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Abstract

Alternating directions method is one of the approaches for solving linearly constrained
separate monotone variational inequalities. Experience on applications has shown that
the number of iteration significantly depends on the penalty for the system of linearly
constrained equations and therefore the method with variable penalties is advantageous in
practice. In this paper, we extend the Kontogiorgis and Meyer method [12] by removing
the monotonicity assumption on the variable penalty matrices. Moreover, we introduce
a self-adaptive rule that leads the method to be more efficient and insensitive for various
initial penalties. Numerical results for a class of Fermat-Weber problems show that the
modified method and its self-adaptive technique are proper and necessary in practice.
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1. Introduction

The mathematical form of variational inequalities consists of finding a vector u* € Q such
that
VI(Q, F) (u—u)T'F(u*)>0, VYV ueqQ, (1)

where (2 is a nonempty, closed convex subset of R!, F is a continuous mapping from R! to itself.
In practice, many VI problems have the following separable structure, namely (e.g., [14]),

() re-(0): »
Q={(z,y)|xr € X,y € Y, Az + By = b}, (3)

where X C R™ and ) C R™ are given closed convex sets, f: X = R"™, g: )Y — R™ are given
monotone operators, A € R"™*"™, B € R"*™ are given matrices, and b € R" is a given vector.

By attaching a Lagrange multiplier vector A € R" to the linear constraints Az + By = b,
the problem under consideration can be explained as a mized variational inequality (VI with
equality restriction Az + By = b and unrestricted variable A):

Find w* €W, suchthat (w—w*)TQ(w*)>0, VweW, (4)
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where
x flx) — ATX
w=|vy |, Qu=|gy)-B"\ |, W=XxYxR" (5)
A Az + By — b

Problem (4)-(5) is denoted as MVI(W, Q) and will be concerned in this paper. It has been well
known (e.g., see [14]) that solving MVI(W, @) is equivalent to finding a zero point of

e(w) :=w — Pww — Q(w)], (6)
where Py (-) denotes the projection on W. |le(w)|| can be viewed as a ‘error bound that
measures how much w fails to be a solution of MVI(W, Q).

As a tool for solving MVI(W, Q) problems, the alternating directions method was originally
proposed by Gabay [5] and Gabay and Mercier [4]. At each iteration of this method, the
new iterate whtl = (k1 yh+l AE+1) € X x ) x R" is generated from a given triple w* =
(% yk AF) € X x Y x R" by the following procedure: First, z¥*! is obtained (with y* and \*
held fixed) by solving

(«' — a:kH)T( Fa*h) — AT]AF — B(Ah+! 4 Byk — b)]) >0, VYa'ea, (7)
and then y**! is produced (with 2*+! and A\* held fixed) by solving
(v =y (9" = BIE - B(AZ* 4+ By b)) 20, Vyey.  (9)
Finally, the multipliers are updated by
AL = \F _ B(AzhH! 4 Byttt — ), 9)
where v € (0, %) and 3 > 0 are given constants. This method is referred to as a method

of multiplier in the literature [5], and the convergence proof can be found in [4, 6] (for B = I)
and [13, 15] (for general B). Further studies and applications of such methods can be found in
Glowinski [6], Glowinski and Le Tallec [7], Eckstein and Fukushima [1] and He and Yang [9].

Experience on applications [2, 3, 12] has shown that if the fixed penalty § is chosen too small
or too large the solution time can significantly increase. In order to improve such methods,
recently, Kontogiorgis and Meyer [12] presented a more general alternating directions method,
in which they took a sequence of symmetric positive definite (spd) penalty matrices {H}}
instead of the constant penalty 5. The convergence of their method was proved under the
assumption that the eigenvalues of {Hy} are uniformly bounded from below away from zero,
and, with finitely many exceptions, the eigenvalues of Hy — Hy41 are nonnegative.

In this paper, we continue the Kontogiorgis and Meyer’s research [12] and present a modified
variable-penalty alternating directions method that allows the eigenvalues of {Hy} either to
increase or to decrease in each iteration. This can be beneficial in applications. In addition,
similarly as in [10], we propose a self-adaptive adjusting rule that leads the method to be more
advantageous in practice.

The following notation is used in this paper. We denote by I, x, the identity matrix in
R " For any real matrix M and vector v, we denote the transposition by M7T and v,
respectively. The notation M > 0 means that M is a positive semi-definite matrix, and M = 0
means that M is a positive definite matrix. Superscripts such as in v* refer to specific vectors
and are usually iteration indices. The Euclidean norm of vector z will be denoted by ||z||, i.e.,
lIz]| = V2Tz.

2. The General Structure of the Modified Method

Throughout this paper, we call the method by Kontogiorgis and Meyer [12] and our modified
method ADM method and MADM method, respectively. To describe the MADM method, we
need a non-negative sequence {n;} that satisfies Zzozo N < 00.
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Modified Variable-penalty Alternating Directions Method (short MADM)

Step 0. Given e >0, v € (0, %), a non-negative sequence {n} satisfying > po ok < 0 ,
a symmetric positive definite matriz (spd) Ho, y° € Y and \° € R". Set k = 0.

Step 1. Convergence verification (k > 1)

If lle(w®)||oo < &, stop;
Step 2. Find z**1 € X (with fived y* and \*), such that
(z' — 2" T fr(z*Ty >0, V o' e X. (10)
where
fe(@) = f(z) = ATN* — Hy(Az + By* —b)]. (11)
Step 3. Find y**! € Y(with fived 2*t' and \*), such that
v —y" )T >0, Vy' ey (12)
where
9k(y) = 9(y) = B'\* = Hy(Az"*" + By —b)]. (13)

Step 4. Update
AL = \E — yHy (AT + By*t! —b). (14)

Step 5. Adjust the penalty matriz Hy, (k > 1) such that,

Hyp S Hyp 2 (14 n,)Hy. 15
T e X Hir 3 (1) H (15)

Set k:=k+1, andgoto Step 1.
Remark 1. In the ADM method [12], the restriction on matrix sequence {Hy} can be equiva-
lently described as

1
1+

o0
Hy = Hipr X Hy, Vk>ko (with 7 >0 and ) i < o0). (16)
k=1
In comparison with (15) and (16), the MADM method does not need the monotonicity assump-
tion and allows the sequence {H}} be more flexible. Furthermore, instead of v = 1 in [12], we
relax v € (0, %g)
Remark 2. There are various ways to construct such spd matrix Hy satisfying (15) and we
will show some of them in Section 5. Since 1; is non-negative and Y = n; < oo, [Tro; (1 +mn;) is
convergent and greater than zero. It follows form (15) that the matrix sequence {H}} is both
upper and below (from away from zero) bounded. Also from (15) we have
1 1
14 n 14

1 W < By < Um0l s, ([ T e Oy ey

Remark 3. For bounded {H}}, it can be shown there is a constant ¢o > 0, such that
et < eo 1A+ + Byt — bl + | BGF - o)), (1)

Since solving MVI(W, @) is equivalent to finding a zero point of e(w), we need only to prove
that

lim (||Az"*" + By** —b]> + |B(y" — y**)|I”) = 0.

k— o0
In fact, it is easy from (10) -(14) to check, if Az**! 4+ By*+l —b = 0 and B(y* — y**!) = 0,
then whtl = (k1 yF+1 \E+1) is a solution of MVI(W, Q).
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For convenience, we make some basic assumptions to guarantee that the problem under

consideration is solvable and the MADM method is well defined.

Assumption A. The solution set of MVI(W, @), denoted by W*, is nonempty.

Assumption B. Problems (10) and (12) are solvable.

3. Some Preparations for the Convergence Analysis

In this section, we do some preparations for the convergence analysis. We will investigate
the difference between

N =N +IBEE =y, and I =N+ BEE - ),
k k
Now, let us first observe the difference of [|A* — X*[| _, and [[A¥*" — A*|2 _,. Using (14) and
k k
the identity
||>\k _ )\*Hzlzl = ||>\k+1 _ )\*”?{’:1 _ ||>\k _ >‘k+1||§{;1 + 2(/\]43 _ /\*)Tkal(/\k _ )\k—i-l)’
we get
I = X = I = X = 2l AT+ Byt - bl
+29(\F — X)) T (Agk+ 4 Byk+t — ). (18)
The following lemma provides a desirable property of the last term of (18).

Lemma 1. For any w* = (z*,y*, \*) € W*, we have

(}\k _ /\*)T(Al.k+1 + Byk+1 _ b)

> [|Az* T + ByFt —b)|3, + (AzPT — Aa*)THy(ByF — ByFt). (19)
Proof. Since w* € W*, z**1 € X and y**! € ), we have

(& —2)T(f(2*) = ATA) >0 (20)

and
(" =y (gy") - BTA") > 0. (21)

On the other hand, from (10) and (12), it follows that

(2% — 7T (f@@*H1) = ATV = Hi Ak + Byt —0)]) > 0, (22)

and
(v = g7 (9" = BTV — Hy(Azh*! + By —p)]) > 0. (23)

Adding (20) and (22), and using the monotonicity of operator f, we get
(zF+! — x*)T(AT[(Ak ) — Hy(AzkH 4 Byk — b)]) > 0. (24)
Similarly, adding (21) and (23), and using the monotonicity of operator g, it follows that
(yh+! — y*)T(BT[(/\k — \) — Hy(Az"+ + ByFt+! — b)]) > 0. (25)

Combining (24) and (25) and using Az* + By* = b, we get the assertion of this lemma.
From Lemma 1, we have
I =X = I = NI (2 = )l A+ By — bl

+2y(AzF T — Ax*)T H (By® — By*™). (26)
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In addition, we have the identity
NBW* =y, = BE™ =y, +911By" - By I3,
+2y(By**" — By")T Hi(By* — By**). (27)
Thus, combining (26) and (27) and using Az* + By* = b we get
N = Al + B — )i,
= N = NN + 1B = )i,
+y(2 = )[Ae* + By — bl BT~y Y,
+27(Az* Tt + Byt — b)T Hy (By* — By*th). (28)
In the following lemma, we observe the last term in (28).

Lemma 2. For k > 1 we have
(Axk+1 4 Bykt! - b)THk(Byk _ Byk+1)
> (1 —v)(Az* + By* — 0)" H,_1 (By* — By**). (29)

Proof. By setting y' = y* in (12) we get
(v =y (9" ") = BTN — Hy(Aa* ! + By"+! —p)]) > 0. (30)
Similarly, taking k := k — 1 and y’ = y**! in (12) we have
v =y (9*) - BTV = Hi(4a* + By* —b)]) > 0. (31)
By adding (30) and (31) and using the monotonicity of operator g, we obtain
(" ) TBT ([N — Hy(Aa* 4 By — )] — W' — Hy Ly (Aat + By b)) 2 0. (32)

Substituting A¥ = A1 — yH; | (Az* + By* — b) in (32), the assertion of this lemma follows
immediately.

4. The Main Theorem and the Convergence Proof
Remember that we restrict v € (0, #) and hence 1 +v —~2 > 0. Let
1
T=2-30+7v=7), (33)
and then we have
1 R 1, ., 1 ) 1

Now we are in the stage to prove the main theorem of this paper.

Theorem 1. Let w* = (z*,y*,\*) € W* be a solution point of MVIOW,Q). Let {w*} =
{(z*,y*, A\F)} be the sequence generated by the MADM method, then there is a ko > 0, such
that

INFE = NI B = ), (T = DIAS 4 By - bl
< (1m0 (I = NI + 2B =yl + (T = lIAz* + By* = b, )

—y@=T) (4" + By — bl + IBGS -y ), VE> ke (39)
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Proof. Tt follows from (28) and (29) that
N = X5 B =),
> XX B -y,
+7(2 = NN A"+ By* !t —bll3, +411BW" - y* 1,
+27(1 = 7)(Az* + By" — b)" Hy 1 (By" — By**'). (35)
Using Cauchy-Schwarz inequality, we have
2y(1 —7)(Az* + By* —b)" Hy 1 (By* — By"*')

k k 2 7(1—7)2 k k41412
> —y(T - 7)||Az" + By —b||Hk_1—T7_7||B(y =¥ M-y

y(1—7)?
> —y(T — v)||Az* + By* —b||},_, — (Ti_v)(l + )| By* — y* ) |[%,. (36)

Substituting (36) in (35), we derive
IV = X+ UMBEET =yl + (T =l At + By — b,

<IN = NN +AIBOE =yl + (T = I Az* + By* = bl

—(2 = )| Az + By** — bl — vkl B* — " )15, , (37)
where ( 2
1—v
0p i =1———"(1 _1).
k T =) (1 + k1)
Note that

1-7° m—a(1=7)? _20+v-9%) m-1(1-9)
(T =) (T—=7) v —4y+5 (T—-v)
the second equality of (38) is obtained by using (33). From n; > 0 and > ,—, m < oo, we have
limy_ 0 m, = 0. Then there exists a positive constant kg such that

Sp=1-— (38)

Ne—1(1 —7)? 1 2
0< — < —(1 - Vk > k.
< TT <EpA+r=77), > ko

Since SUP__q M){'YQ — 4y + 5} = 5, it follows from (38) that for k > ko
» T3

2 1 1
o> (2 ——=)1 -+ =2(1 -~ =(2=-T).
2 (F-5)a+r-9)=30+7-7)=2-1) (39)
In addition, we have

AT — A*Iliz,:il +AIBE ! =y, + (T =l Az* T + By*+t — b3,

< (L) (I = W[+ B =y, + (T = ) |4+ By = b3, J40)
Substituting (39) and (40) in (37), we obtain the conclusion of the theorem immediately.

Using Theorem 1, we can prove the convergence of our method as follows.

Theorem 2. Let {(z*,y* \F)} be the sequence generated by the modified variable-penalty
alternating directions method for MVIIW, Q). We have

(IAZ"Y + By** —bllgy, +[1By* — y*)Il,) = 0. (41)

lim
k—o00
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Proof. Since {n;} is nonnegative and Y~ 1; < 0o, it follows that [];°, (1 +;) is bounded.

Denote - -
Cs = Z i, H + nl (42)
i=1 i=1

From Theorem 1, we have for all k& > kg that
AR — A*Ili@ll +AIB =y, +(T =AM+ By*t —bl|3,

Cy (IN = M2+ YIBW™ = y")ll, + (T =Nl Aa* + By bl ).
‘0
Therefore, there exists a constant C' > 0, such that
I = A2 B = g, + T =)l Azt + Byt = b, <C, VE>0. (43)

From Theorem 1 and (43) we get

oo

Z 7(2 _ T)(“Al‘H_l + Byi+1 — b2
i=ko

W' =y llE) <@ +CHC (44)

and hence

lim (2 —T)(||Az"*" + By*** — b, + |By" —y"*)ll7,) = 0.
k—o0

Since v € (0, #) and 2 —T = (1 + v —~%) >0, it follows that
lim (||Az"* + By*™ —blf, +I1B" —y*)lE,) =0
k— o0 k e
and thus Theorem 2 is proved.
Remember that the sequence {H},} is bounded, it follows from Theorem 2 that
Jim ([[Aet 4 By™ = bl* + [|B(y* - y*|?) =0
—00

and the MADM method is convergent.

5. Numerical Experiments

Let wkt! = (ah+! yF+1 A1) € X x Y x R" be generated from a given triple w* =
(z*,y* A¥) € X x Y x R" by (10)-(14) with v = 1. In this case, it follows that e, (w**!) =0
and thus

lle(@ )2 = flea (@ FH)I* + llex (@),

where

eq(w) =z — Py{z — [f(z) — ATA]} and ex(w) = Az + By — b.

For the sake of balance, in [10], the authors adjusted the penalty parameter § such that
llex(w)]| = |lex(w)]||. For VI problem (1)-(3) has block form

T
m:(ml:m?:"'awl)Ta y:(y17y27"'7yl) ) (45)

F@) = (fi(@), fol@s), - fil@)T,  g(y) = (91(v1),92(y2)s -~ gu ()" (46)

and
O ={u=(2,y)|z; € Xi,y; € Vi, Aiwi + Byy; = b, Vi=1,---,1.} (47)

we suggest the similar strategy as in [10] for adjusting the penalty matries:

A simple strategy for Adjusting penalty matrix H; in MADM method.
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(L+m)HY, if  ||lob = Py [2b — (filzh) — ATAD)| < llAszt + Byl — bil|
HY, i pllaf = Prfab — (fi(h) — ATAD]| > |k + Bigl = bill

i

(1 _
Hk+1 o 1 + Tk

H ]gz) , otherwise.
with a symmetric matrix Hy = diag{Hél),Hé2), ‘e ,Hés)} and Héi) =0,i=1,---,I.

In the numerical tests, we consider the Fermat-Weber problem [12]

!
min a;l|ly — by; 48
yeRn; illy — bpall (48)

in which the vectors b;; and the weights a; > 0 are given. For n = 2 the problem has a
single-facility location interpretation: bp; are shipment centers, represented as points in the
plane; the sought minimizer is the location of the facility to be built, such that the sum of
the transportation costs between the centers and the facility is minimized, where each cost is
proportional to the Euclidean distance. Introducing auxiliary vectors of [y}, -, z[;, Problem
(48) can be rewritten as
!
min { Zai||55[i]|| | T =Y — b[i], 1= 1, v ,l}. (49)
i=1
Then it can be formulated into the form (45) — (47) with
zi=ap, Y=y, filz)=aigty, gi(yi) =0,
Ai = Inxn, Bi=—Inxn, bi=-=by, Xi=YV;=R", i=1,--,l

Thus, under the non-degeneracy assumption, we can apply the alternating directions method
with self-adaptive block diagonal penalty matrix to solve Problem (49), in which we take v = 1,

Hy = diag{B%, I, B In, . 8% In} with 8% > 0,i=1,---, and

11
nk = min{1, (max{1,k — 100})~%} = {1,1,...,1, ST J.

.Jklr—ﬂ

In particular implementation, we have

:l'k.
(L+mw)Bf  if ||aiﬁ = Myl < 0.1y — y* + byl
k

Ct[l

k+1 _
ﬁ[l] o ﬂﬁ]/(1+nk) if 0. 1”0'1” K || Aﬁ]” > ||Cl7ﬁ] _yk +b[l]||7
ﬁ[’“i] otherwise
and

N1
e SR [i] ok = Mo 4 gE ok — g b S 1
i = i = i ay" = Bbuy, =11,
1) ( He[t]H)ﬂ[z] (il [i] [i] [417[1]

l

(Zﬂ) Z( fet + Blabu — Afi-]),

i=1

Afczi‘,-l — A ﬁk( k+1 yk+1 +b[z]); i= 1’___,1.

In [12], the author used ADM method for Problem (49) by taking

2aq 2a- 2a; } _0.075

HOZdia‘g e nino . in " 0 i in
{||b[1]|| ol L
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which are denoted by Hp[12] and L[12] respectively in the sequel, and

. 1.0585° T, if gE-T < L,
B

| fori=1,---,1
max{O.QSﬁ[i] ,L}, otherwise, ort T

where the penalties were updated every T'(= 10) iterations.

To assess the impact of the penalty value on performance, we generated 12 classes of data,
with the number of points [ in {25, 50, 75} and the dimension n in {2, 4, 8,16}. For each class the
problem is generated randomly. The weights a; were uniformly distributed in [1, 10], while the
components of b are uniformly distributed in [10, 100]. The stopping test was ||e(w*)||. < 107°,
Table 1 reports the computational results by applying the proposed MADM method and the
ADM method in [12] for solving Problem (49), respectively.

Table 1. Number of iterations for Fermat-Weber problems

n 1 Hy =10"21 Hy=10"1T Hy=1 Hy = 101 Hy = 10T Ho = Ho[12]
ADM | MADM | ADM | MADM | ADM | MADM | ADM | MADM | ADM | MADM | ADM | MADM
2 25 | 2044 113 210 63 179 36 1793 97 > 10000 101 99 69
50 | 2809 55 301 58 149 60 14453 58 S 10000 66 141 48
75 | 4411 136 164 75 134 65 1294 66 S 10000 74 222 67
4 25| 678 49 76 38 187 66 1814 66 > 10000 7 57 48
50 | 1334 52 146 57 171 56 1656 60 S 10000 61 97 64
75 | 461 52 59 36 187 65 1807 71 S 10000 71 56 40
8 25 | 356 67 47 42 236 69 2298 72 > 10000 70 43 38
50 | 256 63 37 42 254 72 2473 75 S 10000 75 36 38
75| 270 68 38 43 250 72 2436 79 S 10000 7 39 37
16 25 | 182 56 42 57 338 80 3317 84 > 10000 78 35 40
50 | 162 53 41 55 326 7 3190 78 S 10000 78 37 39
75 | 168 53 42 58 331 80 3249 81 S 10000 82 36 11

It seems that the solution time of the proposed MADM method is much less than that of
ADM method. We note that, for the same problem, the iteration numbers of ADM method are
significantly depends on the initial penalty. Although the ADM method performs as efficiently
as (or somewhat more efficiently than) MADM method when the initial penalty matrix Hy is
selected carefully as in [12], it is inconvenient to choose a proper initial penalty in ADM method
for individual problems. Another difficulty encountered by the ADM method is how to choose
a proper lower boundary L. As we have seen that L = 207 5™ 4, in [12] is not an obvious
one.

The iteration numbers of the proposed MADM method are insensitive to the initial penalty.
To demonstrate it more clearly, we test the Fermat-Weber problem with n = 16 and [ = 75 (the
largest problem in Table 1 and 2). The initial penalty matrix Hy is a positive diagonal matrix
whose elements are ﬂoi] Lig,i=1,---,75. We let ﬂﬁ‘] be uniformly distributed in (1077, 10”) and
list the iteration numbers in Table 2.

Table 2. Number of iterations of the proposed method for Fermat-Weber problems
ﬂﬁ»] € (1077,107) ,p=| 1 2 3 4 ) 6 7 8 9 10
Number of iterations | 8 8 90 92 91 95 102 105 110 111

Conclusion. In this paper, we proposed a modified variable-penalty alternating directions
method. The presented MADM method extends the ADM method by allowing the penalty
matrix to vary more flexible. The preliminary numerical tests show that the proposed method
with self-adaptive technique is more preferable in practice.
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