Journal of Computational Mathematics, Vol.21, No.4, 2003, 451-462.

PROXIMAL POINT ALGORITHM FOR MINIMIZATION OF DC
FUNCTION *V

Wen-yu Sun
(School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China)

Raimundo.J.B. Sampaio
(Programa de Pos-Graduacao em Informatica Aplicada, Pontificia Universidade Catolica do Parana
(PUCPR), CEP: 80215-901, Curitiba, PR, Brazil)

M.A.B. Candido
rograma de Pos-Graduacao em Informatica Aplicada, Pontificia Universidade Catolica do Parana
P de Pos-Grad I ica Aplicada, Pontificia Uni idade Catolica do P
(PUCPR), CEP: 80215-901, Curitiba, PR, Brazil)

Abstract

In this paper we present some algorithms for minimization of DC function (difference
of two convex functions). They are descent methods of the proximal-type which use the
convex properties of the two convex functions separately. We also consider an approximate
proximal point algorithm. Some properties of the e-subdifferential and the e-directional
derivative are discussed. The convergence properties of the algorithms are established in
both exact and approximate forms. Finally, we give some applications to the concave
programming and maximum eigenvalue problems.
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1. Introduction

In this paper we consider solving a special class of nonconvex optimization problems:

minger  f(2), (1.1)

where f: R™ — R is a nonconvex function. In many cases, for example, in optimal control and
engineering design, the nonconvex function f can be dealt with as a difference of two convex
functions

f(z) = g(x) — h(z), VreR", (1.2)

where g : R® — R and h : R™ — R are proper, convex, and lower semi-continuous (l.s.c.). In
this case, the function f is called DC function.

The interest for studying DC function (i.e. difference of two convex functions) is motivated
by the possibility of using twice the underlying convex structure of such representation when
dealing with nonconvex problems. This is especially attractive when one of these convex func-
tions or both is nonsmooth. Although there is a lot of papers devoted to the theory of DC
functions in the literature (see for example, [6] [7] [8] ), only a few have proposed some specific
algorithms and reported some numerical experiments. Here we quote some methods which use
the regularization approach [3] [19], the dual approach [1] and the subgradient method [13],
respectively.
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It is well-known that proximal point algorithm (PPA) is an effective method for solving
nonsmooth convex optimization problems. Its remarkable feature is that a nonsmooth convex
optimization problem can be converted to a continuously differentiable convex optimization
problem. Consequently, we can use some methods for smooth optimization to deal with it.
This paper aims to study using proximal point algorithm to minimize a DC function.

Let (-,-) denote the inner product in R™, Iy the set of convex proper and l.s.c functions on
R™. Let f: R™ — R be a DC function on R", i.e. there exist g and h both in I'y such that

f(z) = g(x) — h(z), Yz € R™. (1.3)
Moreover, suppose that Dom(g)N Dom(h) # ¢, where Dom(g) denotes the domain of g
Dom(g) := {z € R" | g(z) < oo}.

The functions g and h can be chosen as strongly convex since one can always add a strongly
convex function to each function, for example,

f(z) = [g(2) + w(@)] = [n(z) + w(2)],

where w : R" — R is a strongly convex function. The corresponding conjugate function of g
and h are denoted by g* and h*, and their respective subdifferentials by dg, 0h, dg* and Oh*.

Proposition 1.1. (see [23] [8])

1.

inf {g(x) — h(e)} = inf {h"(y) =" ()} (14)

2. A necessary condition for x € Dom(f) to be a local minimizer of [ is
Oh(z) C 9g(z). (1.5)
In general, the condition 2 above is hard to be reached and one may relax it to

0g(z) N Oh(x) # ¢. (1.6)

We say that * is a critical point of f if it satisfies (1.6).

The method presented in this paper is closely related to the proximal point algorithm (see
e.g. [17] ). This class of algorithms finds a zero of a maximal monotone operator T by means
of the following iteration:

Tpr1 = (I + CkT)ilwk, (1.7)

where ¢ > ¢ > 0, where c is a suitably small positive number such that I + ¢TI is nonsingular.
The operator Py = (I + ¢xT)~! which is the resolvent of T, is nonexpansive, single-valued on
the whole space, and Lipschitz continuous. When T is the subdifferential of a convex ls.c.
function g, i.e., T = g, the iteration (1.7) becomes

. 1
i1 = argmin{g(z) + 5= || o — 2 17} (1.8)

Rockafellar [17] [18] has developed a detailed study of the convergence on proximal point algo-
rithm. In particular, the algorithm converges linearly at least. If ¢, — oo, the convergence is
superlinear. In addition, the attractive approximate versions of proximal point algorithm are
established by [17] [10].

With this strategy, we propose a new descent algorithm for finding a critical point of a
DC function which satisfies necessary optimality conditions. Each iteration combines an ascent
subgradient step on the second function with a proximal step on the first function. In addition,
the approximate version of our algorithm is also discussed.
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The organization of this paper is as follows. In Section 2 we describe our method for
minimizing DC function which combines proximal point algorithm with subgradient method.
In Section 3 we establish the convergence properties of our algorithm. In Section 4 we study
some further properties of e-subdifferential and e-directional derivative. In Section 5, by means
of the above theory, we present an approximate version of proximal point algorithm for solving
DC optimization which is interesting and important from the practical point of view. Finally,
in Section 6, we discuss some applications to concave programming and maximum eigenvalue
problems.

2. A Descent Method for Minimization of DC Function

In this section we demonstrate our method via establishing two lemmas, describing the
algorithm and giving several remarks. The key of this method is that each iteration will be
decomposed into two distinct steps and each one takes into account the convexity of the function.
Roughly speaking, this method consists of increasing the function i along the direction of the
subgradient and then decreasing the function g by a proximal step. Indeed, any subgradient
direction of a convex function is an ascent direction of the function.

Lemma 2.1. Let h € Ty and © € R™. Then Yw € Oh(z) with w # 0 and V¢ > ¢ > 0, we have
h(z + cpw) > h(z).
Proof. 1t is an immediate consequence of the subgradient inequality:
h(z + crw) > h(z) + (w, crw), Yw € Oh(x).

The following lemma gives a necessary and sufficient condition for z to be a critical point of
DC function f. It is not difficult to see that any critical point of DC function f can be viewed
as a fixed point of a certain operator.

Lemma 2.2. A necessary and sufficient condition for x to be a critical point of f is that
= (I+c;09) "z + cpw) (2.1)
for any ¢, > ¢ >0 and w € Oh(z).

Proof. Let z be a critical point of f. From (1.6), there exists w # 0 such that w €
0g(x) N Oh(x). Obviously, w € dg(z), which is equivalent to = + cxw € = + ¢xdg(z). Since Og is
a maximal monotone operator and (I + c;dg)~" is single-valued, we get (2.1). Vice versa.

Set

P, = (I+Ckag)71.

The above Lemma 2.2 implies that © = Py(z + c¢xw) if and only if z is a critical point of f.
Note that Py is a proximal mapping with 7" = Jg, therefore one immediately gets a proximal
point type iteration:

Tpe1 = Pr(z + cpwy), where P, = (I + cx0g) . (2.2)

In the following, we give our proximal point algorithm for minimization of dc functions.

Algorithm 2.3. (Prozimal Point Algorithm)

Step 1. Given an initial point xo and co > c¢ > 0. Set k =0.

Step 2. Compute wy € Oh(xy) and set yr = Tp + crwg-

Step 3. Compute xp11 = (I + c0g) " (yx) by prozimal point algorithm.
Step 4. If xp+1 = xk, stop. Otherwise k :=k + 1 and return to Step 2.
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Remarks.
1. In the convex case (h = 0), it is just the proximal point algorithm (see [17]).

2. When h is differentiable, this algorithm is closely related to one proposed by Mine and
Fukushima [11].

3. It is well-known from Lemma 2.2 that the method is a regularization approach. More
precisely, it is clear that the problem of minimizing f(z) = g(x) — h(x) is equivalent to

minimizing f(z) = §(z) — h(z) with g(z) = cg + & || - ||> and h(z) = ch + L || - ||? for
¢ > 0. The method can then be written as
yr € Oh(zr) and 1 € 0(§)* (yk), (2.3)

where (§)* is the conjugate of § (indeed, it is easy to show that 9(§)* = (I +cdg)~! from
the definition of conjugate function). The alternative steps with the subgradients of h and
(g)* showed the relation with the subgradient methods introduced by Pham and Souad
[13]. By the way, it is important to observe that any algorithm designed for dc functions
depends on the decomposition of dc functions where the decomposition is not unique.

4. Just like any proximal type method, its numerical behaviour depends on the relative
complexity of the proximal point computation. Here, Step 3 means that we must solve

. 1
min {g(z) + 5— [l = — v [I”},
& Ck

which can be solved, for example, by a cutting plane algorithm or bundle method (see [4]
[5] [9] [20] [24]). Here ¢y, is changed in each iteration. About the choice of this important
parameter, we’ll discuss some concrete schemes in a separate paper.

3. Convergence of the Algorithm

In this section we shall establish the convergence of the algorithm. We begin by showing
that Algorithm 2.3 is a descent algorithm.

Theorem 3.1. The sequence {x1} generated by Algorithm 2.3 satisfies
e cither the algorithm stops at a critical point of f;
e or f decreases strictly, that is, f(zp+1) < f(xg).

Proof. If xpy1 = xy, then, from Lemma 2.2, zj is a critical point of f. Suppose that
ZTp+1 # x- Using the subgradient inequality, we can rewrite the iteration (2.2) in the following
way:

g + crWg € Tpy1 + ckOg(Thy1)
— ;' (k= Tpi1) +wi, € Og(Thy1)

= glor) > g(xre) + (e (@ = Tpp1) + wp, T — Tpp1) (3.1)
On the other hand, wy is a subgradient of h at xy, then we have
hapt1) > h(zk) + (Wi, Tpgr — Tp)- (3:2)
If we subtract (3.2) from (3.1), we obtain
farg) < flow) =t ok — a7 (3.3)

Hence we conclude that f(zgi1) < f(xg)-
In the following, we use Zangwill’s convergence theorem [25] to prove the convergence of our
algorithm.
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Theorem 3.2. Assume that the sequence {xr} and {yr} generated by Algorithm 2.8 are
bounded. Then, any convergent subsequence of {x} converges to a critical point of f.

Proof. According to Zangwill [25], the global convergence of an algorithm depends on three
properties of iterative sequence: descent, closedness and boundedness. Now we enter the details
to these three properties. Let S be the set of critical points of f.

1. fis a descent function out of S. Indeed, Theorem 3.1 guarantees that f(zr4+1) < f(zx), Vz
such that xp # zpy1. Hence, from Lemma 2.2, z, ¢ S. Obviously, if z; € S, then

f(zr) = f(Tp41)-

2. The algorithm map is closed. In fact, the algorithm can be written as zx+1 € B o C(xy)
with B = (I 4+ ¢;,0g)~! and C = I + ¢;0h. Note that B is the resolvent operator of Jg,
hence its graph is closed. Moreover, since h is a proper convex l.s.c. function, the graph
of C is also closed. Therefore, the sequence {y;} with yr € C(z}) being bounded by the
hypothesis, possesses a convergent subsequence {y;.}, and then the map B o C is closed
(see the Theorem on the composition of closed point—to-set maps in Zangwill [25]).

3. The sequence {z}} is bounded by the assumption.

Therefore, using Zangwill’s theorem [25], any convergent subsequence of {z}} converges to a
critical point of f in S.

4. The e-Directional Derivative and the e-Subdifferential

In the above, we have discussed proximal point algorithm in exact form. But from a practical
point of view it is more important to replace the exact form of PPA by an approximate version
which is based on the theory of the e-subgradient of convex function. In fact, relating to the
exact subgradient, the e-subgradient is relaxed by e. This relaxedness brings us importance on
the computational side and the theoretical side (for example see [9] [10]). In this section, we plan
to introduce and explore some basic properties of e-directional derivative and e-subdifferential
of convex function. Please note that, in order to agree with custom, in this section the function
f does not stand for DC function, but for a convex function.

For z € dom f and € > 0,

Fz:d) = inf flx+td) — f(x)+e€

>0 t (4.1)

which is called the e-directional derivative of f at z. If

fly) > f(x) + (s,y —x) —¢, Vy € R", (4.2)

the vector s € R" is called an e-subgradient of f at z. The set of all e-subgradients of f at z is
called the e-subdifferential of f at x, denoted by O, f(x) which is a nonempty, convex, bounded
and closed set. In addition, s € R™ is an e-subgradient of f at z if and only if

fr(s) + fz) = (s,2) <, (4.3)
where f* is the conjugate of the function f. From the above definitions, we have
fi(z;d) = sup (s,d) (4.4)
SED. f()

which also means that
O.f(x) ={se€ R"| (s,d)y < fl(x;d), Vd € R"}.
It is easy to see that for convex function f(z) the following relation

0€d.f(x) & f(z) < fy)+eVyeR"
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is true.

In the following, we will explore some properties of e-directional derivative and e-subdifferential.
These properties are generalization of the corresponding properties of directional derivative and
subdifferential of convex function.

(1) The conjugate function of e-directional derivative.

Since
sy = g LE T DS v
then setting
fay = L@ td) — 1) +e

t

and using the operation rules (ii), (iii) and (v) of conjugate function in Proposition 1.3.1 of [9],
we get
N fX(s)+ f(x) — (s,z) — €
PR LRI CEIET
Since f!(z;-) is an inf-function, its conjugate function is a sup-function. Consequently,

[f(a; )]"(s) = sup fi(s)
>0

O ORI Ty
>0 t

(4.5)

Note that the supremum in (4.5) is always nonnegative and that it is zero if and only if s €
O f ().

(2) Ocf(x) C 0f(B(x,0)).

As to this property, Theorem XI 4.2.1 in [9] indicates that: for any n > 0 and s € 9. f(z),
there exist &, € B(z,n) and s, € 0f(z,) such that ||s, — s|| < €/n. Our result is similar, but
the proof is different, more simple and intuitive.

Theorem 4.1. For all 6 > 0 there exists € > 0 such that
9 f(z) C Of(B(x;0)). (4.6)

Proof. For any s € 0. f(x), let 5 = Pyt(,)(s) be an orthogonal projection of s onto df(x).
Note that 0f(xs) € 0f (B(x;0)),0f(x) € 0f(B(x;d)) and 0f(B(x;d)) is a nonempty compact
convex set. Then, to prove (4.6), it is enough to prove that there is o > 0 such that

dist(s,df(z)) < o, (4.7)

Is =5l < o. (48)

If s = 5, the result is trivial. Now we consider the case of s # s.
Take e < 100. Let s = §+@d,d € R". Alsolet x5 € B(x,0), x5 = x+d and s5 € Of (xs).
For s € 0. f(z), we have

flzs) — f(z) — (s,z5 — z) > —¢, Va5 € B(x,0). (4.9)
For s5 € 0f(zs), we have
f(z) = f(xs) — (s, — xs) >0, V& € dom f. (4.10)

It follows from (4.9) and (4.10) that

(s — ss,x — x5) > —e€. (4.11)
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From the outer semi-continuity of df, for any ss € f(zs), there exists o > 0 such that
_ o
llss =3l < 5, (4.12)

where § € 0f(x).
Obviously, the left hand side of (4.11) can be written as follows:

(s —ss,x—x5) =(s—§,x —x5) + (5 — 5§, —x5) + (§ — 85, — ). (4.13)
Using (4.12), the third term of right hand side in (4.13) becomes
)
(8§ — ss,x —x5) < %. (4.14)
Also, note that
5—s
rT—x5=—d= —
Is — 5]l

and that 5 is the projection of s on df(x) which means that
(s —5,5—5) <0, 5€df(x)

from the projection theorem (see [24] Th.1.3.17). Therefore, the second term of right hand side
in (4.13) becomes

5—s
lls — 5]l
In addition, for the first term of right hand side in (4.13), we have obviously from z5 —z =d =
0 2==- that

lls—s5ll

(§—5,z—x5)=(5—35,0

) < 0,5 € 0f (a). (4.15)

(s — 5,2 —x5) = —0||s — 3| (4.16)
Combining (4.11)—(4.16) gives
)
—dlls — 5|+ = > —e.
2
Noting that € < %05, hence
€
_35ll < =
s —sll < € +

2| Q

<o.

We complete the proof.

At the end of this section, we want to point out that all these theories on e—subdifferential
can go a step further if instead of (4.2) we consider a function that satisfies the rule: Vy €
R", Vs € 0.f(x),

f(y) > f(l’) + ST¢(x)y) -6

where ¢(x,y) is a function with some properties. It is immediate to see that when ¢(z,y) = y—=x
we get (4.2). So, this class of functions is a generalization of e-subdifferentiable function. For
the sake of limit of space, we won’t enter this topic.

5. Approximate Version of Proximal Point Algorithm

The research on e-subgradient method is an attractive direction in nonsmooth optimiza-
tion. With applications of e-subgradient, e-bundle method, e-feasible direction method and
other proximal nonsmooth method are successively presented. In this section, by means of e-
subgradient, we establish an approximate version of proximal point algorithm for minimization
of DC function and analyze its convergence property. Our analysis resembles the exact case
in Section 2 and Section 3, but with the obvious distinction of dealing with e-subgradient. It
means, the method consists of increasing the function h in the direction of e-subgradient of h,
and then decreasing the function g by an e-proximal step.
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We first give a definition of e-critical point of DC function f. ( Note that in this section the
function f denotes DC function as in Section 1-3).
Let € > 0, the point z is said to be an e-critical point of f if it satisfies

Oeg(x) N Och(x) # ¢. (5.1)
Obviously, when € = 0, (5.1) reduces to (1.6).
Lemma 5.1. Let h € Tg and x € R™. Then Yw € O:h(x) with w # 0 and Ve, > ¢ > 0, we have
h(z + cpw) > h(z) — €.
Proof. 1t follows directly from the e-subgradient inequality:
h(z + cpw) > h(z) + (w, crw) — €, Yw € Och(z).
The following result gives a necessary and sufficient condition for z to be an e-critical point
of f.
Lemma 5.2. A necessary and sufficient condition for x to be an e-critical point of f is that
z € (I +cpOeg) ™ (z + cpw) (5.2)
for any ¢, > ¢ >0 and w € O.h(x).

Proof. Let x be an e-critical point of f. From (5.1), there is w # 0 such that w €
0eg(x) NO:h(x). Then w € O.g(x) which is equivalent to

T+ cpw € T + c0:g(x).

Therefore
z € (I 4+ c10.9) " z + cpw).

Vice versa.
From the above lemma we obtain an e-proximal point type iteration:

Tri1 € Prc(zg + crwy), where Py = (I + cx0.g) " (5.3)

Now we summarize these ideas and state the following modification of Algorithm 2.3.
Algorithm 5.3. (e-Proximal Point Algorithm,)

Step 1. Given an initial point xo and cog > ¢ > 0. Set k= 0.
Step 2. Compute wy, € O.h(zy) and set yp = xp + crwg.
Step 3. Compute zj1 = (I + c10.9) " (yx) from an approzimate prozimal point algorithm.

Step 4. If xy41 = xp, stop. Otherwise k := k + 1 and return to Step 2.

In fact, in Algorithm 5.3, finding the e-subgradient of h is an inner iteration; the e-proximal
step for ¢ is an outer iteration. The following theorem indicates that the e-proximal point
algorithm provides a 2e-descent of the objective function for each iteration.

Theorem 5.4. If x4, is not an e-critical point of f, then {f(xr)} is 2e-descent, i.e., {f(zr)}
satisfies

flzrar) < flar) + 2e. (5.4)
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Proof. From e-PPA iteration (5.3), we have

e H@p — Tpgr) + wi, € Oeg(Tptr)

which implies

g(zr) > g(Tri1) + (g (T — Thg1) + Why T — Tg1) — €

Also, since wy, € O.h(xy), we have
hzg+1) > h(zy) + (Wi, T — T) — €.

Subtracting (5.6) from (5.5) gives

Flewe) < flon) =gt llow — o) + 2

< flzg) + 2e.
Note that the exact PPA method in our present situation is

Try1 = Pr(zp + cpwy), P = (I +cdg)™"

which is equivalent to

1
0 € dg(xpy1) + a(xk—i-l — Yr)s

where y, = =1 + cpwg. This implies that a1 is the solution of the subproblem

. 1
min{g(z) + 2—||Z - ukll’}.
Ch

For e-PPA method,
Tpi1 = Py e(zp + cpwg), Pre = (I + cx0cg) "

which is equivalent to finding xy; such that
. 1
oyt~ argmindg () + 51z — P}
Ck
In fact, let
- . 1
g(yr) = min{g(z) + 5—Il= — ye[}-
Ck

459

(5.9)

(5.10)

(5.11)

(5.12)

This is the Moreau-Yosida regularization and the inf-convolution of g with the quadratic func-

tion z — 5=z — y|?

1
OE@ﬂuﬂnnB(a@k—uﬂx¢%ﬁ%),

. Taking e-subgradient and setting 0 € 0.g(yx) yield

(5.13)

where B(:,-) is a closed ball, €1,€e2 > 0 and €; + €2 = €. In particular, setting ¢; = € and ez = 0,

we obtain )
0 € 0cg(wp41) + a($k+1 )
which is just (5.10).
On the other hand, from (5.14) we have

1
a(yk — Tk41) € Ocg(Th1).

Using Theorem 4.1, we deduce that

Tp+1 € Yk — ckaeg(xk-l-l)
C Y — k99(B(r11,01))

(5.14)

(5.15)
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for some d;, > 0. The above expression indicates that, in the approximate version, 0.g(zy+1) is
an enlargement of 0g(zk+1), and therefore the value scope of x4, is also enlarged. This shows
that x4 lies in an enlarged o-neighborhood of the exact candidate and satisfies (5.11). Since,
from Theorem 4.1, the enlargement is bounded by oy in each iteration, then if Y-, 0% < oo,
the Rockafellar’s criteria (A) holds (see [17]). Thus we can use Theorem 1 in [17] to obtain the
convergence: the sequence {zy} generated from Algorithm 5.3 converges to z°° satisfying

0=w™ € dg(z™) C deg(x™)

and
0 =w™ € O.h(z™),

where w™ + wyg. So, we have
0 € Oeg(x™) N Och(z™).

To sum up, the e-subgradient method is used in inner iteration, and in outer iteration just an
approximate version of PPA is used which satisfies the conditions of Theorem 1 of [17].
According to the above derivation, we now state the convergence theorem.

Theorem 5.5. Let {z;} be any sequence generated by e-prozimal point algorithm with c; >
¢ > 0,Yk. Assume that {x1} is bounded. Then {x} converges weakly to =*° satisfying 0 €
0.g(x>®) N Och(z), i.e., {x} converges weakly to an e-critical point of f.

6. Some Applications

6.1. Application to Concave Programming
Let’s consider the application of Algorithm 2.3 to the following problem

max h(zx), (6.1)

where h is a convex l.s.c. function on a closed convex set C' on R™.

The nonconvex programming (6.1) has received a great attention during the last two decades,
from the viewpoint of global optimization or even aiming at some efficient local search of critical
points ([13] etc.). We do not intend here to analyze the numerical performance of Algorithm
2.3 in this context but rather to illustrate its bahaviour.

The problem (6.1) can be written easily as a DC programming problem by introducing an
indicator function d¢c of the set C-:

min {dc(z) — h(z)}. (6.2)

reR"
Algorithm 2.3 now takes the following form:

step 1. Initial step: 9 € C, ¢g > ¢ > 0,k :=0.

step 2. k-th step: xyr1 = Projo(z + crwy), where wy € Oh(xy).

The algorithm progress looks like the projected gradient algorithm.
6.2 Application to Maximum Eigenvalue

Let @ be a symmetric positive definite matrix. Each eigenvalue of @) is a positive real
number satisfying the following condition:

dz € R™, x #0, and a positive real number A\, such that Qx = \x.

Then we have

I'T T

(z,\z) = (2,Q7) <= A= m Q m;
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and so, the maximum eigenvalue of ) can be reached by solving the problem

ma xr x).
juax, (@, Q)

Using the same reason and strategy we did in Subsection 6.1, we get how Algorithm 2.3 applies

and
. _ (I + cQ)xy
T F Qe |

which points out that in this case Algorithm 2.3 behaves like the power iterative method for
determining the maximum eigenvalue of the matrix @), where ¢ is a suitably small positive
number.

7. Conclusion

This paper is aimed at proposing the proximal point algorithm for minimizing DC function in
both exact and approximate forms, and making some theoretical investigation of the algorithms.
In this paper we don’t discuss the actual computation pattern. Our algorithms above are
general and do not rely on the concrete computational scheme for proximal point. In general,
to compute a proximal point, one can use cutting plane strategy, bundle method and quasi-
Newton method. In any way, this kind of methods, PPA, will be more advantageous and more
robust than existing algorithms (e.g. [1] [13] etc.). Especially, if one uses the quasi-Newton-PPA
method, the superlinear convergence will be obtained under mild conditions. We will continue
this topic in this line, including numerical experiments.

Acknowledgements. Many thanks to two anonymous referees for their various valuable com-
ments and suggestions. Their suggestions make clear the proofs of related theorems and greatly
improve the presentation of this paper.
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