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Abstract

We give definitions of real piecewise algebraic variety and its dimension. By using the
techniques of real radical ideal, P-radical ideal, affine Hilbert polynomial, Bernstein-net
form of polynomials on simplex, and decomposition of semi-algebraic set, etc., we deal
with the dimension of the real piecewise algebraic variety and real Nullstellensatz in C*
spline ring.
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1. Introduction

Multivariate splines as piecewise polynomials have been studied intensively in the past 20
years, and have become a kind of fundamental tool for computational geometry, numerial anal-
ysis, approximation, and optimization, etc.([8]). The interpolation of scattered date by multi-
variate splines is an important topic in computational geometry. It is concerned with several
practical areas such as CAD,CAM, CAE, and Image processing. However, the construction of
explicit interpolation schemes (especially Lagrange interpolation schemes) for spline spaces on
given partition leads to complex problems. In principle, to solve an interpolation problem, one
has to deal with the properties of piecewise algebraic variety and piecewise algebraic curves.
Piecewise algebraic variety is the set of common zeros of the multivariate splines. Therefore, a
key problem on interpolation by multivariate splines is to study the piecewise algebraic variety
and piecewise algebraic curves. Piecewise algebraic variety, as a generalization of algebraic
variety, is a new and important concept in algebraic geometry and computational geometry,
and has great significance in theory and application ( cf [8]). Some fundamental properties
of piecewise algebraic variety were given in ([8],[9]). A generalization of Bezout theorem of
piecewise algebraic curves has been obtained in ([10]).

In this paper, we give definitions of real piecewise algebraic variety and its dimension.
By applying the techniques of real radical ideal, P-radical ideal(P be a cone), affine Hilbert
polynomial, Bernstein-net form of polynomials on simplex, decomposition of semi-algebraic
set, etc, ([1],[3],[5],[6]), we deal with the dimension of real piecewise algebraic variety and real
Nullstellensatz in C'* spline ring.

2. Definitions and Preliminaries

Let R be the real number field. We define n-space over R, denoted by R", to be the set of
all n-tuples of R. An element z = (z1,...,z,) € R™ will be called a point. Denote by R[z] the
polynomial ring in n variable over R.

By finite hyperplane patches in R™, we subdivide a simply connected basic closed semi-
algebraic domain D C R™ with dimension n into finite simply connected subdomains with
dimensions n(cf[5]), and each of them is homeomorphic to a hypercube, which is called a
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cell. So we get a partition of the domain D. Denote by A the partition of the domain D
which consists of all partition cells 41, ...,d7 and their faces Sy,...,Sg. Where Sy,...,Sg are
algebraic hypersurface patches or algebraic varieties with dimensions < n. The face of each cell
0; € A consists of finite partition faces. It is well known that every cell §; can be written as the
intersection of a collection of affine halfspaces, namely,

0i={z € R" S{"(2) >0,...,8(2) >0, S € Rigl,a=1, ...,q:}, 1*
i=1,2,...,T.

Denote by P(A) the collection of functions f on D such that for every cell §; the restriction
of f on &;, fls,, is a polynomial function. f|s, refers also to a polynomial corresponding to f
on cell §; if no confusion can arise, i.e., f|s; € R[z]. It is obvious that

SHA)={fl fecH(D)NPA)}, p=0
is a ring over R, which is called C* spline ring. It is clear R[z] C S*(A). The degree of

f € S#(A) denoted by degf is the maximal degree of polynomials corresponding to f on all
cells of A. We say that

Sm(A) :={f|degf <m, feS*A)}

is a multivariate spline space with degree m and smoothness p. S¥(A) is a finite dimensional
linear vector space on m, u > 0.
Now we discuss real C* piecewise algebraic variety on a partition A of a domain D in R"™.

Definition 2.1. Let A be a partition of a domain D C R™, Denote by d;, i = 1,...,T, all the
cells of A. If there exist f1,...,fs € SH(A), u >0 such that

Z:Z(fly'-')fs):{meD: fz(x):(): i:]-)"'vs}a

then Z is called a real C* piecewise algebraic variety defined by fi ..., fs on the partition

A.

Thus a real C* piecewise algebraic variety Z = Z(f1,..., fs) is the set of all real solutions
of the system of equations f; = ... = f; = 0, i.e., the set of all real common zeros of C'*
multivariate splines fi,..., fs.

Let J be an ideal of S¥(A). Denote by Z(J) the set
ZJ)={xeD: f(x)=0, feJ}
Since S*(A) is a Néther ring([8]), J has a finite set of generators fi, ..., fs € S*(A) such that
Z(J)=Z(f,- - fs)

Thus Z(J) is a real C* piecewise algebraic variety on the partition A of the domain D.
If J is an ideal of R[x], then

2(J) = {z € B"|f(z) =0, feJ}

is a real algebraic variety.
Let V' C R™ be a real algebraic variety. Denote by P(V) = R[z1,...,z,]/Z(V) the ring of
polynomial functions on V', where

Z(V)={f(x) € R[z] : f(a) =0, acV}.

Denote by dim (V') the dimension of V. dim (V) is equal to the dimension of the ring P(V),
i.e., the maximal length of chains of prime ideal of P (V')([4],[5],[7])-

Let Z be a real C* piecewise algebraic variety. clos,.-(Z N ;) denotes the Zariski closure
of ZNd;,i=1,...,T. If for some Z N §; = 0, then dim(clos.qr(Z N d;)) = —1.(ct. [4],[7])
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Definition 2.2. Let A be a partition with T cells 6; of a domain D C R™. If Z is a real
C* piecewise algebraic variety on the partition A, we define the dimension of Z (denoted by
dimZ) to be mazimum dimension of the Zariski closure of ZNd;,i=1,...,T .

Denote by R[z]<s the set of polynomials of total degree < s in R[z]. Given anideal I C R]z],
we let

I<; =1InN R[Z’]Ss
denote the set of polynomials in I of total degree < s .

Definition 2.3. ([1]) Let I be an ideal in R[z]. The affine Hilbert polynomial of I is the
function on the non-negative integer s defined by

“HP;(s) = dimR[z]<, /1<, = dimR[z]<, — diml<.
Definition 2.4. ([5]). Let A be a commutative ring, and I be an ideal of A. The real radical
ideal of I is defined by
VI={a€ AF3meN,3b, -, b, € A,a®™ + b+ +b> €I}

A cone P of A is a subset of A satisfying the following properties:
a€ePbeP—a+beP,
a€ PbeP—abe P,
a€A—a®cP.

Denote by " A? the set of sums of squares of elements of A, namely,

ZA2 :{Xn:aﬂal,...,an € A,ne N}
i=1

The set Y A? is the smallest cone of A. Let P be a cone of A, and (a;);cp a family of elements
of A. Denote by M,,),., the multiplicative monoid generated by (a;)icg, i-e., the set of finite
products of elements of (a;)iep. Denote by P[(a;)ics] the smallest cone of A containing P and
(ai)iep. We have

Paics) =0+ > aibil poais-- qr € P, byy--- by € M[(as)ies]}-

i=1

In particular, Y A?[(a;)iep] is a cone generated by (a;)icg.
Let I be an ideal of the commutative ring A, and P a cone of A, The P-radical ideal of T
is defined by ( [5])

Vi={acAlImeN, IJpePa® +pel}.
In the next section, P; denotes a cone of R[z] generated by (Sc(f))ae{ly...,qi} (1%) , i.e.,
P = ZRz[x][(S&i))ae{l,...,qi}]) i=1,---,T.

MDCS(Z(< LT(¥I) >)) denotes the maximum dimension of a coordinate subspace in the
algebraic variety Z(< LT( V1) >) , where LT (/) is the set of leading terms of elements of
VI, and < LT(V/T) > is the ideal generated by the elements of LT( V/T).

3. Main Results
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Lemma 3.1. If I is an ideal in R[z], Z = Z(I) is an irreducible real algebraic variety, then

dimZ = deg"HP_p 1 v = MDCS(Z(< LT(VT) >)).

Proof. By real Nullstellensatz ([5]) Z(Z(I)) = /T and, by hypothesis, ¥/T is a prime ideal.
Let P(2) = R[z]/ ¥/T be the ring of polynomial functions on Z(I), then the ring of polynomial
functions P(Z) is an integral domain. If (Z) is the field of fraction of P(Z), then dimZ is
equal to the transcendence degree of K(Z) over R. Hence we have

dimZ = deg"HPrz)=deg"HPr;

= deg"HP_; 5o q)s
= MDCS(Z2(< LT(VI) >)).
This proves Lemma 3.1.

Theorem 3.1. Let Z = Z(J) be a real C* piecewise algebraic variety on a partition A with T
cells §; (i =1,2,...,T) of a domain D, where J C S*(A) is an ideal generated by fi,..., fs.
For each i € {1,...,T}, suppose that I; C R[x] is an ideal generated by fils,,.-., fsls;, Pi is a
cone of R[z] generated by (S&l))ae{lqui}, and %/T; is the P;-radical ideal of I;. M denotes
the multiplicative monoid generated by (Sc(f))ae{17___7qi}. Then

I. ZNd; =0 if and only if there exist | € P;, and h € I; such that |+ h+1=0;

II. Z N In(8;) = O if and only if there exist | € Py, h € I;, and g € MY such that
[+ h+g>=0, where In(5;) denotes the interior of a cell §;;

IIL. If ZN6; £ 0, then

cos,. (ZN6;) = Z(R/T;),
where clos,q-(ZN0;), Z( /I;) C R™ are the algebraic varieties.

Proof.
I. Apply Positivstellensatz ([5],[6]) to the set

ZNno={z € R"| SV () > 0,a=1,...,q, fils;(z) = -+ = fsls;(x) =0}

={r e R"SV(z)>0,a=1,...,q;, L#0, fils;(x) =+ = fslsi(x) =0},

obtaining Z N 6; = 0 iff
dl e P;, and h € I; such that [+h+1=0.
II. Apply Positivstellensatz to the set Z N In(d;), namely,
{z € R"| S () >0, S (2) £0,a=1,...,¢;, fils; (@) = -+ = fuls.(x) =0},

obtaining Z N In(§;) = 0 iff
dleP, hel;, and ge M such that [+ h+g>=0.
IIL. If ZN6; # 0, then
T(ZN6;) =1(6; N Z()) = {f € R[z]|f(x) = 0,Vz € 6; N Z(I;)}.

Since
Yz € 6; N Z(Il), f(Zl?) =0

is equivalent to the following property(7):
the set

{xERn|S;ZOa Oézl,...,qi, f(m)#07 fl

@) == g,

d; (ZU) = 0}

is empty.
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By Positivstellensatz, the property (i) is equivalent to the following fact that
Im € N,g € P;, such that f>™ +g¢€I;
& fe R/
Hence we have
VeedNZ(), flz)=0 & fe X/T.
Thus
(zn&) = VI
clos.. (ZN6;) = Z(Z(Z2N6;) = Z( R/ L).

This proves Theorem 3.1.
Denote

'={ie{l,...,T}there are no I € P; and h € I; such that I+ h+1=0}.

We can get a generalization of real Nullstellensatz in C'* spline ring from the proof of theorem
3.1 as follows

Theorem 3.2. Let Z = Z(J) be a real C* piecewise algebraic variety on a partition A with T
cells 0; (i =1,2,...,T) of a domain D, where J C S*(A) is an ideal generated by fi1, fa,..., fs.
For each i € {1,...,T}, suppose that I; C R[z] is an ideal generated by fils,, f2ls;s- -, fsls;»
P; is a cone of R[z] generated by (S,(Xi))ae{17___7qi}, and %/T; is the P;-radical ideal of I;. Then
f € S (A) vanishes on Z if and only if fls, € /I;, for anyi € T.

Let D be a polyhedral domain in R", and every cell §; of A be a simplex in R™. It is
well known that for any given f € S (A), the polynomials pl! = f|5,,i = 1,...,T, can be
represented in Bernstein-net form on the simplex §; as follows

n
p[i](wo,...,wn): Z b[;]Hw;-‘j,
Al =m j=0

PR NG
0iy A= (>\0:---7>\n): |>\| = Z;‘L:[) )\j, Ai € {0,1,...,7)7,}.

where b[)f] = and w = (wp,-..,wy,) is the barycentric coordinates of z on

Theorem 3.3. Let Z = Z(J) be a real C* piecewise algebraic variety on a partition A

with T simplices 6; (i = 1,...,T) of a polyhedral D, where J C S*(A) is an ideal gener-

ated by fi,...,fs. For each v € {1,...,s}, suppose that the Bernstein-net form of f, on
n

the simplex 6; is pg,i] (w) = fuls; = Z bﬂ Hw;‘j. I; C R[w] is an ideal generated by
j=0

IA] = my
p[li](w), . ,p[si](w), [[j_ow; =1, i=1,...,T. Then
I. ZNn6; = 0 if and only if there exists h € I; which has the form

\
h=1+to+ Y te [ ws

k=1 JEQ

where ty,, k=0,...,r, are sums of squares of polynomials in R[w], Qr C {0,...,n};
II. ZN1In(d;) = 0 if and only if there exists h € I; which has the form

h=(J[w)*+to+> te [] wi

JEQo k=1 jeQw
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where ty,, k=0,...,r, are sums of squares of polynomials in R[w], Qr C {0,...,n};

IIL. Let Ty ={i € {1,..., T} ZN§ # 0}. Then f € SH(A), of which Bernstein-net form
on 0;, pll(w), vanishes on Z if and only if for any given i € Ty, there exist h € I; and | € N
such that h + (pl)?' can be written in the form

h + p[’] —t0+2tk Hw],

k=1 JEQkK

where ty, k=0,...,r, are sums of squares of polynomials in R[w], Qr C {0,...,n}.

In short, for any given i € Ty, pl(w) € 5/T;, where P; is a cone of R[w] generated by
Wo, - -+, Wny

V1. For any i € Ty, clos.q..(Z2N6&;) = Z( R/T;), where clos..,(ZNd;), Z( ¥/T;) C R"*! are
algebraic varieties.

Proof.
I. Apply Positivstellensatz to the set

n
Z06i=fwe R w; 20,j=0,...np(w) = - =pllw) =0, [Jw; -1=0}
={we R w; >0,j=0,...,n,1#0,pl(w) = -+ =pld(w) =0, Hw]—l—O}

obtaining Z N §; = @ if and only if there exists h € I; which has the form

\
h=1+to+ Y te [ ws

k=1 JEQ

where ti, £k =0,...,r, are sums of squares of polynomials in R[w], Qx C {0,...,n}.

II. Apply Positivstellensatz to the set Z N In(d;), i-e.,
{fwe R w; >0,w; #£0,j=0,...,n,p (w) = -+ =plil(w) =0, Hw]—l—O}

we get that Z N In(d;) = () if and only if there exists h € I; which has the form

:(ij)2+t0+ztk ij,

JEQo k=1 jeQw

where ti, £k =0,...,r, are sums of squares of polynomials in R[w], Qx C {0,...,n}.

III. For any i € Ty, since
Yw e §;NZ(J), pw) =0

is equivalent to the following fact that the set
n
{we R" | w; >0, = 0,...,n,p{i](w) # O,p[ll](w) = ... :p{si](w) =0, ij -1=0}

is empty.
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Hence f vanishes on Z if and only if for any i € Ty, there exist h € I;, and [ € N such that
h + (p!1)?* can be written in the form

r
h + (p[i])m =19+ Ztk H wj,

k=1 JEQ

where t;, k=0,...,r, are sums of squares of polynomials in R[w], @ C {0,...,n}. In short,
pll(w) € R/T;, where P; is a cone of R[w] generated by wj, j =0,...,n.
VI. Obviously, we can get immediately the conclusion from III. This proves Theorem 3.3.

Theorem 3.4. Let Z = Z(J) be a real C* piecewise algebraic variety on a partition A with T
cells 0; (i =1,2,...,T) of a domain D, where J C S*(A) is an ideal generated by f1, fa, ..., [s-
For each i € {1,...,T}, suppose that I; C R[z] is an ideal generated by fils,, f2ls:y-- -, fslo:, P
is a cone of R[x] generated by (Sc(,i))ae{L___,qi}, and 5/1; is the P;-radical ideal of I;.

L. IfT' =0, then dimZ = —1;

IL IfT # 0, 20,5y = Z2((a,j))d = 1,...,ba, are all irreducible components of the real

algebraic variety Z( *%/1,), where I(, ;) is an ideal in R[z], « € T'. Then

dimZ = mawaep7jega(degaHP<LT(m)>)

= mazacr,jeo, (MDCS(Z(< LT(§/(a,5) >))),
where 0, = {1,...,bs}.

Proof.
L. If T = (), then for any i € {1,...,T}, there exist [ € P;, and h € I; such that [+h+1=0.
By Theorem 3.1, we get ZN4§; = (). Hence

dim(closer(Z2N0;)) = =1 for allie{1,...,T}.
So
dimZ = -1

IL. If T # (, then by Theorem 3.1, for any a € T, Z( "%/I,) is a nonempty real algebraic
variety, and
clos.ar(Z2Nda) = Z( Y/ 1a) = Ujep, Z(a,j) €T

Hence
dim(clos.ar(Z Nda)) = mazjep, (dimZ, j)).
It follows the Lemma 3.1, and the Definition 2.2 that
dimZ = mazaerdim(clos,ar(Z Noy))
= maZaer jeo, dim(Za,j)

= MaTqer,jeh, (degaHP<LT( m)>)
= MaTacl,jeh, (MDCS(Z(< LT( ¥ /I(a,j)) >)))

So we have proved Theorem 3.4.

When T' # 0, for arbitrary « € I',the set Z N d, is nonempty. Hence the set Z N4, is a
real semi-algebraic set([5]). By the decomposition theorem of semi-algebraic sets ([5]), the set
Z N, can be written as the disjoint union of a finite number of semi-algebraic sets A, j) ,i-e.,
ZNbo = Uj;iA(aﬁj), each of them is semi-algebraically homeomorphic to an open hypercube

10, 1[¢C R4 for some d € N (with ]0, 1[° being a point). Hence we have
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Theorem 3.5. Let Z[J] be a real C* piecewise algebraic variety on a partition A of D, and J
be an ideal of S*(A). IfT # 0 and for any o € T, the set ZN 4, is the union of a finite number
of semi-algebraic sets A, jy in which each of them is a semi-algebraically homeomorphic to an
open hypercube 10, 1[%=5, d(, ;) € N U{0}. Then

dimZzZ = mal‘aer,jewad(a,j),
where wq = {1,2,...,e4}.
Proof. Because of A(, ;) is a semi-algebraically homeomorphic to an open hypercube
10, 1[4, there exists a continous semi-algebraical mapping
. d(a,j
Iog) + Aoy = BID
such that g(,,;) maps bijectively the semi-algebraic set A, ;) onto the set g, j)(A(a,j)), i-e.
10, 1[¢=. Hence
dimA(a ) = dim(g(a.j)(A(a ) = dim(10,1[%) = d(a,j),
where a €', j € w,.
Moreover, in view of

dim(clos.qr(Z Nda)) = mazjew, dimA, ),

we have
dimZ = mazaerdim(Z N da) = MaTaer jew, d(a,j)-

This proves theorem 3.5.
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