )

[2] T i
+Zh2P{ p(m,)—f %K(mi,t,do(t))dp(t)dt—/c; gp(xsi, t)dt

p=1

o Kt do(e)|

[5]-» i 2k—1 T
- 3wk () (K et do )l + apmt)) |}

k=1 | t=a
+O(hr+1)

Write the expression as polynomials in h, from (4) all term in A%, p = 0,1,..., [5],
cancel out, therefore

— Thy; = O(hr'l'l), R .

The Theorem is thus proved.
Theorem 2. Assume that (i)-(iii) hold. Then the Nystrom solution u™ can be

ezpanded as

[]
ul = u(z;) + Z h°Pd,(x;) + O(R™), i=1,2,...,N. (6)
p=1
where dy(z) are the solulions of the equations (4).
Proof. For i = 0,1,..., N, let ¢; = u? — v;. By using the definition of 7T}, we have

ur —Thu? =0, i=1,2,...,N. (7)
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Subtracting (5) from (7) we have

h =
le;| < 5 [Llegl + L|e;| + 2L Z le;|| + O(R™T1).
J=1

By using Lemma 1 we have
lella,ce = O(h™").

The proof of Theorem 2 is proved.
Remark 1. When p = 1, d;(z) satisfies the equation

da) - [ gaK@ b ue)dOdt = 1 [ Kt uw)]

When p = 2, do(z) satisfies the equation

b

t=n

x i 3 5
ol — /{1 %K(m,t,u(t))dg(t)dt— s (%) K(z,t, u(t))
1

Jdt=a

2 [g (%K(m,t, u(t))) dl(t))] ; + % f ’ (%)EK(w,t,u(t))d%(t)dt-

»

. tg
Remark 2. We assume throughout this paper the sum Z equals to zero when
L1
t1 > ts.
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