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Abstract

A simple finite element method for the Reissner-Mindlin plate model in the
primitive variables is presented and analyzed. The method uses conforming linear
finite elements for both the transverse displacement and rotation. It is proved that
the method converges with optimal order uniformly with respect to thickness.It is
simpler and more economical than the Arnold-Falk element!l].

1. Introduction

The Reissner-Mindlin model describes the deformation of a plate subject to a trans-
verse load. This model, as well as its generalization to shells, is frequently used for
plates and shells of small to moderate thickness. It is well known that many numeri-
cal schemes for this model are satisfactory only when the thickness parameter ¢ is not
too small. For a very small ¢, some bad behaviors (such as the locking phenomenon)
might occur. In 1986, F.Brezzi and M.Fortinl®! derived an equivalent formulation of
the Reissner-Mindlin plate equations by using the Helmholtz theorem to decompose the
shear strain vector. The optimal error estimates for transverse displacement, rotations
and shear stresses were obtained uniformly with respect to thickness. Unfortunately
their method is not known to be equivalent to any discretization of the original Reissner-
Mindlin model.

In [1] Arnold and Falk modified the method in [2] and obtained a finite element
method for the Reissner-Mindlin problem in the primitive variables. This so-called
Arnold-Falk element may be the only method with the approximate values of displace-
ment and the rotation, together with their first derivatives, all converging at an optimal
rate uniformly with respect to thickness. Recently, R.Duran et al. [3] introduced a
modification of Arnold-Falk element, with the internal degrees of freedom removed.

In this paper, we present a new finite element method for the Reissner-Mindlin
model which is based on a différent discrete version of the Helmholtz decomposition.
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The method used here is easier to implement and optimal error estimates for displace-
ment and the rotation are proved uniformly in the plate thickness. It is simpler and
more economical than the methods in [1,3].

2. The Reissner-Mindlin Plate Model

We will use the usual L?-based Sobolev spaces H®. The space H~1 denotes the
normed dual of H', the closure of C5° in H!. We use a circumflex above a function
space to denote the subspace of elements with mean value zero. An underline to a space
denotes the 2-vector-valued analogue. The underline is also affixed to vector-valued
functions and operators, and double underlines are used for matrix-valued ob jects.
The letter C denotes a generic constant, not necessarily the same at each occurrence.
Finally, we use various standard differential operators:

~,Or Or ~ Op Op.p ., 0P Oy
gr&dr_(ﬂ:c’ay) ; E‘u_ﬂp_(ﬁy’ 3:1:) i Ay oz = Oy’
oy 9Y1
Oy Gy % By
t —
rot ¥ = By vt grad ¢ Byr B
dr Oy

Let €2 denote the region in R? occupied by the midsection of the plate, and denote
by w and ¢ the transverse displacement of Q and the rotation of the fibers normal to
{1, respectively. The Reissner-Mindlin plate model determines w and @ as the unique

solution to the following variational problem.
Problem RM. Find (w, ¢) € H}(Q) x H5(§!) such that

a(g, ) + M ™*(¢ — grad w, y — grad u) = (g, p), (2.1)
Y, ¥) € Hy () x H3(Q).

Here g is the scaled transverse loading function, ¢ is the plate thickness, A = Ek /2(14+v)
with £ Young’s modulus, v the Poisson ratio, & the shear correction factor, and the
parentheses denote the usual L? inner product. The bilinear form a(-, ) is defined by

E d¢ O2\ O O¢1 | Doy OY
o, ] = S L [( 3; ey 3;) 3_.1,1 4 (u 3;1:1 | 3;) 3;

1= (34351 , 3¢'2) (3% , 3¢2)]
2 \dy Bz /\fy ' 8x/r
By Korn’s inequality, a(-,-) is an inner product on H}(f)) equivalent to the usual one.

For simplicity of notation, we will consider the problem whose weak formulation is
given by (2.1) with A =1, and

a(¢, ¥) = (grad ¢, grad ¥).

For our analysis we shall also make use of an equivalent formulation of the Reissner-
Mindlin plate equations suggested by Brezzi and Fortin!?l. Which is derived from
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Problem RM by using the Helmholtz theorem to decompose the shear strain vector

n = t~%(grad w — ¢) = grad r + curl p (2.2)

with (r,p) € Hj () X H'(9)). Moreover, since -7 = 0 on 942, p satisfies a homogeneous
Neumann condition on 8Q in weak sense, where 7 is the unit vector tangent to 9f2.
Problem BF. Find (r,¢,p,w) € HH(Q) x Hg(2) x HY(Q) x H}() such that

(grad r,grad p) = (g, 1), Vu € Hg(), (2.3)
a(¢, ) — (curl p,y) = (grad r, ¥), Vy € Hg(Q), (2.4)
— (¢, curl g) — t*(curl p,curl q) =0, Vg€ H'(R), (2.5)
(grad w, grad s) = (¢ + t?grad r,grad s), Vs € H}(9). (2.6)

The following regularity results were proved by Arnold and Falklll.
Theorem 2.1. Let ! be a convexr polygon or smoothly bounded domain in the

plane. For anyt € (0,1) and any g € H™!, there ezists a unique quadruple (r,¢,p,w) €
H() x HY () x HXQ) x H3(Q) solving Problem BF. Moreover, ¢ € HZ(Q) and there
exists a constant C independent of t and g, such that

Irlli+llgllz+lpli+tlplz+lwl <Clgl-1-
If g€ L2()) , then r,w € H%(Q) end

72+ |wlle<C|lgllo-

3.The Finite Element Method

Let  be a convex polygon and 3, (4] be a regular triangulation of {2 where as usual
h stands for the mesh size. Denoting by Pi(T') the set of functions on T' which are the
restrictions of polynomials of degree no greater than k, we define the following finite
element spaces:

VP = {v e H3(R) : vjr € Pi(T),VT € Sy}, _Lf_ =V x V2,
Iy, = {n € [L*(]?, VT € Sn},
My, ={veL*Q): v|lp € P(T), VT € 3 },

M} ={ve M, :v is continuous at midpoints of element edges },

Mh={vEM,: :fnv =U}.

Qur approximation scheme is given in the following problem.
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Problem Cy. Find {w, _qéh) € V£ X Kﬂ such that

1
ﬂ((}f’h, 1'&) £ $2 1+ ah?2 (Eﬂéh _Eaj “h _d_;_ ﬂ #’) = (g!ﬂ)i

V(u, ) € VP x V9 (3.1)

where Py : L%(Q}) — I, is the orthogonal projection, and « is a given constant
independent of A, t.
Lemma 3.1. Equation (3.1) has a unique solution.

Proof. Let g = 0,9 = ¢, and pp = wy, in (3.1). Then
lgrad ¢, [I2 + (£* + ah®)~! || Pyg, ~ grad wy |2 = 0.

This implies first that grad Y, =0, so ¢, = 0 ; whence grad wp, = 0 and wy, = 0. It
completes the proof.

4. A New Discrete Version of the Helmhotlz Theorem

The Helmholtz theorem states that any L? vector field can be decomposed uniquely
into the sum of the gradient of a function r in HY and the curl of a function p in
H'; moreover, the two summands are orthogonal in L*. It is not true in general that,
if the vector field is piecewise constant, then r and p will be continuous piecewise
linear functions. However, Arnold and Falk [1] gave a discrete version of the Helmholtz
theorem by using a nonconforming element. Here we will give another orthogonal
decomposition like that in [1].

Theorem 4.1.

I'y = grad V;P & curl, Mh, (4.1)

which is an L? orthogonal decomposition.
Proof. 1t is obvious that the summands in (4.1) are piecewise constant functions.

Let r € V0 and p € M),. Then

(grad », curl,p) = ; _/,_;, grad r-curl p = Z f 33T

Here st is the counterclockwise tangent to 87. Now let e be any interior edge of the
triangulation, say e = T4 NT_. Let rT = r|+. Since r is a piecewise linear function,

ort | . : . Or. Or_
are constant on e, and since r is continuous == :
bl b

the derivatives

Since p € Mh, Py — p; is & linear function on e and vanishes at the midpoint. It follows

that
3T+ / 31'_
| . =z ),
/;p+ dst, " ¥ odsr.
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If e is a boundary edge contained in the triangle T', since r € V,? , then % — |
Adding over all edges, we get
(grad 7, curl, p) =0 (4.2)
so that grad r is orthogonal to curly p.
It remains to check that
dim[, = dimgrad V + dimcurl, M. (4.3)

Let
IS = number of interior sides ,
BS = number of boundary sides ,
T = number of triangles,
IV = number of interior vertices,
BV = number of boundary vertices.

Obviously, BS = BV and
dimgrad ¥ =1V, dimcurl, My =IS+BS—1, dim[l, =2T.
We then use Euler’s relation on 3y, namely
T+(IV+BV)-(IS+BS)=1

and

37" = BS + 2IS.

It is easy to see that 2" = IS + IV + BS —1 and this implies equation (4.3).

5. Error Analysis

First we introduce an equivalent formulation of Problem Cj,.
Problem Cj. Find (rs,¢,,pn,wn) € Vi x V} X M;, x V2 such that

(grad s, grad p) = (g,p), Vu €V, - (5.1
a(g,, ¥) — (curl, ph, ¥) = (grad r, ¥), V¥ €V5, (5.2)
— (¢,,curl, q) — (£* + ah®)(cul, pn, curl, ¢) =0, Vg€ M;, (5.3)
(grad wh, grad s) = (¢, + (> + ah?)grad ry, grad 5), Vs € V3. (5.4)

Lemma 5.1. For ang g € L?(Q) and any t € (0,1] there exists a unigue solution

(rh,ﬂ,ph,wh) to Problem C}. Moreover ,the pair (“"h’?h) is the unique solulion of
Problem Cy and

(tz + (Ihz)_l(gl'ﬂd Wh — -‘Eﬂfh) =grad v, + curly pn. (5.5)
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Proof. Supose g = 0. Choosing u = r in (5.1) we see that 75, = 0. Next, set Y =9,
in (5.2) and ¢ = pp, in (5.3) and subtract. This shows that ¢, =0 and pp = 0. Fma.lly,
taking s = wp, in (5.4), we conclude that w, = 0. This estabhshes the existence and

uniqueness.
Since curl, g and grad s are piecewise constant for g € My, s € VY, we may replace
¢, by £y¢, in (5.3)-(5.4). Using the orthogonality proved in Theorem 4.1, we deduce

that

(grad wp — Pyg,, curly q) = (t* + ah®)(grad ry + curly, pr, curl, q), Vg € M,

(grad wy, — Pog,, grad s) = (#* + ah®)(grad ry + curly, ps, grad s), Vs e V.
By Theorem 4.1, these two equations are equivalent to the single equation
(grad wh — Pog,,n) = (t* + ah?)(grad i + curly pn, ), Vn € Ly

from which (5.5) follows.
From (5.2), (5.1) and a similar application of orthogonality, we have

Fﬂ((?:? 12) e (&a‘_i_ Th +C_1lﬂh Ph. _"P__ @ ﬂa) = (g:#'):
V(u,9) € Vi x V). (5.6)

By (5.5), equation (5.6) implies that (wy, ¢, ) is the unique solution of Problem Cj,.
We now give the energy estimates for our method, the proof of which is similar
to the proof in [1,2,3]. Because of the term ah?, we do not need the Babuska-Brezzi

inequality.
Theorem 5.2.. Let (r,¢,p,w) and (Thy @, , Ph,wh) be the solutions of Problem BF
and Problem C}, respectively. For some g € L*(1) and some t € (0, 1],

[r=rali+]@~0, 1 +(t+ah) lcutli(p—pr) llo + || w—wn 1 < Ch| g |lo

where the constant C is independent of g, h and t.
Proof. Let us start with the error » — rj, where r;, is the usual confnrmmg approx-
imation to the solution of the problem

—Ar=g¢g in , =0 on 5.
It is well known that (see [4])
lr—7nllo+h ||r—rulli <Ch® |l go- (5.7)

We now derive an estimate for the errors ¢— ¢, and p—py. Let qb‘r e V9 and pf € M,
be the interpolation of ¢» and p, respectively. Then from the standard interpolation

theoryl¥l, we have |
-3¢ i < Ch || ¢ |2, (5.8)
lp—p'llo < Chllpl, [culip—p')lo< Chipl2. (5.9)
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From (2.4) and (5.2) it follows that
” grad(gbh o ?if) Hg = (grad(qﬁ S QI)! gﬂ(‘;&h = ?I)) o+ (C_uﬂh(ph L p)? Eh = q_f’I)

+ (grad(rn — 1), &, — ¢').
From (2.5) and (5.3) it follows that

t2 || curly(pr — 27) |2 =t*(curly(p — p), curl,(pr — 2')) — (¢, — ¢, curly(pr — p*))
— ah®(curlypr, curly(py — p")) + E1(¢,p,pn — P')

where
| Er(¢,pspr—pP )= — Y f (¢ + t*curl p)r(pr — p'). (5.10)
. JOK

Here 7 is the counterclockwise tangent to K. Adding these two equations we get

| grad( ¢, — ¢") Iz +(2% + ah?) || curly(pa — ') I3

= (grad(¢ — ¢'), grad(g, — ¢")) + t*(curly(p — p'), curly(ps — 7))

+ ah®(curl,p’, curly(pr — p')) + (curl, (" - p), ¢, — ')
+ (¢ - ¢, curly(pn — p")) + (grad(rs — 1), ¢, — ¢') + E1(¢,p,pn — P')

=h+ L+ I3+ L+ 1+ 1g+ I7.
By (5.8)—(5.9), then

L < Chll¢la-| grad(¢, — ") llo,

I < Che® | pllz- || culu(pn = ') llo,

Iy <ab? | pli- || curlp(pn —p) llo -

In order to bound 14, we integrate by parts

I; <|(p" - p,rot(g, — &")| + |E2(PT —p, 8, — &")

<Ch | plll &, — ¢") llo + B2 - p, 8, — 8]

where
- ~ @) = — D (p! — ;
Ex(p' —p, ¢, é)—\%:fax(ﬁh ¢')r(p’ — p) dsf

And

Is + Is| < Ch? | ¢ ||z - || curly(pr — p") llo +Ch I 7 ||z - || (8, — &) II1 -
It remains to bound E1(¢, p, pr — p!) and Ey(p' — p, B — _qL_SI ). Define

IT}, = {v:v|r € [Po(I)}?,T is the interior side of triangulation }
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Using the sta,ndard analysis of nonconforming methods [5,6] and the fact ¢ = 0 on 00
and curl p-r = —Dnn&’ﬂ we get

E1 (¢, p, pr — PI) = iﬂfl > ax(f + t*curl p — s;)7(pn — I)d3|(‘?'§h il
K

< Ch || ¢+ t%curl p ||; - || curly(pr — ) |lo -
By the trace theorem, we obtain
Exp' —p. 8, —¢') < Chllp|h-| grad(¢, — ¢") llo -

Applying the Schwartz inequality and the arithmetic-geometric mean inequality, we
can obtain

| grad(¢, — ¢") [I5 +(£* + ah?) || curl,(ps — ') ||2

< CR(l gl + ol +¢2 o2 + [ r ll2).
Then, using the regularity result (Lemma 2.1), we get
| 8, = ¢ Il +(t + ah) || curly(ps — ") lo< Ch |l g o

By the triangle 1nequa,11ty and (5.8)—(5.9), we derive the estimate for the errors ¢, — ¢
and p — pp. Finally, let w! € VY be the interpolation of w. Then

| grad(ws — w') llo= (grad(w ~ w'), grad(ws — w")) + (grad(w — w), grad(ws — w’))

= (grad(w — w'), grad(wy, — w!)) + (¢, — ¢, grad(ws — w')

+ t*(grad(ry, — r), grad(wy — w’)) + ah?(grad rp,, grad(wy — w?’))

< Chligllo- |l grad(wn —w') [lo -

Since

|w—w' 1< Chilwll2< Ok g o,

using the triangle inequality, we can obtain the estimate w — wj, easily. Applying a
variant of the usual Aubin-Nitsche duality argument, we estimate ¢ — @, and w — wy

in L? norm.
Theorem 5.3. Under the hypotheses of Theorem 5.2,

-, lo+ | w—wnllo < CR*| g llo,

where C 18 independent of h, g,t.
The proof of this theorem is similar to the proof of Theorem 6.1 in [1], so we omit

the details here.
Remark. It is easy to see that we can obtain the quasi-optimal pointwise error
estimates and the multigrid method for our element; see the method in [8,9].
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