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Abstract

In this paper, a new high accuracy numerical method for the thin-film problems of
micron and submicron size ferromagnetic elements is proposed. For the computation of
stray field, we use the finite element method(FEM) by introducing a semi-discrete artificial
boundary condition [1, 2]. In our numerical experiments about the domain patterns and
their movement, we can see that the results are accordant to that of experiments and other
numerical methods. Our method are very convenient to deal with arbitrary shape of thin
films such as a polygon with high accuracy.
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1. Introduction

Micromagnetism of micron and submicron scale patterned thin-film has become an area of
great scientific and technological interest in recent years[3, 4, 5, 6, 7]. Because of the important
applications of ferromagnetic thin-film to magnetic information storage technology and the
potential of the semiconductor microelectronics technology, there has been a rising interest in
studying the efficient numerical methods for the thin-film problems in the world[5, 6, 7].

One can simulate the magnetization processes by combining the classic micromagnetic the-
ory with dynamic descriptions of magnetization orientations. Micromagnetic theory considers
the free energy in the ferromagnetic material, which in general includes the following energy
terms (here we omit the magnetoelastic energy)

1. the magnetic anisotropy energy, which acts as a local constraint on the magnetization
orientation,

2. the exchange energy, which tends to keep adjacent spins parallel,
3. the magnetostatic (or Self-Induced) energy,
4. the magnetic potential energy due to external magnetic fields,

By the simulation of the dynamic process in Micromagnetic modelling, not only we can get the
remanence domain configurations in a ferromagnetic element, but also we can get the transient
pictures that demonstrate how a complex domain structure forms. From the Micromagnetic
Model we know that the complex magnetization domain patterns and the detailed spin struc-
tures within the domain boundaries are the results of minimizing the total free energy. That is,
the different domain patterns correspond to different local energy minima. If an external field
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is applied with sufficient magnitude that the energy minimum disappears, the corresponding
magnetization domain pattern will change, following the dynamic equation until a new energy
minimum is reached.

In this paper, we provide a method which mixed the finite element method and integral
method to get the numerical solution of the ferromagnetic thin-film problem. First, we rewrite
the solution of an initial-boundary problem with the Landau-Lifshitz equation in integral for-
mula, we can reduce the computation of the most singular part of the integral to a Poisson
problem on an infinite domain in two dimensional (2D) [7]. After that, we can design a semi-
discrete artificial boundary condition [1, 2] to get the numerical solution by finite element
method (FEM).

2. Thin-film problem

One class of ferromagnetic thin films that has been studied extensively by micromagnetic
modelling are the magnetic thin films used for data storage in hard-disk drives. In general,
these thin films are a few tens of nanometers thick and less than a micron long. Therefore, we
will focus on the micron and sub-micron size thin-films with tens nanometers thickness in this
paper. Certainly, our method can deal with more general thin-film problems.

First, let’s recall the full micromagnetic model [5, 7, 8]. Counsider a ferromagnetic material
contained in a domain V5 = Q x [—§,d] C R?, where § << diam(2), Q C R? is supposed to
have a piecewise smooth boundary, for example, a polygon (then we can define the out normal
vector on 0} except a finite number of points). As we mentioned, the free-energy functional of
micromagnetics can be written as

K M? M?
E(m) = A |Vm|?dz + =2 | $(m)dz + / b, |2dx — / h,,; - mdz
2 Jy, 2 Jv 210 Jrs to Jv;
= Eemc+Eani+Esta+Eeact: (21)

where Feye, Fani, Fsta and E..; represent exchange energy, anisotropy enerqy, static enerqgy,
and external field energy respectively. Here M, is saturation magnetization, m is the normal-
ized magnetization (= the magnetization M/M;), a unit vector field defined on the film V.
Moreover, A (dimension J/m) is the exchange stiffness constant, measures the strength of the
exchange energy relative to that of dipolar interactions, K, (dimension J/m?) is the quality
factor measuring the relative strength of the magnetic anisotropy ¢, hg, is the normalized
stray field, whose norm squared gives the magnetostatic energy density, h,; is the applied
field, which we assume to be uniform.

The effective magnetic field h.¢y at a position inside the ferromagnetic material is defined
by

oE

hepp=—5-- (2.2)

The magnetization orientation follows the Landau-Lifshitz equation[8],

dm

E:—ymxheﬁ—aymx (m x heyy), (2.3)
where 7 is the electron gyromagnetic ratio and « is the damping constant. If we want to get the
domain patterns or observe the movement of the domain walls, we should solve the following
initial-boundary value problem

dm
dt
m(0,z) = my(z) (2.5)

—ym x hepr —aym x (m x hesy) (2.4)
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Om
- 0. 2.
on lovs 0 (2.6)

Sure, we can separate the effective magnetic field h.f; to four parts:

heff = he:tc + hani + hstr + hezt; (27)
0E 0E i 0E
where he,. = ——==AA m, h,; = -—— = _Ku¢l(m)7 hy, = Bl L —Vu and
6B om om
h.,: = — ot The difficulty of the simulation procedure is computing the global term stray

m
field hgy, = —Vu. It is determined by the following problem

Ay = divm in Vs, (2.8)

Au = 0 inV;", (2.9)

[ullov, = O, (2.10)
ou

{%} ‘BVS = -m-y, (2.11)

where [f]|av; is the jump of function f on the boundary AVs. The solution to this problem is
given by the Biot-Savart Law:

u(@) = [ VoN(z—y) m(y)dy
Vs
= N(z —y)divm(y)dy — N(z — z)m - 7i(z)do(z) (2.12)
Vs aVs
1. . B . .
where N(z) = e is the Newtonian potential in R®, 7 is the unit exterior normal vector
7

on 0.

As we are studying the thin-film problem, we assume that the magnetization does not depend
on the transversal coordinate, but only on the in plane coordinates. By our assumption, m is
only a function of (z1,x2), we can integrate in the other coordinate in the expression for Vu

[7]:

5
V'u(zi,z2) = / Vu(zy, T2, 3)drs (2.13)
-6
If we define:
~ 1 2 V462 2 1
By(r) = Llog X2V L L i, (2.14)
47 r 4md
and
1,1 1
_ .1 _ 2.1
W) = 35~ ) (2.15)
we can write the expression of Vu as follows
Viue) = - [ Vi@ ViR -y m'w)dy, (2.16)
Q

%%)ZL%@%@wm, (2.17)
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where V' = (89“, 8‘;)2), m’ = (my, ms) denote the in plane part. In what follows, a prime will
always denote a two-dimensional field or operator. On the other hand, the function
v(z) = LV lo 1 m(y)dy
p2r " BTy
is the solution of the following problem
Av = divm in (2.18)
Av = 0 inR*\Q (2.19)
W]l = 0, (2.20)
0
[a—ﬂ ‘ - —m-v (2.21)

Therefore, if we define

1 1
Ks(r) = yy log(26 + /462 +r?) + m(r — V462 +r?), (2.22)

we can rewrite V'u as follows,

V'u(z) = —V’ / V, @ VoKs(z —y) -m'(y)dy = %V'v(aj) + V'a. (2.23)

3. Numerical Algorithm

From section , the remainder problem, also the most difficult problem, is how to compute
the stray field. Because the domain in (2.18)—(2.21) is infinite (the whole space R?), if we
want to solve this problem by FEM, we must first give an artificial boundary to bound the
computational domain and give an artificial boundary condition on it. In [1, 2] we gave the
discrete artificial boundary conditions for this type problems (2.18). That means, we can give
a relationship between u and g“ on 92 by solving the external problem. Therefore we can
reduce the problem (2.18) to the following problem on a bounded domain Q C R?

Av = divm in Q, (3.1)
v
on laQ

Gllg)+m-v (3.2)

where G(v) is a function of v given by the discrete boundary condition [1, 2]. In fact, G(v) is
a summation of the multiplication of function v and a kernel function on the boundary 0f2.

Then it is very easy to get the numerical solution of problem (3.1)-(3.2) by FEM. For
example, if we give a triangulation 7}, of Q and use the piecewise linear polynomials to construct
the trial and test spaces

Sp ={wp, € C’(Q)‘ wy, is a linear polynomial on each triangle of Ty}, (3.3)

we obtain an approximating problem of (3.1)—(3.2) in variational form:

Find v, € Sy, such that

/ V'vy, - V'wpdz — (3.4)
Q

G(vp) wy ds = / V'wy, - mdz, Ywy, € Sp,.
a0 Q

We can get an approximation V'vy, of V'v with high accuracy [1, 2].
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From (2.23) and (2.17) we can see that the remain part of Vu are in terms of the convolution
of K5 and V'm, W5 and m respectively. As the integral kernel function K5 and Wy are smooth
function or with only weak singularity, we can get a high accuracy approximations of these
integrals by Gaussian numerical integral methods. For example, if we use piecewise constant
approximation for m’, from (2.23) and (2.17), we have the following formula:

Vi) = - [ Vie VK- y) m' @i
Q
= - Z V. @V, Ks(x —y)dy - m'y, (3.5)
Q,CT; 7 n
ou h
9. %) = > Wi(z — y)dy mg. (3.6)
3 Q,CTh n

If the domain is a rectangular, we can use the discrete fast Fourier transform (DFT) to reduce
the computation in (3.5) and (3.6).

In summary, our algorithm can be described as follows: (for example, we use 4th Rounge-
Kutta method to solve the problem (2.4)—(2.6)). In each time step, first we solve the problem
(3.4) to get V'vy. Then we can calculate Vu by (2.23) and (2.17). Moreover, we can get the
value of h.r¢ from (2.7). Then the value of m in the next time step can be computed.

4. Numerical examples of Magnetic Domains

In this section, we give two examples of Magnetic Domains and the movement subject to
an external magnetic field. We consider a thin film in volume V5 = [—128,128] x [-128,128] x
[—4,4]nm. That means, the length and width of the thin film are 256 nanometer, the thickness
is 8 nanometer. The constants we used are: A = 1.3 x 107, K, = 500, M, = 8 x 107,
po =41 x 1077,y =221 x 1077, a = 0.1.

Example 1. First, we give some classic patterns of domain walls. The results are shown
in figures 1-4. We can see the different final domain patterns corresponding to different initial
states.

In figures 14, the top two graphs show the magnetization in grey scale, the bottom ones
show the magnetization field in spin structure; the left two charts show the initial state of the
in plane magnetization m’' = (my,m»), the right two charts show the final steady state, arrows
indicate the magnetization direction. From these figures we know that there are so many local
minima of the energy functional E(m) in (2.1).

Example 2. Our second example is about the movement of the domain wall subject to a
external field. Figure 5 shows the predictions of our numerical scheme for a square film, subject
to a field applied along the diagonal.

All these results are accordant to those in [5, 7].

5. Conclusions

In summary, in this paper, we give a high accuracy numerical method for the dynamic
problems of thin film in micromagnetics. In our method, we calculate the in plane part stray
field through solving an initial-boundary value problem in whole space R?. After we introduce a
nature artificial boundary, we can easily give a discrete type artificial boundary condition with
high accuracy on this boundary. Then we get the approximation by FEM. We use numerical
quadrature method to obtain other parts of the effective magnetic field. If the domain is a
rectangular, we use the fast discrete Fourier transform to reduce the computation. Furthermore,
our method can extend to the problem with polygon domain easily.

I am grateful to Prof. Weinan E and Dr. Carlos J. Garcia Cervera for valuable discussion.
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Figure 1: One vortex state.
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Figure 2: Flower state.
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Figure 3: ‘C’ state.
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Figure 4: ‘S’ state.
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H=0.00 H=0.35

Figure 5: Plots of the vertical component m' = (m1, m2) of magnetization subject to a external field
H applied along the diagonal in spin structure. If we increase the strength of H, the vortex will be
more close to the top-left corner.
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