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Abstract

This paper studies the following two problems:

Problem I. @Qiven X,B € R**™, find A € P, ,, such that AX = B, where
Ps,n = {A € SR "|z" Az > 0,Y8Tx = 0, for given S € R}*7}.

Problem II. Given A* € R**", find A € Sg, such that ||A"‘-—-ﬁ|| = inf gc5, | AT~
A|l where Sg denotes the solution set of Problem I.

'The necessary and sufficient conditions for the solvability of Problem I, the
expression of the general solution of Problem I and the solution of Problem II are
given for two cases. For the general case, the equivalent form of conditions for the
solvability of Problem I is given.

Inverse problems for real symmetric matrices and symmetric nonnegative definite
matrices have been studied in [1], [2]. The conditions for the existence of a solution the
expression of the general solution and optimal approximate solution have been given.
This paper studies the inverse problem of one kind of matrices between the above
two kinds of matrices — matrices stitiﬁe semidefinite on a subspace. The conditions
for the existence of a solution, the expression of the general solution and the optimal
approximate solution are given.

In this paper, R™*™ denotes the set of all real n x m matrices, R}*™ its subset
whose elements have rank r, SRE™*" the set of all real n x n symmetric matrices, and
SR;™™ the set of all n x n symmetric nonnegative definite matrices. I denotes the
k x k unit matrix, R(A), N(A), A" denote column space, null space and Moore-Penrose
generalized inverse matrix of matrix A respectively. || - || is Frobenius norm, and A > 0
represents that A is a symmetric nonnegative definite matrix.

Let P,,, = {A € SR""|zT Az > 0,¥STz =0, for given S € Ry,

Problem 1. Given X, B € R"*™, find A € P, , such that AX = B.
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Problem II. Given A* € R"*™, find A € Sg, such that ||4* — A| = inf 4¢g,, || A* —
All, where Sg denotes the solution set of Problem I.

We will introduce some Lemmas in 1, and give the conditions for the solvability,
the expression of the general solution of Problem I and optimal approximate solution
of Problem II for two cases respectively in 2 and 3. We will give an equivalent form
of conditions for the solvability of Problem I for the general case in 4 and suggest a
problem which is worth investigating.

1. Some Lemmas

Suppose S € R3*". We construct the orthogonal triangular decomposition for S:

§ = QT (g) = QJ1L, (1.1)

where Q7 = (Q7,Q7) is an n x n orthogonal matrix, and QT e RM*X(»P) Lisapxp
nonsingular lower triangular matrix. Then

R(S) = R(Q3), N(S") = R(QT). | (1.2)
Lemma 1. Suppose S has factorization in the form (1.1). Let
QAQT - (All AIZ) ,All = R(n—p)x(ﬂ—p)_ (13)
- \A2z1 Aax

Then A€ Ps,n & An = SROH_P)x(“-P) Agy = AL, Ape = AL

Proof. Sufficiency. Because A € P,, it is evident that Ay = A%;,Alg —
A3y, A = AT}, Vy € R®™P), Then QTy € N(ST). From A € P, ,, we get yT A1y =
(Q'{y)TA(Ql y) 20, ie A € SRgn—p)x(n—p)-

Necessity. It is evident that A = AT, and for any given z € N(S7T), there exists

y € R*P gatisfying z = Qfy, i.e. Qz = (2)-
Thus we have 27 Az = 27 QTQAQT Qz = yTAuy > 0, where A € P, ,,.
Lemma 2. Suppose X, B € R"*™, and S has factorization in the form (1.1). Write

X B
QX = (X;)a QB = (B;)s (1'4)

=X, By = 1B € R(n—p)xm! Xo =X, By = Q9B € RP*™,

If R(X) C R(S), then we have (i) X7 B = B X3 & XTB = BTX; (ii) B1 X}t X3 =
B, and Bz.X;XQ = Bz & BXTX = B.

If R(X) C N(ST), then we have (iii) XIB=Bf{X,>0e XTB=BTX > 0; (iv)
rank(X{ B;) = rank(B;) < rank(B;) = rank(XTB); (v) BiX{ X1 = By, B X7 X3 =
Bz — BX+X = 8. |

Proof. Because X7B = XTQTQB = XT B, + XTI B,, if R(X) C R(S) = R(QT),
then we have X; = 0. Therefore (i) holds. Furthermore, because X7X = X+QTQX =
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+
(i;) (ﬁ;), we have Xt X = XJ X, when X; = 0. Thus (ii) holds. If R(X) C N(ST),
then we can obtain (iii)—(v) by X2 = 0 and a similar argument.

Lemma 3. Suppose C € SRP*™, Y € R™*™. Then rank (YTCY) = rank (Y1C).
Proof. Consider the equation with unknown A4 € SRz™".

AY =LY,

It is evident that C is a solution satisfying the conditions. Thus, from Theorem 2
in [2], we have

rank(YZCY) = rank(CY) = rank((CY)") = rank(Y 7 C).

2. The Case of R(X) C R(S)

Theorem 1. Suppose B,X € R**™, 5 € R}*P, and S has factorization in the
form (1.1). X;, B; are the same as in (1.4) . If R(X) C R(S), Problem I has a solution
if and only if: .

B=BX*X,XTB =B"X, (2.1)

and its general solution can be representied as

| Ay A1z
A=@Q" ( ) 2.2
Q dhae ke Q (2.2)
where
Al € SR‘()n——p)x(n—-p),Azl = Ag;, (2.3)
Agy = BiXF 4 M — XaX3),YM e B9, (2.4)

Agz = Xo XTI Bo X7 + (XY Ba(I — Xo X))+ (1 - XoX)Bo X5
+ (I - XoXF)N(I - XoX5), VYN e SRPP. - (25)

Furthermore, suppose

B* = (A" + 4T)j2,  C* = (4" - A'T)/2. (2.6)
Let
QB*QTA ( i1 Tﬂ) BY, € SR-PX(=m) - (2.7)
BZI BE?

If Problem I has a solution, then Problem II has a unique optimal approzimate solution
which can be represented as

y FS - | ‘
1 r{ A1l Az
— ';? .y P l;-)l ;8

| ( Asy  Agr ) ' ' | (28)
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where
Auy = [B*]y, Ay = Ay, (2.9)
Aa = BiX; + B (I - X2 X)), (2.10)
Az = Xo X3 Bo X + (X))  Bo(I ~ X X7 |
+ (I = Xo X )Ba Xy + (I — XoXF)B3o(I — XoX37), (2.11)

where [E], denotes the unique optimal approzimate solution in the set S R™*<™ of n xn
matriz E under Frobenius norm.
Proof. By using matrix @ in (1.1), let

QTAQé (An Au) Ay € RPx(n-p) (2.12)
Asy  Ap @

Then we can easily transform AX = B into
A1l Au) X1 B
= L ] 2'13
4 (:‘121 Ao (Xz) (Bz) - \%:13)

Because R(X) C R(S), from (1.2) we have X; = Q; X = 0. Now we use Lemma 1.
From (2.13) we can see that Problem I is equivalent to

Ay € SRR R 40 AT, (2.14)
A X = B, (2.15)
A2 Xy = By, App = AL, (2.16)

According to (3] and [1], we know that the necessary and sufficient conditions for the
solvability of (2.15) and (2.16) are respectively

By = B1X2X$ and By =ByXoXJ), XJB,=BTX,. (2.17)

From (i), (ii) in Lemma 2 we know that (2.17) is equivalent to (2.2). Evidently, (2.14)
is the same as (2.3). According to [3] and [1], we know that the general solution of
(2.15) and (2.16) can be represented by (2.4) and (2.5) respectively. Moreover, we can
get the expression (2.2) of the general solution of Problem I from (2.12).

When Problem I has a solution, from (2.2) we know that the solution set S is a
closed convex set, and the corresponding Problem II has a unique optimal approximate
solution.

By using (2.6), (2,7) (2.12) and orthogonal matrix Q in (1.1), for A € SR™™™ we
can derive

14~ A% = |QAQT — QA*QT||? = |QAQT - QB*Q7|? + |QC*QT|?

Y e e
Az — By Az — B3
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Therefore, from {2.2) we know that infses, ||A — A%|| is equivalent to

it s ~ B[ Ay € SREFB | (2.18)
inf [|A1p — B,| A1z s given by (2.4), (2.19)
inf | Ag1 — B3| Az = Ay, (2.20)
inf || Aoz — B3,l| Az is given by (2.5). (2.21)

According to [4], we know that the solution Aj; of (2.18) can be represented by the first
equation of (2.9); by [3], we know that the solution Ao of {2.19) can be represented
by (2.10); by [1], we know that the solution of (2.20) can be represented by (2.11).
Because B%; = B*T, the solution of (2.20) satisfies Ay = AL, At last, by (2.12), we
conclude that the optimal approximate solution A of Problem 11 can be represented by

(2.8). Thus we complete the proof.
Corollary 1. Suppose X, B € R™™™. If X = S, then Problem I has a solution if

and only if

XTB=B'X. (2.22)
If § has factorization in the form (1.1), then the general solution of Problem I can be
represented as |

A BL! 4 i
T 11 1 (n—p)x(n—p)

where B, = Qi B, Bz = Q2B. If (2.22) holds, then Problem II has a unique optimal
approximate solution:

- B3 ] BlL_l
A = T [ 111+ ) 2 94
Q ((BIL...]_)T BzL_l Q! ( 2 )

where [B%,]+ is the same as [B7;]+ of Theorem 1.
Corollary 2. Suppose X, B € R**™,5 € Rp™P It R(X) = R(S). Then, Problem I

has a solution if and only if |
xTp=BTX, B=BX'X. (2.25)

If S has factorization in the form (1.1), then the general solution of Problem I can be
represented as
A B X5
;e 11 1<x9
A=S ((Blfq)T By X3
where B; = Q1 B, By = Q2B, X2 = Q2X. If (2.25) holds, then Problem II has a unique
optimal approximate solution which can be represented as
LY [BT1]+ leil')
—— ((leé*' )T BaX35 Q’
where [B};]+ is the same as in Theorem 1.

The proofs of Corollaries 1-2 are omitted. |
For R(X) € R(S), by Theorem 1, we obtain the following numerical procedure for

computing the unique optimal approximate solution A of Problem II:

) Q, VA€ SRE“"’)”(““”),
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1. Construct the orthogonal lower-triangular decomposition for § according to

(1.1),

2. Calculate By, Bs, X5 according to (1.4),

3. Compute Bu,Bm, By, according to (2.6), (2.7), -
4. Compute All,Alg,Azl, Azg accurdmg to (2 9) (2 10), (2 11)
5. Compute A according to (2.8).

3. The Case of R(X) C N(ST)

Theorem 2. Suppose X,B € R**™ S ¢ RZ*P and S has factorization in the form
(1,1). Introduce the notation in (1.4). If R(X) C N(S7), then Problem I has a solution

if and only if |
B=BX*X, X"B=BTX>0, rank(XTB) = rank(B,)  (3.1)

and its general solution can be represented as
»
A Alz)
A=QT ( 3.2

where

An = BiX{ + (B XHT (I - XX + (I - X1 XH)B.(X{B)*Bf (I - X, X7)

+ (I~ X1X{)G((I - X1 X{), VG e SRP*7), (3.3)
An = Ba X{ + M(I - X1 X7), VM e RP*(n—p) (3.4)
Agg = Agﬂ, Aqg = Agl | (3.5)

Furthermore, if Problem 1 has a solution, then Problem II has o unique optimal ap-
prozimate solution which can be represented as

" Ay A
_ T (A An 36
A= (Am Aao ) @ (3.6)

where

An = BiX{ + (BiXT)T(I - XuXi) + (I — X1 X{)By(XT B)* BT (I — X, X)

+ Uz[U7 (Bf;, — Bi(BT X,)* BT )Us) + UF, (3.7)
1‘121 == BgXi" + BEI (I - X1Xi+'), (3.8)
An=A%L, Ayp=B, (3.9)

Uz 1s a unit column-orthogonal matriz and R(Uz) = N(XT), B}, B3, B3, and (x|, are
the same as in Theorem 1.
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Proof. Because R(X) C N(ST), from (1.2) we obtain X3 = @2X = 0. By the same
argument as in the proof of Theorem 1, we know that Problem 1 is equivalent to

ApnXi=B;, VAn € Sﬁén_p)x(n_m, (3.10)
An Xy = By, (3,11)
Ay = AL, Az = Az (3.12)

By [2] and [3], we know that the necessary and sufficient conditions for the solubility
of (3.10) and (3.11) are respectively

X-TB1 = B‘{Xl P 0,, rank(Xf{Bl) = I&Ilk(Bl) and Bg = B2X+X1. (313)

Furthermore, the first two equations of (3.13) imply B1 = Ble X;. Therefore, by (iii)
— (v) of Lemma 2, we conclude that (3.13) is equivalent to (3.1).

Now, by using the results of {2 and 3], and the same argument as in the proof of
Theorem 1, we can complete the proof of this theorem.

Corollary 3. Suppose X,B € R™™. If R(X) = N(ST), then Problem I has a

solution if and only if
’ xTB=BTX>0,B=BX"X. (3.14)

The general expression of the solution can be represented as
B, Xt (BX{)?

A=0Q7T ( ! ) VAgs € SRP*P, 3.15
where By = Q1B, By = 2B, X1 = (1 X. If Problem I has a solution, then Problem II
has a unique optimal approximate solution which can be represented as

. B Xi (BXH)T
A=07 ( 1 ' ) 3.16

where B%, is the same as in Theorem 1.

For R(IX)C N (ST), by Theorem 2 we can get a numerical procedure for comput-
ing the unique optimal approximate solution A of Problem II that is similar to the

procedure in 2.

4. The General Case

Theorem 3. Suppose X,B € R**™, and 5 € RZ*P has factorization in the form
(1.1). Introduce the notations in (1.3) and (1.4). Then, the necessary and sufficient
condition for the solubility of Problem I 15 that there is a matriz A2 € R(—P)XP gqtis-

fying

XTB, — XT A1z X = BT X1 — X3 A X0 20, (4.1)
rank(BT X1 — X3 AT, X1) = rank(By - xT ALY, (4.2)
XT By~ X AL XS = By Xy ~ XTI A3 Xo, (4.3)

R(BT — XT A12) € R(X3). (4.4)

'
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Proof. From AX = B we get

which can be transformed into
A Alz) X3 By
" , 4.5
(AEI Agz (Xz) (Bz) (45
AnX1 + A2 X5 = By, (4.6)
AnXi1 + Ap Xy = B,. (4.7)

1.e.

By Lemma 1, that Problem I has a solution is equivalent to that (4.6)—(4.7) have the
solution

Ay e SRSn—p)x[n—p}} Az € R(ﬂ_p) J-:p, Aoy = "E‘;, Aogn € SRPXP,
We transform (4.6) and (4.7) into
’ AuXy =By~ A;pX,, (4.8)

A Xy = By — Ay X1 = B, — Al X, (4.9)

Thus by [1] and [2], we can obtain the conclusion of this theorem.

Corollary 4. Suppose X B € R"™™ and S ¢ R2*P has factorization in the form
(1.1). Introduce the notations in (1.3) and (1.4). Then, the necessary conditions for
the solvability of Problem I are

X'B=BTX, R(BT)C BT (4.10)

Proof. If Problem I has a solution, then there is a matrix Ay satisfying (4.1) -
(4.4). By (4.1) and (4.3), we have

X B e XV Bt X By o= B{X:+BI'x, = BTx.
By (4.4), there is a matrix G1 € RP*P, satisfying
By — XT Ay, = XTG4, ie. B; = XTAy + XTG,. (4.11)
From (4.1) and (4.2), we have
R(B{ - xTAL) = R((BT - X3 AD)X1) = R(XT(By - A12X3)) C R(XT).
Therefore, there is a matrix Gy € R{(n—P)x(n—p) , satisfying

Bi — xTAL = xTq,,

1.e. |
By = XTAL 4 370, (4.12).

From (4.11) and (4.12), we have

BTQ" = (BT, BT) = (X7, x7)
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Let
A ( Go A12)

Then BTQ" = (QX)TG, i.e. BT = (QX)TGQ = XTQTGQ,
R(B") c R(XT).
Corollary 5. Suppose X, B € R™™, and § € R2™P has factorization in the form

(1.1). Imtroduce the notations in (1.3) and (1.4). Then the sufficient conditions for the
solvability of Problem I are

XTB=BTX >0, rank(X?B)=rank(B). (4.13)

Proof. We now prove that there is a matrix A;; satisfying (4.1)—(4.4). Because
(4.13) holds, from [2] we know that there is a matrix GT > 0 satisfying

GTX =B, ie BY =X1aG.

Write

» Té G2 G3):}0
W _(G4 Gi/ —

Then, G; = GY >0,G; = GT > 0,G3 = GT,

Gy G
BTQT = XTaQT = XTQTQGQT = XTQT ( G2 G3) , (4.14)
4 1
whereas '
BTQT = (B],B7), XTQT =(X{,X3)
Thus
B = X{ Gy + X3 Ga, (4.15)
Bf = XTGs + X7 G. (4.16)
Therefore
BT X; = XT Gy X1 + X3 Ge Xy, (4.17)
B X, = X1G3 Xz + XiG1 Xa. | (4.18)
From these we can obtain |
BTX, - XTGu X1 = X{ G X1 = XT B - XTG{ X3 > 0, (4.19)
BT X, — XTG3Xo = XTG1Xo = XTBa — X]G3 X1 > 0. (4.20)

By (4.17), Lemma 3 and (4.15), we can get

rank(BT X; — XTG4X1) = rank(XT G2 X;) = rank(X{ Gz) = rank(B] — X G4).
(4.21)
From (4.16), we know that

R(Bf - XTG3) = R(XTG,) c R(X3). (4.22)
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Take Ay = G3, AT, = G4 = GT, and substitute them into (4.19) - (4,22). Then (4.1)
— (4.4) hold.

Therefore, Problem I has a solution.

Note 1. Theorem 3 only gives an equivalent form of conditions for the solvability
of Problem I for the general case. But from it we can easily obtain the conditions for
the solvability of Problem I for the two cases in 2 and 3.

Note 2. In the general case, how to give the necessary and sufficient conditions
for the solvability is an open problem. The conditions should be stronger than (4.10)

but weaker than (4.13).
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