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Abstract

This work concerns the ultraconvergence of quadratic finite element approximations of
elliptic boundary value problems. A new, discrete least-squares patch recovery technique
is proposed to post-process the solution derivatives. Such recovered derivatives are shown
to possess ultraconvergence. The keys in the proof are the asymptotic expansion of the
bilinear form for the interpolation error and a “localized” symmetry argument. Numerical
results are presented to confirm the analysis.
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1. Introduction

The superconvergence of the derivatives for quadratic triangular finite element has been
studied in the pointwise sense since 1981. And based on the theory of the discrete Green’s
function and two basic estimates[15]∼[20], a usual superconvergence order, O(h3), has been
obtained. However, the superconvergence patch recovery (SPR) introduced by Zienkiewics and
Zhu[21]∼[23] indicates that, by using the least-squares and the interpolation process, the re-
covered nodal values of the derivatives are superconvergent, in particular those for quadratic
elements are ultraconvergent, i.e., with order of O(h4). The above results for the two-point
boundary value problem and rectangular elements have been discussed a great deal in [9] ∼ [14],
but the ultraconvergence for quadratic triangular finite elements is so challenging that nobody
has proved it up to now.

Our paper obtained the ultra-closeness results by the asymptotic expansion proposed in [2],
and proceeded to verify the important problem.

For simplicity, we consider the model problem: Find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v), ∀ v ∈ H1
0 (Ω), (1.1)

where a(u, v) = (∇u,∇v), (f, v) =
∫

Ω

f · vdxdy, Ω is a smooth or convex polygonal domain. It

is easy to see from the PDE theory that there exists 2 < q0 < ∞ such that the mapping

∆ : W 2, q(Ω) ∩ W 1,p
0 (Ω) → Lq(Ω) (1.2)

is a homeomorphic one for any q ∈ (1, q0).
Let T h denote a uniform triangulation of Ω (only a local uniform triangulation is needed

while considering the local superconvergence in this paper), Sh
0 (Ω) a finite element space over

T h consisting of piecewise polynomials of degree 2. For each triangular element e ∈ T h, it
suffices to let e = ∆z1z2z3, and define by Pk(e) the set of the polynomials of degree k on e,
and define P 0

k (e) = {p ∈ Pk(e) : p|∂e = 0}. Furthermore, to distinguish we add ”′” to the
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corresponding term depending on e′. For a point z, Ud(z) denotes the neighborhood of the
point z, whose center is z and whose radius is d.
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Fig. 1
Point z is said to be locally symmetric for the subdivision T h if there exists a neighborhood,

Ud(z), of z such that the mesh covering this neighborhood is symmetric with respect to the
point z. Generally, denote by Ez the union of the elements surrounding the point z.

It is clear that the vertexes of each element and the middle point of each side are the locally
symmetric points.

Let ∂z denote the direction derivative operator in the oriented direction l, and

∂̄zv(z) =
1
2
[ lim
t→+0

∂zv(z + tl) + lim
t→+0

∂zv(z − tl)],

is said to be the average derivative in the direction l for v. In the meantime, we may simi-

larly define the gradient average operator ∇̄. And
∫ ′

Ω

fdxdy =
∑

e∈T h

∫
e

fdxdy, then ‖f‖′m =

(
∑

e∈T h

‖f‖2
m,e)

1
2 .

Throughout this paper, we adopt the standard notation Wm,p(Ω) for Sobolev space on
Ω ⊂ R2 with norm ‖ · ‖W m,p(Ω). Particularly, we denote Wm,2 = Hm. In addition, C
denotes a nonnegative constant independent of h, u unless additional explanation, which can
have different value in different place.

It is well known that all superconvergent estimates are in relation to pollution of boundary
condition, but these pollution can be controlled by the negative norm

‖u − uh‖−s,Ω = sup
v∈Hs

0(Ω)

(u − uh, v)
‖v‖s

, s > 0,

that is
Proposition 1. Suppose that w ∈ Sh(Ω) satisfy

a(w, v) = 0, ∀v ∈ Sh
0 (Ud(z)),

then
|∇̄w(z)| ≤ C‖w‖−s,Ud(z).

Strang[6], Nitsche and Schatz[3] have achieved the following negative norm estimates:

‖u − uh‖−s,Ω ≤ Ch2k‖u‖k+1,Ω,

where k is the degree of finite element, in particular, k = 2 in this paper. This shows the
pollution does rarely affect interior and local superconvergence, and only local ultraconvergence
is considered in this paper, so it is sufficient to consider the case that Ω be rectangular domain.

We have proved the following in the monograph [2] (cf. Theorem 3.5.1):
Proposition 2. Let T h be a uniform triangulation of Ω, Sh

0 (Ω) a quadratic finite element
space over T h, then

a(u − uI , v) = h4

∫ ′

Ω

(C · D4u · D2v + C · D5u · Dv)dxdy

+O(h5)‖u‖5,∞‖v‖′2,1, ∀v ∈ Sh
0 (Ω),

(1.3)
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where u ∈ W 5,∞(Ω)∩H1
0 (Ω), uI ∈ Sh

0 (Ω) (the interpolation of u ) and C ·Dm denotes a linear
combination of the m-th order differential operators with constant coefficients.

Moreover, in this paper, we shall use the Green’s function Gz ∈ W 1,p
0 (Ω),1 ≤ p < 2, its

derivative ∂zGz and their finite solution Gh
z , ∂zG

h
z ∈ Sh

0 (Ω) (see [20] for details). they satisfy

a(Gz, v) = v(z), ∀v ∈ C∞
0 (Ω), a(∂zGz , v) = ∂zv(z), ∀v ∈ C∞

0 (Ω),

and
v(z) = a(Gh

z , v), ∀v ∈ Sh
0 (Ω), ∂zv(z) = a(∂zG

h
z , v), ∀v ∈ Sh

0 (Ω),

In addition, we may define the quasi-Green’s function G�
z ∈ H2(Ω)

⋂
H1

0 (Ω) and its derivative
∂zG

�
z , and their finite solution are still Gh

z , ∂zG
h
z ∈ Sh

0 (Ω) (see [20] Chap. 3 §5 (5.8) for details).
they satisfy

a(G�
z, v) = (δh

z , v), ∀v ∈ H1
0 (Ω), a(∂zG

�
z , v) = (∂zδ

h
z , v), ∀v ∈ H1

0 (Ω),

where δh
z , ∂zδ

h
z ∈ Sh

0 (Ω) are such that

(δh
z v) = v(z), (∂zδ

h
z v) = ∂zv(z), ∀v ∈ Sh

0 (Ω).

Then we may derive the following (cf. [20] Chap. 3):
Proposition 3. The following estimates for the Green’s function and discrete Green’s function
hold:

‖Gh
z‖2

1 + ‖Gh
z‖0,∞ + ‖Gh

z‖2,1 + ‖∂zG
h
z‖1,1 ≤ C log

1
h

,

‖∂zG
h
z‖2,σ1+ε ≤ Ch−1+ε,

(1.4)

where the weighted function σ = |x − z|2, 0 < ε < 1 − 2
q0

= ε0 , and the weighted norm is
defined by

‖v‖σt = [
∫

Ω

σt|v|2dxdy]
1
2 , ‖v‖m, σt = {

∑
|α|≤m

[‖Dαv‖σt ]2} 1
2 , v ∈ Hm(Ω).

Proof. We only prove the second estimate in (1.4) because the proof of the first one can be
found in [20] (cf. Chap. 3 ).

Let g = ∂zG
�
z, then gh = ∂zG

h
z . Notice the following facts:

1). ‖g‖2, φ−1−ε ≤ Ch−1+ε, where φ = [|x − z|2 + (γh)2]−1 (cf. [20] Chap. 3. §5. (5.22));
2). ‖g − gh‖1, φ−1−ε ≤ Chε (cf. [20] Chap. 3. Theorem 3.10. ), and ‖g − gI‖m,φ−1−ε ≤
Ch2−m‖∇2g‖φ−1−ε ≤ Ch−m+1+ε for m = 1, 2 hold (cf. [20] Chap. 3. Lemma 3.10. );
3). It is easy, from (3.15) in Chap. 3 of [20], to show that the following inverse estimate for the
weighted norm holds:

‖g − gh‖2,φ−1−ε ≤ Ch−1‖gI − gh‖1,φ−1−ε ≤ Ch−1+ε;

Because σ = |x − z|2 ≤ {[|x − z|2 + (γh)2]−1}−1 = φ−1,

‖gh‖′2,σ1+ε ≤ ‖gh‖′2,φ−1−ε

≤ ‖g‖2,φ−1−ε + ‖g − gI‖′2,φ−1−ε + ‖gh − gI‖′2,φ−1−ε

≤ Ch−1+ε.

The main result of this paper is as follows:
Theorem 1. Assume that z is a locally symmetric point for the subdivision T h and the neigh-
borhood U2d(z) of the point z is covered by a uniform family of subdivisions. Let uh and uI

be the finite element approximation and the interpolation of u respectively, then we have the
ultra-closeness:

|∇̄(uh − uI)(z)| ≤ Ch3+ε‖u‖5,∞,U2d(z) + C[u − uh]−s, Ω, (0 < ε < 1 − 2
q 0

) (1.5)

Note ε0 = 1 when Ω is a smooth or rectangular domain.
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where [ · ]−s,D is defined as in (3.1) and s is an arbitrarily fixed nonnegative integer.
In Section 4, we shall discuss the new derivative ultraconvergence recovery operator.

2. Some Lemmas

We say that z is a locally odd-symmetric point of the function u if there exists d > 0 such
that

u(x) = −u(z − (x − z)), ∀x ∈ Ud(z).

Obviously, u(z) = 0.
Lemma 1. If z ∈ Ω is a locally odd-symmetric point of the function u ∈ H5(Ω), then it is one
of D4u too, and

‖D4u‖σ−1−ε ≤ C‖u‖5,∞, 0 < ε < 1 − 2
q0

. (2.1)

Proof. The first result is easily proved, we only prove the second one. It indicates D4u(z) = 0
that z is a locally odd-symmetric point of the function D4u. Moreover, u ∈ W 5,∞ implies
|D4u(x)| ≤ Cσ

1
2 |D5u|∞, ∀x ∈ Ud(z), hence integral of the left side in (2.1) exists and is finite.

Next notice when |x − z| = O(h) and γ is properly large,

‖D4u‖σ−1−ε

= [
∫
Ω

|x − z|−2−2ε|D4u|2dx]
1
2

≤ C‖u‖5,∞(0 ≤ ε < 1).

Then the second result (2.1) holds.
Lemma 2. If z ∈ Ω is a locally odd-symmetric point of the function u, a locally symmetric
point for the subdivision T h, and the neighborhood Ud(z) of z is covered by a uniform family of
subdivisions, then there exist the ultra-closeness estimates:

|∇̄(uh − uI)(z)| ≤ Ch3+ε‖u‖5,∞,U2d
+ ‖u − uh‖−s,Ud

. (2.2)

Proof. Without lost of generality, we replace ∇̄ by ∂̄z. Construct the smooth function
ω ∈ C∞

0 (U2d(z)) such that ω = 1 for all x ∈ Ud(z), and let u1 = uω, u2 = u − u1. Noting that
a(uh

2 , v) = a(u2, v) = 0 for all v ∈ Sh
0 (Ud) and recalling proposition 1, we find

|∇̄(uh
2 − uI

2)(z)| = |∇̄uh
2 (z)|

≤ C‖uh
2‖−s,Ud

= C‖uh
2 − u2‖−s,Ud

≤ C‖u − uh‖−s,Ud
+ C‖u1 − uh

1‖−s,Ud

≤ C‖u − uh‖−s,Ud
.

(2.3)

In proposition 2 we replace u by u1 and set vz = ∂̄zG
h
z , hence

|∂̄z(uh
1 − uI

1)(z)| = |a(u1 − uI
1, vz)|

≤ Ch4|D4u1|σ−1−ε‖D2vz‖σ1+ε + Ch4|D5u1|0,∞‖Dvz‖′2,1.

Because u1 is oddly symmetric, we derive from proposition 3 and lemma 1

|∂̄z(uh
1 − uI

1)(z)| ≤ Ch3+ε‖u1‖5,∞,U2d

≤ Ch3+ε‖u‖5,∞,U2d
,

(2.4)

Notice that u = u1 + u2, the lemma follows from (2.3) and (2.4).
Lemma 3. For d > 0 and a fixed point z, there exists a C5 locally symmetric transformation
T : Ω → Ω:

Tdx =
{

2z − x, |x − z| ≤ d,
x, |x − z| ≥ 2d.

(2.5)
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Proof. Construct the one-variable function

φ(x) =

⎧⎨
⎩

−x, 0 ≤ x ≤ d,
g(x), d < x < 2d,
x, x ≥ 2d,

where g ∈ P11(d, 2d) satisfies g(d) = −d, g(2d) = 2d, g′(d) = −1, g′(2d) = 1 and g(i)(d) =
g(i)(2d) = 0 for 1 < i ≤ 5.

So
Tdx = z + φ(|x − z|) x − z

|x − z| , ∀x ∈ Ω

is the desired one.

3. The Proof of the Main Theorem

Denote û(x) = −u(Tdx), and define

[u − uh]−s,D = ‖u − uh‖−s,D + ‖û − ûh‖−s,D. (3.1)

Obviously, if Ω is sufficiently smooth, s ≥ 1 and D ⊂ Ω, then

[u − uh]−s,D ≤ C(d)h4‖u‖4,Ω (3.2)

where C(d) is a constant independent of h.
Let u ∈ W 5,∞(Ω), z be a locally symmetric point for the subdivision T h. Construct a

locally odd symmetric function

ũ(x) =
1
2
[u(x) − u(Tdx)] =

1
2
[u(x) + û(x)].

It is clear that ∂̄zũ(z) = ∂̄zu(z), ∂̄zũ
I(z) = ∂̄zu

I(z) and ∂̄zũh(z) = ∂̄zu
h(z), hence

∂̄zu
h(z) − ∂̄zu

I(z)
= ∂̄zũh(z) − ∂̄zũ

I(z)
= (∂̄zũh(z) − ∂̄zũ

h(z)) + (∂̄zũ
h(z) − ∂̄zũ

I(z))
≡ A + B.

(3.3)

From Lemma 2 we derive
|B| ≤ Ch3+ε‖ũ‖5,∞,U2d

+ ‖ũ − ũh‖−s,Ud

≤ Ch3+ε‖u‖5,∞,U2d
+ [u − uh]−s,Ud

.
(3.4)

In the last, we note that a(ũh − ũh, v) = 0 holds for all v ∈ Sh
0 (Ud) and recall proposition 1,

thus
|A| ≤ ‖ũh − ũh‖−s,Ud

≤ [u − uh]−s,Ud
(3.5)

hold.
The theorem follows from (3.2) ∼ (3.4).

4. The Derivative Recovery Operator

We assume that z is a locally symmetric point for the subdivision T h, it is sufficient to let
z be a vertex of an element. Denote by Ez an element patch which consists of 6 congruent
triangles sharing the point z (cf. Fig. 2 ).
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(Fig. 2)

We choose arbitrarily a subdividing line through the point z, for example, l = z1z2 = z1z +
zz2, which consists of sides z1z and zz2 of two elements. Taking 4 Gauss points Gi(i = 1, 2, 3, 4)
with 2 order on the line l (cf. Fig. 2 ). It is easy to show that, for each w ∈ Sh(l), there exists
a unique v0 ∈ P2(l) such that

J(v0) = min
v∈P2(l)

J(v), J(v) =
4∑

i=1

[v(Gi) − ∂lw(Gi)]2.

Construct the derivative recovery operator in the direction l at the point z:

Rl : w → v0,

then, it is easy to verify directly the following properties:
a). |Rlw(z)| ≤ C|∂̄lw|0,∞,lh , for all w ∈ Sh(l), where lh = {z′, z′′, z};
b). There exists a constant C > 0 such that |∂̄ul(z) − Rlu

I(z)| ≤ Ch4|u|5,∞,l .

Proof. Define the inner product < w, v >=
4∑

i=1

w(Gi)v(Gi) and the corresponding norm

‖|v‖| = {
4∑

i=1

[v(Gi)]2}
1
2 in the linear space S = P2(l) ⊕ S′

h(l) = span{p + v : p ∈ P2(l), v ∈

S′
h(l)} ⊂ L2(l) (notice that S is a finite dimensional space. ), so we derive from the projection

theorem in the Hilbert space.

|v0(z)| ≤ C‖|v0‖| ≤ C‖|∂lw‖|
≤ C max{|∂l(Gj)| : j = 1, 2, 3, 4}
≤ C max{|∂w(z + 0)|, |∂w(z − 0)|, |∂w(z′)|, |∂w(z′′)|}.

(4.1)

To prove the result, let

w(x) =
1
2
[w(x) − w(z − (x − z))] +

1
2
[w(x) + w(z − (x − z))] ≡ w1 + w2.

Obviously, Rlw2(z) = 0. in fact, w2 = 1
2 [w(x) + w(z − (x − z))] is even function of z, then

Rlw2(z) is odd one, hence Rlw2(z) = 0. For the oddly symmetrical function w1, we have

∂lw1(z ± 0) = ∂̄lw(z),
|∂lw1(z′)| + |∂lw1(z′′)| ≤ C max{|∂lw(z′)|, |∂lw(z′′)|}

From (4.1),

|Rlw(z)| = |Rlw1(z)|
≤ max{|∂lw1((z + 0)|, |∂w1(z − 0)|, |∂lw1(z′)|, |∂lw1(z′′)|}
≤ C‖∂̄w‖0,∞,lh

which proves a);

Here S′
h(l) = {∂̄lv : v ∈ Sh(l)}.
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Next, direct calculation shows that:

∂̄u(z) = Rlu
I(z), ∀u ∈ P4(l). (4.2)

Thus we get b) by using the Bramble − Hilbert lemma.
The above derivative recovery operators Rl are named the SPR operators, which are also

called the Z-Z operators for being introduced first by Zienkiewicz and Zhu[21]∼[23], and most
of which are defined over an element patch. Although their forms are varied, they satisfy
conditions a), b). We may summarize the above conclusions in the following theorem:
Theorem 2. Under the condition of theorem 1, if the derivative recovery operator Rl satisfies
conditions a), b), then the ultraconvergent estimate is obtained:

|(∂lu − Rlu
h)(z)| ≤ Ch3+ε‖u‖5,∞,U2d

+ [u − uh]−s,Ω.

where 0 < ε < 1 − 2
q 0

= ε0.
Proof. The triangle inequality, condition b), condition a) and theorem 1 imply

|(∂lu − Rlu
h)(z)| ≤ |(∂lu − Rlu

I)(z)| + |Rl(uI − uh)(z)|
≤ Ch4‖u‖5,∞,l + |∂̄l(uI − uh)|0,∞,ln

≤ Ch3+ε‖u‖5,∞,U2d
+ [u − uh]−s,U2d

,

where s is an arbitrarily fixed nonnegative integer and 0 < ε < 1 − 2
q 0

= ε0.

Remark. Using the symmetric technique, Lin, Zhou and Yan[1] get improved superconvergence
(1-3 order higher ) on the inner locally symmetric rectangular or triangular meshes.

5. Numerical Test

We again consider the model problem (1.1), where f is constructed to correspond to the
exact solution u = x(1− x)y(1− y)(1 + 2x + 7y). Let h be the step, and subdivide the domain
Ω uniformly. At the point z0 = (0.25, 0.25), we obtained the following:

Table 1. SPR means the error of recovery derivatives obtained by the Z-Z method,
IMP the error of recovery derivatives obtained by the method in this paper.

h = 1
4

h = 1
8

h = 1
12

h = 1
16

h = 1
20

rate

SPR 4.1504(−3) 2.5940(−4) 4.2513(−5) 1.6212(−5) 5.3107(−5) 4.0208

IMP 2.1558(−3) 1.0598(−4) 2.1576(−5) 6.8996(−6) 2.8399(−6) 4.0819
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