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Abstract

In the present work we are going to solve the boundary value problem for the quasilinear
parabolic systems of partial differential equations with two space dimensions by the finite
difference method with intrinsic parallelism. Some fundamental behaviors of general finite
difference schemes with intrinsic parallelism for the mentioned problems are studied. By the
method of a priori estimation of the discrete solutions of the nonlinear difference systems,
and the interpolation formulas of the various norms of the discrete functions and the fixed—
point technique in finite dimensional Euclidean space, the existence of the discrete vector
solutions of the nonlinear difference system with intrinsic parallelism are proved. Moreover
the convergence of the discrete vector solutions of these difference schemes to the unique
generalized solution of the original quasilinear parabolic problem is proved.
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1. Introduction

1. In [1]-[4] the finite difference methods with intrinsic parallelism for the multi-dimensional
boundary value problems of the semilinear parabolic system are studied, where the difference
approximations for the derivatives of second order are taken to be the various linear combi-
nations of the two or four kinds of difference quotients. All of these general finite difference
schemes having the intrinsic character of parallelism are proved to be stable and convergent
conditionally, where some restriction conditions on time—step must be satisfied. Some special
finite difference schemes with intrinsic parallelism for the linear parabolic problems have been
discussed in [5] and [6]. These special difference schemes are proved to be stable and convergent
unconditionally in discrete norms L> and H', and the convergence order is O(7 + h) though
the truncation error at the subdomain boundaries is O(1). For the one-dimensional quasilin-
ear parabolic systems we have also constructed some general difference schemes with intrinsic
parallelism and proved that they are unconditional stable and convergent in [7].

2. Difference Schemes with Intrinsic Parallelism

2. Consider the boundary value problems for the two dimensional quasilinear parabolic
systems of second order of the form

Ut = A(%y,tau)(um + uyy) + B(mayatau)uﬂt + C’(w,y,t,u)uy + f(mayatau) (1)
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where (z,y) € Q = (0,11)%x(0,12), ¢t € (0,T], and u(z, y, t) = (u1(z,y,t), uz(z,y,t), -, um(z,y,t))
is a m—dimensional vector unknown function (m > 1); A(z,y,t,u), B(z,y,t,u) and C(z,y,t,u)

are given m X m matrix functions, and f(x,t,u) is a given m—dimensional vector function and

_ Ou _ Ou _ 8%u _ 8%u _ Ou : : :
Up = 5oy Uy = 5o Usa = g5, Uyy = 5% and u; = 7 are the corresponding m—dimensional

vector derivatives of the m—dimensional unknown vector function u(z,y,t).
Let us consider in the rectangular domain Q7 = Q x [0, T] the boundary value problem for
the system (1) with homogeneous boundary conditions
u(z,y,t) =0, (r,y) €90Q,0<t<T, (2)
and the initial condition
w(z,y,0) = o(z,y), (v,y) €L (3)

Suppose that the following conditions are satisfied.

(I) A(z,y,t,u), B(z,y,t,u), C(z,y,t,u)and f(z,y,t,u) are continuous functions with re-
spect to (z,y,t) € Q7 and continuously differentiable with respect to u € R™; and there are
constants Ag > 0, By > 0,Cy > 0 and C' > 0 such that |A(z,y,t,u)| < Ao, |B(z,y,t,u)| <
Bo, |/, ,t,u)| < Co, and |f(z,y,t,u)| < |£(z,y,t,0)] + Clul.

(IT) There is a constant oo > 0, such that, for any vector & € R™, and for (x,y,t,u) €
Qr x R™,

(57 A(CE, Y, t7 U’)g) Z UO|€|2'

(III) The initial value m-dimensional vector function ¢(z,y) € C*(Q) and ¢(z,y) = 0 for
(x,y) € 00N.

3. Divide the domain Qr = {0 < z < 1;,0 <y < 15,0 < ¢ < T} into small grids by the
parallel planes = z; (i = 0,1,---,I),y =y; (j =0,1,---,J) and t = t" (n = 0,1,---,N)
with x; = ihy, y; = jhy and t" = n1, where Thy =1;,Jhy =l and N7 =T, I,J and N are
integers and hi,hs and 7 are the steplengths of grids. Denote va = {v};|i = 0,1,---,I;j =
0,1,---,J;n=0,1,---, N} the m—dimensional discrete vector function defined on the discrete
rectangular domain Qa = {(z;,y;,t")|i = 0,1,---,I;j = 0,1,---,J;n = 0,1,---, N} of the
grid points.

Let us now construct the general difference schemes with intrinsic parallelism for the bound-
ary value problem (1), (2) and (3):

'UTH'I —
1) - 1) An—i—l A,Un+1 +Bn+16; Z—i—l +Cn+16; Z—i—l +fn+1’ (I)A
t=12,---,I-1;5=1,2,---,J—1;n=0,1,--- /N — 1),
where
*
n+1 2 n+l 2 n+1
A vy —6 2V T 6 vV
o N ntl Al n+X7; nl |, nHA
Vipr,; — 205 vy . Vi1l — 205 vy
h2 h% ’
+1 _ 1 50, nt1
Al = A(zi,y;,t", 6 Vi),
+1 _ +1 50, n+1
Bl = B(wi,y;,t"", 60,
+1 _ 1 20, n+l
C = C(z;,y;,t", 6 v ),
fnJrl = f(mi)yjathrl 60UT'L'+1)' (4)

50 n+1 60 n+1 50 n+1 and 51 n+1 61 n+1

. . . <0, n+1
In this difference scheme, the expressions § v 2Vij > 0yU;;

can be taken in the following manner. We can take

<0, n+1 n n+1 n n+1
§ Uij - >‘ alz] z+lg + :u’zja%] i— 13 + >‘ a3l] ij+1
n+1
+:u’zga4zg z] 1 + aSz] + alz] z+1]

n n
+a;;0; 1 + Q505540 + QY351 T Q055 (5)
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such that the sum of coefficients equals to unit, that is
AGatsy + ey + Aagy; + Aad;; + agy + Al + Qg+ Qg + @l + agy; =1
and the sum of the absolute value of these coefficients is uniformly bounded by any given
constant with respect to the indices 7, j and n. The coefficients are dependent on the indices i, j
and n, this means they are different for different layers and different grid points. This shows
that the choice of the coefficients has great degree of freedom.
For the expressions 10" and d10™!, we can take for example as

TVij yrij
oA el _ i
ot = diy = S+ dyy =
hl J h2
+ds3;;0.075 + di;;020;" 4, (6)

where
iy tdo; +dgy; +di; =1
and the sum of absolute values of the coefficients is uniformly bounded by any given constant
with respect to the indices i, 5 and n. R
By the similar principal we have the expression for 6%%“, 601;?]7"1, 601;?]7"1 and 5;1)%“ with
an analogous behaviors.
The finite difference boundary conditions are of the form
vo; = vij = Vip = viy =0, (2)a
(ZZO)]-::I)] :0)]—7"'7J;n:0)17"'7N)'
The finite difference initial condition is of the form
vy = @ij, (3)a
(120717717]:0717711)7

where ¢;; = ¢o(z;,y;) (i =0,1,---,I;5=0,1,---,J).

4. Denote h* = max(hy,he) = h, h. = min(hy,hs), A =71 (h% + th) . Introduce the
assumption:

(IV) Suppose that h*/h, is uniformly bounded as hy and hy tend to zero.

In the following we shall use the symbols and notations in [8], and the following lemma will
be useful (see [8]-[10]).

Lemma 1. For the discrete vector function va = {vjli = 0,1,---,I;j = 0,1,---,J;n =
0,1,---, N} satisfying

vg; =vp; =0, 7=0,1,---,J,

n __ n __ y —
vip=v;y =0, ¢=0,1,---,1,

we have
(i)

IR Iz < 23601112, [R5 < 203[16,0R 1135

(i)
1530R 115 + layvR 115 < 2l Av I35

(iii) for any € > 0, there are

1
R 1% < elldzvRlls + Z RIS + 60X 115 + [16,vR 15

1
R I1% < elloguRlls + ZlloR 15 + 18:0R115 + 16,0R 115
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3. Apriori Estimate and Existence

5. We are now going to prove the existence of the discrete vector solutions for the finite
difference system (1)ao—(3)a. Let us now at first turn to the a priori estimates of these solutions.

*
Making the scalar product of the vector A ’U%JrlhthT with the vector finite difference
equation (1)a and summing up the resulting products fori = 1,2,---, I —1;5=1,2,--- J —1,
we have

I-1J-1 . I-1J-1
1 1 1 1 1
Z (Aot ol — vl hihe —TZZ ottt ALY Av”+ Yhihso
i=1 j=1 i=1 j=1
I-1J-1
n+1 n+1 <l n+1 n+1751 n+1 n+1
7303 (A o B ISR 4 OB S 0R  f  hyh. (7)
i=1 j=1

For the left part of the above equality, we have

I-1J-1
2 n+1 n+1 n
ZZ aVij > Vij _vij)hth
i=1 j=1
(17— | 17—
1
== 32 D e ks + 5 ZZ|§ ol hih
i=0 j=1 =0 j=1
| 1o 5
n+1 n+1 n
[|”z+1j oy | + [0l = o }h
2y
i=0 j=1
| 1=l
n n n+1 n n+1 n
T Z Z(l — Bit1j — i) (Ui+1j — UitV — vij) b
1%i—0 j=1
[ 17— | 17—
1
S S SP BT FNATES 3 i RO
=0 j=1 =0 j=1
| [=1U- ,
_ n n+1 n+l _ n
2h ZZ(I Tz+%,jD [|”i+1j z+ly| + [vj; vi | ]h2
1 =4
=0 j=1
| 1ol 5
n+1 n n n+1 n
~ 5 ’.‘ Vi~ Vit (sgn"r“%’j) ( i vij)‘ ho,
1izo j=1
L _\n. n
where 7'+ y =1—phq; — A SNT 1 ; —].1f7'+2’ >0, and sgnT 11f7'l+2’] < 0.

Then the equality (7) becomes
(||5 VAT + 18,0AT1B) — (I16avAl3 + l16,vR 113)

h?ZZ(

I-1J-1

hQZZ(

i=1 j=0

s s]) (ot = o P ot = o] o

n
Tij+3

) [|Ugt-11 t]+1| + |vn+1 Z7;|2] hihy

I-1J-1

’ ‘

2
n+1 n n+1 n
Vit1j ~ i+1j+(59m+ ]) (05 _”ij)‘ ha
i=0 j=1
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I-1J-1

2
ol n+1 n
sl vkl — vl + (sgnr il )(vij —ulb)| ha
i=1 7=0
I-1J-1 .
+2TZ Z n+1 An+1 A Un+1)h1h2
i=1 j=1
I-1J-1
_ n+1 n+1 1 n+1 n+1751 n+1 n+1
=27y Y (A , B SR 4+ R oLl + fI Y hyhy. (8)
i=1 j=1

Then, from the equality (8) we can get

(1820A" 113 + 118,02 113) = (10:0R 113 + 16,0 13)
I-1J-1

+27’Z Z(A v?j"'l, A?j"'l A v?j+1)h1h2
i=1 j=1
I-1J-1
<2r DD (AT, BT S0l + O S 4 f1 ) hyho | 9)
i=1 j=1

Appling the Cauchy inequality to the right hand of the above inequality we obtain

I-1J-1
Z Z (A ,Un+1 BnJrléi Z+1 Cn+16; Z+1 fnJrl) h1h2
i=1 j=1
I .
§§ (A UZ-H, Al A U?]-H) hihs
i=1 j=1
| g )
b S BB R g5 P b
i=1 j=1
From (1)a we have, for any € > 0
I=1J-1],n+l _ ,n 2
D) i
i=1 j=1 T
I-1J-1
<2€Z Z ‘An—H A ’l}n+1‘ hihs
i=1 j=1
I-1J-1
£2: 303 (BSR4 O g L
i=1 j=1
Further we have
I-1J-1 I-1J-1 .
Z Z ‘An+1 A ’Un+1‘ h1h2 < AO Z Z ( n+1,A%+1 A ’U;Lj+1) h1h2,
i=1 j=1 i=1 j=1
where the symbols p(A), o(A) and Ag are defined by
A A 2(A
p(A)—sup| {l o(A) = if@, Ao = su P )
cerm €] ¢erm ¢ (2.y,0)€Qr uckm 0(A)

Substituting these estimates into the right part of the inequality (9), we have
(160X 13 + 116,037 H13) — (180R 113 + [16,0R[13)



46 L. SHEN, G. YUAN

2

I-1J-1 I-1J-1|,ntl _.n
+2r (1—cAo) 30 ST(A o, A A w kg +or SN |Z T
i=1 j=1 i=1 j=1
I-1J-1
<2r(e+1) > S BEFSLE 4 ORHLELoR Y 4 Y By, (10)
i=1 j=1
6. By taking eAg < %, we get
(120X 13 + 16,0R " 113) = (vR 113 + l16,0R 13)
. I-1J-1|, nt1 _ o |?
+T109 HA U,Tlljhé +57’ZZ ZJ Uij hihs
i=1 j=1
I-1J-1
<Or SN |BESEH 4+ OB Lo 4 f1H P By, (11)
i=1 j=1

where C' depends only on Ag and oy.
From the condition (I) and interpolation inequality (see Lemma 1), it follows that

I-1J—-1
S ISt Oy g
i=1 j=1
2 2 1 1 H — VA ’
< O QL+ 100k + 15,08 115 + 8087 [y + 8,08 [, + A || 2 — :
2
Then, by combining these inequalities above, we obtain
(160X 13 + 116,087 H13) — (180R 113 + [16,0R [13)
o —yn |
+700 ”HH ter|2——2
2 T 9
n+1 n

— v
=¢ (1 18 18,0 12 4 18,081 + 18,0812 + A A

2
2) ,
which gives, by letting C7A < 3,

(N0 U"+1||2 + 116,03 13) — (19:0R 113 + [16,0R [13)
n+1

UA —UA
T

ET
+709 HA U”HH + —

2
<70 (14 [|5,0% 3 + 116, v”“ll2 + [10:0R 115 + [18,0R113) -

The above recurrence inequality implies the estimates that

2 2
max (||6xvzu2 + ll6,01113)

n=0,1,,
+1

+ZHAU”+1H T+Z DALY R (12)
2
Then we also have the estimates
n 2
< K. 13
Lmax R} < (13)
Obviously there holds
+1 +1
i1y — ity B ny T Vi1~V
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n+l _ . n n+l _ . n
Uit 7 Vil (1— )~ . Vij—1 ~ Yij1
T 1] hg T )

( AZ)hQ :

where AU”H = 020" 4 620%™t Then it follows that, by using the estimates (12),

zVij yVij
(Z ||Av"“||27> <K. (14)

7. By means of the fixed point theorem of continuous mapping in a finite dimensional
space and the estimates (12)—(14), we obtain the following existence theorem for the general
finite differnce scheme (1)a—(3)a with intrinsic parallelism corresponding to the boundary value
problem (2) and (3) for the quasilinear parabolic system (1).

Theorem 1. Suppose that the conditions (I)—(IV) are fulfilled, and T is small such that
TA < 19, where 1y is a positive constant depending only on given data. Then the general finite
difference scheme (1)a—(3)a with intrinsic parallelism corresponding to the original problem
(1), (2) and (3) has at least one discrete solution va .

4. Convergence

8. In this section we are going to establish unconditional convergence of the solutions for
finite difference scheme (1)Ao—(3)a to the unique solution of (1)—(3) on the basis of the obtained
estimates.

Define the piecewise constant functions

n+l _ ,Un
T T ] 7]
vh1h2(x)y7 ) _Uz]’ Uth1h2(x)yat) - ’

-
U‘zrhlhz(xvya )_6 U”v ;hlhz(mayat)zéyv?j’
for (z,y,t) € QF (i=0,1,---,1-1;5=0,1,---,J - 1;n=0,1,---,N — 1). And define
A"y, (2,y,1) =A VT, (2,y,1) € QF,
(i=1,2-I-1j=1,2--,J-1n=0,1,---,N — 1)
Alvl‘glhz(mvy) ) AUnJrl) (a:,y,t)Eng, (j:1,2,---,J—1;n:0,1,---,N—1),
A'Uﬁl,m(:r,y,) AU"'H, (z,y,t) € Qy, (1i=1,2,---,]-1;n=0,1,---,N —1).

Denote

(NI

N—-1J-1I-1

P’;hz = Z ZZ 1 _)\n (I_M%)Q) hihot

n=0 j=1 i=1

We introduce the following assumptions.

(V) Py, —~0ashy —0,hy = 0and 7 — 0.

(VI) The problem (1)—(3) has a unique solution in L?(0,7; H2(2)) N H(0,T; L*(Q)) N
L>(0,T; HA ().

Lemma 2. Assume that (I)—(V) hold. Then there is a function u(z,y,t) € L?(0,T; H}(Q2))
N HY0,T; L*(Q)) satisfying Au(z,y,t) € L*(Qr), and as hy — 0,hy — 0,7 — 0 (for some
subsequence), there hold

(1) Vo @y, )0 g, (@545 ), 07 g, (2,9, 8) and vfy 4 (7,y,t) converge weakly in L*(Qr)
to u(z,y,t), uz(x,y,t), uy(x,y,t) and w(x,y,t) respectively;

(i) vf, . (€,y,t) = u(z,y,t) strongly in L*(Qr) and a.e. in Qr;

(iii) A'vp . (z,y,t) = Au(z,y,t) weakly in L*(Qr).

Remark. In fact, the function u(z,y,t) obtained in Lemma 2 is in L*(0,T; H}(Q2)) (see
[9)). And u(z,y,1) € L*(0,T; H*(%)).
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Proof of Lemma 2 From the estimates (12)—(13) it follows that (i) is true. To prove (ii)
we construct the tri-linear function

1
Uhihy (2,5 1) =TT (=) (y —y;)(t = "5 + (@i — 2)(y —yy) (8 — ")t

+ (@ — ) (Yo —y) (¢ — "R + (@i — @) (Y1 — y) (8 — )0
+(x—z)(y —y) (T — 11 + (@i —2)(y — y) (" =ty Vijy1

+ —z) (Y — )T =)ol + (@i — )y — )T =t}
for (z,y,t) € QF, (i = 0,1,---,1 —1;5 = 0,1,---,J —1;n = 0,1,---,N —1). The direct
calculation shows that v}, (z,y,t) is uniformly bounded in L*(0,T; Hy(Q))NH"(0,T; L*(Q)),
and then v}7, (z,y,t) is precompact in L?(Qr). Note that

10k ke = Vhinallz2(@r) < C (TG, noll2(@r) + Ballvgn,pollz2(@r) + B2llvgn, pallzz@r)
S CI(T + h1 + hg)

It follows that (ii) holds.

It remains to prove (iii). Let ®(z,y,t) € C*°(Qr) and ®(z,y,t) = 0 near 89 x [0, T]. Denote
P} = ®(z4,y;,t"). Define the piecewise constant functions ®7 , (z,y,t) = A'®p , (z,y,t)
= 52<I>" + 0287, for (x,y,t) € Q7. For small hy and hy there holds

ij»

137

A"y (2,9, )P 1, (2, y, t)dedydt

Qr
N-1J-11-1 N N-1J-11-1
S TN A= 3 Y3 A s
n=0 j=1 i=1 n=0 j=1 i=1
—-1J-11- 1
n++11] —viy;) + (1 - NZ)(U;L_JT] - Uﬂlj)q)nh h
- 2 ij 12T
n=0 j=1 i=1 1
N-1J-11-1 3
(1= M) it —vpa) + (= Ay (it —vfy)
-2 2> 2 Cihihat
n=0 j=1 i=1 2
=L+ 1+ Is.

It is easy to see that
I — // u(z,y, ) A®(z,y,t)dzdydt, as hy — 0,he — 0,7 — 0.
T
There holds

N—-1 I 2 3
A A
|I2|<2A m<ax ||<I>”+1||OO<E - 27) Py p,s
n=0

which gives
I, -0, as hy - 0,hy —» 0,7 — 0.

Similarly we have
I3 — 0, as hy > 0,ho —» 0,7 = 0.

Lemma 2 is proved.
9. Define the piecewise constant functions, for (z,y,t) € Q}; (i =
0)17"')‘]_1;”:071)"')]\[_1))

hono (,y,1) = 807

0,1

)

. _F0. n+1 A _ 50, n+1
) ’U;lhz(ﬁ?,y,t) = vy ) vglhz(mayat) =46 Uij

)
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o _ %0, nt+l =71 <1 =T <1 n+1
Uhlhz(may)t) =9 vij ’ vxhlhz(x)ya )_ 690 z] ’ vyhlhz(x)yv ) 6y ij

A;-uhz (CE,y,t) = A;?_l’ Bglhz (.’I,',y,t) = B?j+1’

C;lhz(fl},y,t) = C;Lj+17 fl:lhz(waya ) fn+1'

Assume

(I)’ The m x m matrix function A = A(z,y,t, u) is equi-continuous with respect to (z,y,t) €
Qr for u € R™, i.e., Ve > 0, there is § = d(¢) > 0 such that for any (z',y’,¢') € Qr and
(z,y,t) € Qr, when |z’ — x|+ |y’ — y| +|t' —t] < §, there holds |[A(z',y’, ¢ ,u) — A(z,y,t,u)| <
for all u € R™. Moreover A(z,y,t,u) is uniformly Lipschitz with respect to u € R™, i.e., there
is a constant A; such that |A(z,y,t,u1) — A(z,y,t,us)| < Aj|uy — uso| for all uj,us € R™,
and all (z,y,t) € Qr. Also B(x,y,t,u), C(x,y,t,u) and f(x,y,t, u) are equi-continuous with
respect to (z,y,t) € Qr for u € R™, and uniformly Lipschitz with respect to u € R™.

Lemma 3. Assume that the same conditions as those in Lemma 2 and (I)' hold. When
hi — 0,he — 0,7 — 0, there are

(i) U5, h, (@Y, 1), OF 4, (2,9,1), OF 4 (7,y,t) and O 4 (z,y,t) are all convergent to u(z,y,1)
strongly in L?>(Qr) and a.e. in Qr;

(11) ﬁ;hth(x Y, ) - ’U,I(l',y,t) and ’D;hlhz (1‘,y,t) - Uy(l',y,t) Weakly in L2(QT)’

(iii) Af p, (z,y,t) = Alz,y,t,u(z,y,t)), By, (2,9,1) = B(z,y,t,u(z,y,t)), CF 4, (2, y,t)
— C(x,y,t,u(z,y,1), ff 4, (@,y,t) = f(z,y,t,u(z,y,t)) strongly in L*(Qr) and a.e. in Qr.

Proof. Note that, by the definitions v}, ;. and v ;. and the estimates (12)

[ = gy < 0 08+18) X (I I+ 1)
N-1 ’Un+1—'un 2
+0r2 Y | A2 <O (B +m+ 7).
n=0 2

It follows (i) is true. From

_ ’l}n+1—1}n 2
i < g Wil 55 5225 ),

and

n+1 ’Un 2
insalan <€ (s It o+ X2 525 ),

we can get that (i) holds. Now we prove (iii). By the assumption (I)' there are

||ATA(may;t) - A(x)yvtyu(x;yvt))n%?(QT)

Z Z Z / / Az, gy, 71, 80 — A(e,y, b ule,y,0)|” dedydt

|A(mlay’7tlav) - A(xaylatvv)|2

max
|e’ —x|<hi,|y' —y|<hs,|t' —t|<T,veR™

+ CH’DE (Cl?, Y, t) - U(.’IJ, Y, t)”%ﬁ(QT):

which yields the first assertion of (iii). Similarly we can get the other assertions of (iii).



50 L. SHEN, G. YUAN

10. From
T T I..T T —T T =T T T
// [Uth1h2 - Ahlth vh1h2 - Bh1h2vwh1h2 - Ch1h2 Uyhth - fh1h2] hihso dl'dydt
T

AnJrl A,UnJrl Bn+161 n+1

N—-1J-1I-1 n+1
aVij

n=0 j=1 i=1

—CpH oot — fIH] @ hahyT = 0,
and letting hy — 0,h2 — 0,7 — 0 (for some subsequences), we have, for any smooth test

function ®(z,y,t),

/ / (e (., 1) — A,y 6, ul, g, 1) Az, g, £) — Ble, g, tyule, y, ))ug (2,5, £)

_C(mayatau(mayat))uy(mayat) _f(wayatau(wayat))] (I)(Cﬂ,y,t)dil?dydt = 0. (15)

Let ®(z,y,t) be any smooth function vanishing near ¢ = T'. Define the piecewise constant
n_gpn-1

function @7, , = w for (z,y,t) € @, (i = 0,1,---, 1 =1;5 = 0,1,---,J —L;n =

1,2,---,N —1). Since
/ Vi hy @hyn, dxdydt = —/ Vhy hy Phy by dxdydt — / v21h2‘1>21h2da:dy,
T Qrn{t>7} Q

0 T 0 — HT
where vy, ;= vp . (2,9,0),®; ,, =@}, (2,y,0), we can get

/ o, y) B,y 0)dzdy + [ {udele,y,t) — [Ala, y, b, u) Aulz, y, £)
Q QT

+B(z,y,t,u)us (z,y,t) + C(x,y,t,u)uy (z,y,t) +f(x,y,t,u)] ®(x,y,t)} dedydt =0.  (16)

11. Therefore we have proved that the m—dimensional vector function u(z,y,t) €
L2(0,T; H*(Q)) N L*>(0,T; H}(2)) N H'(0,T; L?(2)) is just the generalized solution of the
boundary problem with the homogeneous boundary condition (2) and the initial condition (3)
for the quasilinear parabolic system (1). By means of the uniqueness of the generalized solution
of the homogeneous boundary problem (1)—(3), we then can obtain the convergence theorem
for the finite difference scheme (1)ao—(3)a with intrinsic parallelism as follows:

Theorem 2. Under the conditions (I)—(VI) and (1), as the meshsteps hi, hs and T
tend to zero, the m—dimensional discrete vector solution va = vy . = {vf;|li = 0,1,---,[;j =
0,1,---,J;n=0,1,---, N} of the finite difference scheme (1)ao—(3)a with intrinsic parallelism
converges (in the sense of Lemma 2) to the unique generalized solution u(z,y,t) of the boundary
problem (2) and (3) for the quasilinear parabolic system (1) of partial differential equations.

5. Examples of Difference Schemes with Intrinsic Parallelism

12. Here we present some examples of difference schemes with intrinsic parallelism by taking
specific parameters in the general schemes (1)a—(3)a. Some of them are proposed in [6]-[7],
which are applicable to the numerical solution of parabolic system of equations appearing in
massive scientific and engineering computing on parallel computers.

We take for the Laplace Au = ug, +uy,y in nine different kinds of difference approximations,
such as the center scheme C:

n+1 —2u n+1 +un+1 n+1 _2un+1 +un+1

u u

i+1j i—1j ij+1 ij ij—1
2 2 )
h1 h3
the east scheme &:
n n+1 n+1 n+1 n+1 n+1
Wiy — 2wy u gy — 2w gy

h% h3 ’
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the west scheme W:

o1

n+1 n+1 n n+1 n+1 n+1
Uiy = 2wy gy = 2w A ugly
3 3 ;
hy h3
the north scheme N:
n+1 n+1 n+1 n n+1 n+1
Uiy = 2 gy Uy — 2w ugsy
2 2 ;
hi h3
the south scheme S:
n+1 n+1 n+1 n+1 n+1 n
Uiy — 2wy Uy . Uijlhy — 2w U
2 2 ;
h¥ h3
the east-north scheme EN:
n n+1 n+1 n n+1 n+1
Uity — 2uy; o uly . Ui — 2w Ul
2 2 ;
hi h3
the west-north scheme WA
n+1 n+1 n n n+1 n+1
Wity — 2uy o ugy . Ui — 2w Ul
2 2 ;
hi h3
the east—south scheme £S:
n n+1 n+1 n+1 n+1 n
Uiy — 2u5 0 +u N Uiy = 2uy gy
2 2 i
hi h3
the west—south scheme WS:
n+1 n+1 n n+1 n+1 n
Uiy — 2u5 0 gy n Uiy — 2uy gy
3 3
hy h3

In general, for the interior points (z;,y;) of each subdomain we take 0 < A} < 1 and
0 < piy <1, and usually Aj; =1 and pg; = 1, i.e., the center scheme C; for the inner boundary
points of each subdomain we use the other eight schmems. Then the scheme deviced is simple
and easy to be implemented on the massive parallel computer. This scheme on a block of
subdomains can be illustrated as

WN N N
w C C
w C C
w C C
w C C

A% S S

and in the vicinity of the corner of subdomain it is

aQZnhan

SE
NE

N N
C C
C C
C C
C C
S S
w C C
w C C
ws § S
WN N N
W C C
W C C

EN
£

By choosing the parameters in (1)a suitably we can obtain other schemes with intrinsic
parallelism, e.g., in the vicinity of the inner boundary of subdomains

aaaaaq

AN

M th Ch On

AN

AN
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or

or

or
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aaaaq
AN
S=S==
AN
AN

anZzZan
anZzZan

AN Zan
AN Zan

AL an
QAN
QAN AN
QAN AN

and in the vicinity of the corner of subdomain

[1]
[2]

[3]

[10]

C C £ C w C C
C C £ C w C C
S S SE C WS S S
C C C C C C C
N N NE C WN N N
C C £ C w C C
C C £ C w C C
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