THE INVERSE PROBLEM OF CENTROSYMMETRIC MATRICES WITH A SUBMATRIX CONSTRAINT *1)

Zhen-yun Peng
(Department of Mathematics, Hunan University of Science and Technology, Xiangtan 411201, China)
Xi-yan Hu Lei Zhang
(College of Mathematics and Econometrics, Hunan University, Changsha 410082, China)

Abstract

By using Moore-Penrose generalized inverse and the general singular value decomposition of matrices, this paper establishes the necessary and sufficient conditions for the existence of and the expressions for the centrosymmetric solutions with a submatrix constraint of matrix inverse problem $A X=B$. In addition, in the solution set of corresponding problem, the expression of the optimal approximation solution to a given matrix is derived.

Mathematics subject classification: 65F15, 65H15.
Key words: Matrix norm, Centrosymmetric matrix, Inverse problem, Optimal approximation.

1. Introduction

Inverse eigenvalue problem has widely used in control theory [1, 2], vibration theory $[3,4]$, structural design [5], molecular spectroscopy [6]. In recent years, many authors have been devoted to the study of this kind of problem and a serial of good results have been made $[7,8$, 9]. Centrosymmetric matrices have practical application in information theory, linear system theory and numerical analysis theory. However, inverse problems of centrosymmetric matrices, specifically centrosymmetric matrices with a submartix constraint, have not be concerned with. In this paper, we will discuss this problem.

Denote the set of all n-by- m real matrices by $R^{n \times m}$ and the set of all n-by- n orthogonal matrices in $R^{n \times n}$ by $O R^{n \times n}$. Denote the column space, the null space, the Moore-Penrose generalized inverse and the Frobenius norm of a matrix A by $R(A), N(A), A^{+}$and $\|A\|$, respectively. I_{n} denotes the $n \times n$ unit matrix and S_{n} denotes the $n \times n$ reverse unit matrix. We define the inner product in space $R^{n \times m}$ by

$$
\langle A, B\rangle=\operatorname{trace}\left(B^{H} A\right), \forall A, B \in R^{n \times m}
$$

Then $R^{n \times m}$ is a Hilbert inner product space. The norm of a matrix generated by this inner product space is the Frobenius norm. For $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in R^{n \times m}$, we using the notation $A * B=\left(a_{i j} b_{i j}\right) \in R^{n \times n}$ denotes the Hadmard product of matrices A and B.

Definition $1{ }^{[10,15]}$. $A=\left(a_{i j}\right) \in R^{n \times n}$ is termed a Centrosymmetric matrix if

$$
a_{i j}=a_{n+1-j, n+1-i} \quad i, j=1,2, \ldots, n
$$

[^0]The set of $n \times n$ centrosymmetric matrices denoted by $C S R^{n \times n}$.
In this paper, we consider the following two problems:
Problem 1. Given $X, B \in R^{n \times m}, A_{0} \in R^{r \times r}$, find $A \in C S R^{n \times n}$ such that

$$
A X=B, \quad A_{0}=A([1, r])
$$

where $A([1, r])$ is a leading $r \times r$ principal submatrix of matrix A.
Problem 2. Given $A^{*} \in R^{n \times n}$, find $\hat{A} \in S_{E}$ such that

$$
\left\|A^{*}-\hat{A}\right\|=\min _{A \in S_{E}}\left\|A^{*}-A\right\|
$$

where S_{E} is the solution set of Problem 1.
In Section 2, we first discuss the structure of the set $C S R^{n \times n}$, and then present the solvability conditions and provide the general solution formula for Problem 1. In Section 3, we first show the existence and uniqueness of the solution for Problem 2, and then derive an expression of the solution when the solution set S_{E} is nonempty. Finally, in section 4 , we first give an algorithm to compute the solution to Problem 2, and then give a numerical example to illustrate the results obtained in this paper are correction.

2. Solving Problem 1

We first characterize the set of all centrosymmetric matrices. For all positive integers k, let

$$
D_{2 k}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I_{k} & I_{k} \tag{1}\\
S_{k} & -S_{k}
\end{array}\right), D_{2 k+1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
I_{k} & 0 & I_{k} \\
0 & \sqrt{2} & 0 \\
S_{k} & 0 & -S_{k}
\end{array}\right)
$$

Clearly, D_{n} is orthogonal for all n.
Lemma $1^{[10]}$. $A \in C S R^{n \times n}$ if and only if $A=S_{n} A S_{n}$.
Lemma 2. $A \in C S R^{n \times n}$ if and only if A can be expressed as

$$
A=D_{n}\left(\begin{array}{cc}
A_{1} & 0 \tag{2}\\
0 & A_{2}
\end{array}\right) D_{n}^{T}
$$

where $A_{1} \in R^{(n-k) \times(n-k)}, A_{2} \in R^{k \times k}$.
Proof. We only prove the case for $n=2 k$, the case for $n=2 k+1$ can be discussed similarly. Partition the matrix A into the following form

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), A_{11}, A_{22} \in R^{k \times k}
$$

If $A \in C S R^{2 k \times 2 k}$, then we have from Lemma 1 that

$$
\left(\begin{array}{cc}
0 & S_{k} \\
S_{k} & 0
\end{array}\right)\left(\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{cc}
0 & S_{k} \\
S_{k} & 0
\end{array}\right)=\left(\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

which is equivalent to

$$
A_{22}=S_{k} A_{11} S_{k}, \quad A_{12}=S_{k} A_{21} S_{k}
$$

Hence

$$
\begin{aligned}
D_{n}^{T} A D_{n} & =\frac{1}{2}\left(\begin{array}{cc}
I_{k} & S_{k} \\
I_{k} & -S_{k}
\end{array}\right)\left(\begin{array}{cc}
A_{11} & S_{k} A_{21} S_{k} \\
A_{21} & S_{k} A_{11} S_{k}
\end{array}\right)\left(\begin{array}{cc}
I_{k} & I_{k} \\
S_{k} & -S_{k}
\end{array}\right) \\
& =\left(\begin{array}{cc}
A_{11}+S_{k} A_{21} & 0 \\
0 & A_{11}-S_{k} A_{21}
\end{array}\right) .
\end{aligned}
$$

Let

$$
A_{1}=A_{11}+S_{k} A_{21}, A_{2}=A_{11}-S_{k} A_{21}
$$

and note that D_{n} is a orthogonal matrix, we have (2).
Conversely, for every $A_{1}, A_{2} \in R^{k \times k}$, we have

$$
\left(\begin{array}{cc}
0 & S_{k} \\
S_{k} & 0
\end{array}\right) D_{n}\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right) D_{n}^{T}\left(\begin{array}{cc}
0 & S_{k} \\
S_{k} & 0
\end{array}\right)=D_{n}\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right) D_{n}^{T}
$$

It follows from Lemma 1 that $A=D_{n}\left(\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right) D_{n}^{T} \in C S R^{2 k \times 2 k}$.
Next, we give some lemmas. According to [7], the following lemma is easy to verify.
Lemma 3. Given $Z \in R^{m \times s}, Y \in R^{n \times s}$, then the matrix equation $A Z=Y$ has a solution $A \in R^{n \times m}$ if and only if $Y Z^{+} Z=Y$. In that case the general solution can be expressed as $A=Y Z^{+}+G P^{T}$, where $P \in R^{n \times(n-t)}$ is an unit column-orthogonal matrix, $R(P)=N\left(Z^{T}\right)$ and $t=\operatorname{rank}(Z)$.

Let

$$
\begin{equation*}
\Gamma=\left\{A \in C S R^{n \times n} \mid A X=B, X, B \in R^{n \times m}\right\} \tag{3}
\end{equation*}
$$

Partitioning $D_{n}^{T} X$ and $D_{n}^{T} B$ into to the following form

$$
\begin{equation*}
D_{n}^{T} X=\binom{X_{1}}{X_{2}}, D_{n}^{T} B=\binom{B_{1}}{B_{2}} \tag{4}
\end{equation*}
$$

where $X_{1}, B_{1} \in R^{(n-k) \times m}, X_{2}, B_{2} \in R^{k \times m}$. We have the following lemma.
Lemma 4. Γ is nonempty if and only if $B_{1} X_{1}^{+} X_{1}=B_{1}$ and $B_{2} X_{2}^{+} X_{2}=B_{2}$. Furthermore, any matrix $A \in \Gamma$ can be expressed as

$$
A=D_{n}\left(\begin{array}{cc}
B_{1} X_{1}^{+}+G_{1} U_{2}^{T} & 0 \tag{5}\\
0 & B_{2} X_{2}^{+}+G_{2} P_{2}^{T}
\end{array}\right) D_{n}^{T}
$$

where $G_{1} \in R^{(n-k) \times\left(n-k-r_{1}\right)}, G_{2} \in R^{k \times\left(k-r_{2}\right)}$ are arbitrary matrices, $r_{1}=\operatorname{rank}\left(X_{1}\right), r_{2}=$ $\operatorname{rank}\left(X_{2}\right), R\left(U_{2}\right)=N\left(X_{1}^{T}\right), \quad R\left(P_{2}\right)=N\left(X_{2}^{T}\right)$.

Proof. If Γ is nonempty, we have from Lemma 2 and D_{n} being an orthogonal matrix that

$$
A=D_{n}\left(\begin{array}{cc}
A_{1} & 0 \tag{6}\\
0 & A_{2}
\end{array}\right) D_{n}^{T}
$$

with $A_{1} \in R^{(n-k) \times(n-k)}, A_{2} \in R^{k \times k}$ satisfy

$$
\begin{equation*}
A_{1} X_{1}=B_{1}, \quad A_{2} X_{2}=B_{2} \tag{7}
\end{equation*}
$$

It follows from Lemma 3 that

$$
\begin{equation*}
B_{1} X_{1}^{+} X_{1}=B_{1}, B_{2} X_{2}^{+} X_{2}=B_{2} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{1}=B_{1} X_{1}^{+}+G_{1} U_{2}^{T}, A_{2}=B_{2} X_{2}^{+}+G_{2} P_{2}^{T} \tag{9}
\end{equation*}
$$

where $G_{1} \in R^{(n-k) \times\left(n-k-r_{1}\right)}, G_{2} \in R^{k \times\left(k-r_{2}\right)}$ are arbitrary matrix, $r_{1}=\operatorname{rank}\left(X_{1}\right), r_{2}=\operatorname{rank}\left(X_{2}\right)$, $R\left(U_{2}\right)=N\left(X_{1}^{T}\right), \quad R\left(P_{2}\right)=N\left(X_{2}^{T}\right)$. Substituting (9) into (6), we have (5).

Conversely, if $B_{1} X_{1}^{+} X_{1}=B_{1}$ and $B_{2} X_{2}^{+} X_{2}=B_{2}$, then we have from Lemma 3 that there exist $A_{1} \in R^{(n-k) \times(n-k)}$ and $A_{2} \in R^{k \times k}$ such that

$$
A_{1} X_{1}=B_{1}, \quad A_{2} X_{2}=B_{2}
$$

which is equivalent to

$$
\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right)\binom{X_{1}}{X_{2}}=\binom{B_{1}}{B_{2}}
$$

It in turn is equivalent to

$$
D_{n}\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right) D_{n}^{T} X=B
$$

So the matrix $A=D_{n}\left(\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right) D_{n}^{T} \in \Gamma$. And this illustrate Γ is nonempty.
Now, we investigate the consistency of Problem 1 with a centrosymmetric condition on the solution.

Obviously, solving Problem 1 is equivalent to find $A \in \Gamma$ such that A_{0} is a leading principal submatrix of A, i.e., find $A \in \Gamma$ such that

$$
\begin{equation*}
\left(I_{r}, 0\right) A\left(I_{r}, 0\right)^{T}=A_{0} \tag{10}
\end{equation*}
$$

where $\left(I_{r}, 0\right) \in R^{r \times n}$. Note that any matrix $A \in \Gamma$ can be expressed as (5), we partition the matrix $\left(I_{r}, 0\right) D_{n}$ into the following form

$$
\begin{equation*}
\left(I_{r}, 0\right) D_{n}=\left(W_{1}, W_{2}\right), W_{1} \in R^{r \times(n-k)}, W_{2} \in R^{r \times k} \tag{11}
\end{equation*}
$$

Let

$$
\begin{equation*}
\tilde{E}=A_{0}-W_{1} B_{1} X_{1}^{+} W_{1}^{T}-W_{2} B_{2} X_{2}^{+} W_{2}^{T} \tag{12}
\end{equation*}
$$

Then equation (10) is equivalent to find G_{1} and G_{2} as in (5) such that

$$
\begin{equation*}
W_{1} G_{1} N_{1}+W_{2} G_{2} N_{2}=\tilde{E} \tag{13}
\end{equation*}
$$

where $N_{1}=U_{2}^{T} W_{1}^{T}, N_{2}=P_{2}^{T} W_{2}^{T}$. Decomposing the matrix pairs $\left(W_{1}^{T}, W_{2}^{T}\right)$ and $\left(N_{1}, N_{2}\right)$ using the General Singular-Value Decomposition (GSVD) (see[12, 13, 14]):

$$
\begin{equation*}
W_{1}^{T}=\tilde{U} \Sigma_{1} M_{1}, \quad W_{2}^{T}=\tilde{V} \Sigma_{2} M_{1}, \quad N_{1}=\tilde{P} \Sigma_{3} M_{2}, \quad N_{2}=\tilde{Q} \Sigma_{4} M_{2} \tag{14}
\end{equation*}
$$

where $\tilde{U}, \tilde{V}, \tilde{P}$ and \tilde{Q} are orthogonal matrices, and M_{1} and M_{2} are nonsingular matrices of order $r, \Sigma_{1} \in R^{(n-k) \times r}, \Sigma_{2} \in R^{k \times r}, \Sigma_{3} \in R^{\left(n-k-r_{1}\right) \times r}, \Sigma_{4} \in R^{\left(k-r_{2}\right) \times r}$, with

$$
\begin{align*}
& \Sigma_{3}=\left(\begin{array}{ccccc}
I_{3} & & & \vdots & \\
& S_{3} & \vdots & 0 \\
& & 0_{3} & \vdots & \\
r_{5} & r_{6} & p_{2}-r_{5}-r_{6} & r & r-p_{2}
\end{array}\right), \Sigma_{4}=\left(\begin{array}{cccccc}
0_{4} & & & \vdots & \\
& & & & & \\
& S_{4} & & \vdots & 0 \\
& & & I_{4} & \vdots &
\end{array}\right), \tag{16}
\end{align*}
$$

here I_{1}, I_{2}, I_{3} and I_{4} are identity matrices, $0_{1}, 0_{2}, 0_{3}$ and 0_{4} are zero matrices, $p_{1}=\operatorname{rank}\left(C_{1}\right)$ $=\operatorname{rank}\left(W_{1}, W_{2}\right), p_{2}=\operatorname{rank}\left(C_{2}\right)=\operatorname{rank}\left(N_{1}, N_{2}\right)$, and

$$
\begin{align*}
& S_{1}=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{r_{4}}\right), S_{2}=\operatorname{diag}\left(\beta_{1}, \ldots, \beta_{r_{4}}\right), \tag{17}\\
& S_{3}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r_{6}}\right), S_{4}=\operatorname{diag}\left(\delta_{1}, \ldots, \delta_{r_{6}}\right) \tag{18}
\end{align*}
$$

with $1>\alpha_{1} \geq \ldots \geq \alpha_{r_{4}}>0,0<\beta_{1} \leq \ldots \leq \beta_{r_{4}}<1,1>\sigma_{1} \geq \ldots \geq \sigma_{r_{6}}>0,0<\delta_{1} \leq \ldots \leq$ $\delta_{r_{6}}<1$, and $\alpha_{i}^{2}+\beta_{i}^{2}=1,\left(i=1, \ldots, r_{4}\right), \sigma_{i}^{2}+\delta_{i}^{2}=1,\left(i=1, \ldots, r_{6}\right)$. Some submatrices in equations (15) and (16) may disappear, depending on the structure of the matrices W_{1}, W_{2}, N_{1} and N_{2}. Define $Y=\tilde{U}^{T} G_{1} \tilde{P}, Z=\tilde{V}^{T} G_{2} \tilde{Q}$ and $E=M_{1}^{-T} \tilde{E} M_{2}^{-1}$. Equation (13) now reads

$$
\begin{equation*}
\Sigma_{1}^{T} Y \Sigma_{3}+\Sigma_{2}^{T} Z \Sigma_{4}=E \tag{19}
\end{equation*}
$$

Note that transforming equation (13) to (19) does not change the equation's consistency. Partitioning the matrices Y, Z and E according to the Σ 's, equation (19) is equivalent to

$$
\left(\begin{array}{cccc}
Y_{11} & Y_{12} S_{3} & 0 & 0 \tag{20}\\
S_{1} Y_{21} & S_{1} Y_{22} S_{3}+S_{2} Z_{22} S_{4} & S_{2} \tilde{Y}_{23} & 0 \\
0 & Z_{32} S_{4} & Z_{33} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
E_{11} & E_{12} & E_{13} & E_{14} \\
E_{21} & E_{22} & E_{23} & E_{24} \\
E_{31} & E_{32} & E_{33} & E_{34} \\
E_{41} & E_{42} & E_{43} & E_{44}
\end{array}\right)
$$

From the above discussion, we can prove the following theorem:
Theorem 1. Problem 1 is solvable if and only if
(a) $B_{i} X_{i}^{+} X_{i}=B_{i} \quad(i=1,2)$.
(b) $E_{13}=0, E_{31}=0, E_{14}=0, E_{24}=0, E_{34}=0, E_{41}=0, E_{42}=0, E_{43}=0, E_{44}=0$.

When the conditions (a) and (b) are satisfied, the general solution can be expressed as

$$
A=D_{n}\left(\begin{array}{cc}
B_{1} X_{1}^{+}+G_{1} U_{2}^{T} & 0 \tag{21}\\
0 & B_{2} X_{2}^{+}+G_{2} P_{2}^{T}
\end{array}\right) D_{n}^{T}
$$

where

$$
\begin{gather*}
G_{1}=\tilde{U}\left(\begin{array}{ccc}
E_{11} & E_{12} S_{3}^{-1} & Y_{13} \\
S_{1}^{-1} E_{21} & S_{1}^{-1}\left(E_{22}-S_{2} Z_{22} S_{4}\right) S_{3}^{-1} & Y_{23} \\
Y_{31} & Y_{32} & Y_{33}
\end{array}\right) \tilde{P}^{T}, \tag{22}\\
G_{2}=\tilde{V}\left(\begin{array}{ccc}
Z_{11} & Z_{12} & Z_{13} \\
Z_{21} & Z_{22} & S_{2}^{-1} E_{23} \\
Z_{31} & E_{32} S_{4}^{-1} & E_{33}
\end{array}\right) \tilde{Q}^{T}, \tag{23}
\end{gather*}
$$

with $Y_{13}, Y_{23}, Y_{31}, Y_{32}, Y_{33}, Z_{11}, Z_{12}, Z_{13}, Z_{21}, Z_{22}, Z_{31}$ are arbitrary matrices.
Proof. Problem 1 having a solution $A \in C S R^{n \times n}$ is equivalent to there exists $A \in \Gamma$ such that (10) holds. Condition (a) is the necessary and sufficient conditions for Γ is nonempty. Condition (b) is the necessary and sufficient conditions for equation (10) has centrosymmetric solution with the given matrix as its submatrix. The general solution can be obtained by the definition of Y and Z and the Equations (5) and (20).

3. Solving Problem 2

Let us first introduce a lemma.
Lemma $5{ }^{[11]}$. Given $E, F \in R^{n \times n}, \Omega_{1}=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)>0, \Omega_{2}=\operatorname{diag}\left(b_{1}, \ldots, b_{n}\right)>0, \Phi=$ $\left(\frac{1}{1+a_{i}^{2} b_{j}^{2}}\right) \in R^{n \times n}$, then there exists an unique matrix $\hat{S} \in R^{n \times n}$ such that $\|S-E\|^{2}+\| \Omega_{1} S \Omega_{2}-$ $F \|^{2}=\min$, and \hat{S} can be expressed as $\hat{S}=\Phi *\left(E+\Omega_{1} F \Omega_{2}\right)$.

Partition the matrix $D_{n}^{T} A^{*} D_{n}$ into a 2×2 block matrix $\left(A_{i j}^{*}\right)_{2 \times 2}$ with $A_{11}^{*} \in R^{(n-k) \times(n-k)}$, $A_{22}^{*} \in R^{k \times k}$. Partition matrices $\tilde{U}^{T} A_{11}^{*} U_{2} \tilde{P}$ and $\tilde{V}^{T} A_{22}^{*} P_{2} \tilde{Q}$ into 3×3 block matrices $\left(\tilde{Y}_{i j}\right)_{3 \times 3}$ with $\tilde{Y}_{11} \in R^{r_{3} \times r_{5}}, \tilde{Y}_{22} \in R^{r_{4} \times r_{6}}, \tilde{Y}_{33} \in R^{\left(n-k-r_{3}-r_{4}\right) \times\left(n-k-r_{1}-r_{5}-r_{6}\right)}$, and $\left(\tilde{Z}_{i j}\right)_{3 \times 3}$ with $\tilde{Z}_{11} \in$ $R^{\left(k+r_{3}-p_{1}\right) \times\left(k-r_{2}+r_{3}-p_{2}\right)}, \tilde{Z}_{22} \in R^{r_{4} \times r_{6}}, \tilde{Z}_{33} \in R^{\left(p_{1}-r_{3}-r_{4}\right) \times\left(p_{2}-r_{5}-r_{6}\right)}$, respectively. Then we have the following theorem.

Theorem 2. Given $X, B \in R^{n \times m}, A_{0} \in R^{r \times r}$ and $A^{*} \in R^{n \times n}$. X, B, A_{0} satisfy conditions of Theorem 1. Then Problem 2 has an unique optimal approximate solution which can be expressed as

$$
\hat{A}=D_{n}\left(\begin{array}{cc}
B_{1} X_{1}^{+}+\hat{G}_{1} U_{2}^{T} & 0 \tag{24}\\
0 & B_{2} X_{2}^{+}+\hat{G}_{2} P_{2}^{T}
\end{array}\right) D_{n}^{T}
$$

where

$$
\begin{gather*}
\hat{G}_{1}=\tilde{U}\left(\begin{array}{ccc}
E_{11} & E_{12} S_{3}^{-1} & \tilde{Y}_{13} \\
S_{1}^{-1} E_{21} & S_{1}^{-1}\left(E_{22}-S_{2} \hat{Z}_{22} S_{4}\right) S_{3}^{-1} & \tilde{Y}_{23} \\
\tilde{Y}_{31} & \tilde{Y}_{32} & \tilde{Y}_{33}
\end{array}\right) \tilde{P}^{T}, \tag{25}\\
\hat{G}_{2}=\tilde{V}\left(\begin{array}{ccc}
\tilde{Z}_{11} & \tilde{Z}_{12} & \tilde{Z}_{13} \\
\tilde{Z}_{21} & \hat{Z}_{22} & S_{2}^{-1} E_{23} \\
\tilde{Z}_{31} & E_{32} S_{4}^{-1} & E_{33}
\end{array}\right) \tilde{Q}^{T}, \tag{26}\\
\tilde{Z}_{22}=\Phi *\left[\tilde{Z}_{22}+S_{1}^{-1} S_{2}\left(\tilde{Y}_{22}-S_{1}^{-1} E_{22} S_{3}^{-1}\right) S_{4} S_{3}^{-1}\right] \tag{27}
\end{gather*}
$$

with $\Phi=\left(\varphi_{i j}\right) \in R^{r_{4} \times r_{6}}, \varphi_{i j}=\frac{\alpha_{i}^{2} \delta_{j}^{2}}{\alpha_{i}^{2} \delta_{j}^{2}+\beta_{i}^{2} \sigma_{j}^{2}}, U_{2}, P_{2}$ are the same as (5), and $\tilde{U}, \tilde{V}, \tilde{P}$ and \tilde{Q} are the same as (14).

Proof. Because X, B and A_{0} satisfy the conditions of the Theorem 1, the solution set S_{E} of Problem 1 is nonempty. According to the proof of theorem 7.4 in [7], it is easy to verify that S_{E} is a closed convex cone. Hence, the corresponding Problem 2 has an unique optimal approximate solution. Choose U_{1} and $P_{1}{\underset{\tilde{V}}{\tilde{P}}}^{\text {such }}$ that $\underset{\tilde{Q}}{U}=\left(U_{1}, U_{2}\right)$ and $P=\left(P_{1}, P_{2}\right)$ are orthogonal matrices. Attention to $U, P, D, \tilde{U}, \tilde{V}, \tilde{P}$ and \tilde{Q} are orthogonal matrices, and $R\left(U_{2}\right)=N\left(X_{1}^{T}\right), R\left(P_{2}\right)=N\left(X_{2}^{T}\right)$, we have from (21)-(23) that

$$
\begin{aligned}
\left\|A-A^{*}\right\|^{2} & =\left\|B_{1} X_{1}^{+}+G_{1} U_{2}^{T}-A_{11}^{*}\right\|^{2}+\left\|B_{2} X_{2}^{+}+G_{2} P_{2}^{T}-A_{22}^{*}\right\|^{2}+\left\|A_{12}^{*}\right\|^{2}+\left\|A_{21}^{*}\right\|^{2} \\
& =\left\|G_{1}-A_{11}^{*} U_{2}\right\|^{2}+\left\|G_{2}-A_{22}^{*} P_{2}\right\|^{2}+\left\|\left(B_{1} X_{1}^{+}-A_{11}^{*}\right) U_{1}\right\|^{2} \\
& +\left\|\left(B_{2} X_{2}^{+}-A_{22}^{*}\right) P_{1}\right\|^{2}+\left\|A_{12}^{*}\right\|^{2}+\left\|A_{21}^{*}\right\|^{2} \\
& =\left\|\left(\begin{array}{ccc}
E_{11} & E_{12} S_{3}^{-1} & Y_{13} \\
S_{1}^{-1} E_{21} & S_{1}^{-1}\left(E_{22}-S_{2} Z_{22} S_{4}\right) S_{3}^{-1} & Y_{23} \\
Y_{31} & Y_{32}
\end{array}\right)-\tilde{U}^{T} A_{11}^{*} U_{2} \tilde{P}\right\|^{2} \\
& +\left\|\left(\begin{array}{ccc}
Z_{11} & Z_{12} & Z_{13} \\
Z_{21} & Z_{22} & S_{2}^{-1} E_{23} \\
Z_{31} & E_{32} S_{4}^{-1} & E_{33}
\end{array}\right)-\tilde{V}^{T} A_{22}^{*} P_{2} \tilde{Q}\right\| \|^{2} \\
& +\left\|B_{1} X_{1}^{+} U_{1}-A_{11}^{*} U_{1}\right\|^{2}+\left\|B_{2} X_{2}^{+} P_{1}-A_{22}^{*} P_{1}\right\|^{2}+\left\|A_{12}^{*}\right\|^{2}+\left\|A_{21}^{*}\right\|^{2} .
\end{aligned}
$$

Hence, there exists $A \in S_{E}$ such that $\left\|A-A^{*}\right\|=\min$ is equivalent to

$$
\left\{\begin{array}{l}
\left\|Y_{i 3}-\tilde{Y}_{i 3}\right\|=\min ,\left\|Y_{3 j}-\tilde{Y}_{3 j}\right\|=\min ,\left\|Z_{i 1}-\tilde{Z}_{i 1}\right\|=\min ,(i=1,2,3, j=1,2) \tag{28}\\
\left.\left\|Z_{12}-\tilde{Z}_{12}\right\|=\min ,\left\|Z_{22}-\tilde{Z}_{22}\right\|^{2}+\| S_{1}^{-1}\left(E_{22}-S_{2} Z_{22} S_{4}\right) S_{3}^{-1}-\tilde{Y}_{22}\right) \|^{2}=\min
\end{array}\right.
$$

It follow from Lemma 5 that

$$
\begin{equation*}
Y_{i 3}=\tilde{Y}_{i 3}, Y_{3 j}=\tilde{Y}_{3 j}, Z_{i 1}=\tilde{Z}_{i 1},(i=1,2,3, j=1,2), Z_{12}=\tilde{Z}_{12} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{Z}_{22}=\Phi *\left(\tilde{Z}_{22}+S_{1}^{-1} S_{2}\left(\tilde{Y}_{22}-S_{1}^{-1} E_{22} S_{3}^{-1}\right) S_{4} S_{3}^{-1}\right) \tag{30}
\end{equation*}
$$

Substituting (29) and (30) into (21)-(23), we obtain (24)-(27).

4. The Algorithm Description and Numerical Example

According to discuss in section 2 and 3, we now give a method for solving Problem 2 as following steps:
step 1. According to (4) calculate $X_{i}, B_{i}(i=1,2)$, furthermore calculate $B_{i} X_{i}^{+} X_{i}(i=1,2)$.
step 2. If $B_{i} X_{i}^{+} X_{i}=B_{i}(i=1,2)$, then the set Γ is nonempty and we continue. Otherwise we stop.
step 3. According to (11) calculate W_{1}, W_{2}. According to (12) calculate \tilde{E}.
step 4. Find unit column orthogonal matrices U_{2}, P_{2} basis of linear equations $X_{1}^{T} u=0$ and $X_{2}^{T} v=0$. Chosen U_{1}, P_{1} such that $U=\left(U_{1}, U_{2}\right), P=\left(P_{1}, P_{2}\right)$ are orthogonal matrices.
step 5. According to (14) decomposing the matrix pairs $\left(W_{1}^{T}, W_{2}^{T}\right)$ and $\left(N_{1}, N_{2}\right)$ using the GSVD.
step 6. Partitioning the matrix E according to the right side of (20).
step 7. If $E_{13}=0, E_{31}=0, E_{14}=0, E_{24}=0, E_{34}=0, E_{41}=0, E_{42}=0, E_{43}=0, E_{44}=0$, then the solution set S_{E} to Problem 1 is nonempty and we continue. Otherwise we stop.
step 8. Partition the matrices $D_{n}^{T} A^{*}{\underset{\tilde{U}}{n}}, \tilde{U}^{T} A_{11}^{*} U_{2} \tilde{P}$ and $\tilde{V}^{T} A_{22}^{*} P_{2} \tilde{Q}$ into block matrices according to $D_{n}^{T} A D_{n}$ in (21), $\tilde{U}^{T} G_{1} \tilde{P}$ in (22) and $\tilde{V}^{T} G_{2} \tilde{Q}$ in (23), respectively.
step 9. According to (24)-(27) calculate \hat{A}.
Example 1. Taking

$$
\begin{aligned}
& X=\left(\begin{array}{rrrr}
8.3 & 9.2 & -8.3 & 9.2 \\
9.9 & 7.7 & -9.9 & 7.7 \\
-7.9 & -7.3 & 7.9 & -7.3 \\
6.3 & 8.3 & -6.3 & 8.3 \\
7.5 & 8.3 & -7.5 & 8.3 \\
-6.1 & 9.4 & 6.1 & 9.4 \\
5.3 & -9.2 & -5.3 & -9.2 \\
8.3 & 7.3 & -8.3 & 7.3
\end{array}\right), B=\left(\begin{array}{rrrr}
-2.9 & 15.1 & 2.9 & 15.1 \\
12.3 & 15.3 & -12.3 & 15.3 \\
40.8 & 37.5 & -40.8 & 37.5 \\
39.3 & 20.6 & -39.3 & 20.6 \\
42.1 & 26.5 & -42.1 & 26.5 \\
30.2 & 49.6 & -30.2 & 49.6 \\
9.9 & 77.7 & -9.9 & 77.7 \\
-6.7 & 62.9 & 6.7 & 62.9
\end{array}\right), \\
& A_{0}=\left(\begin{array}{lll}
1 & 2 & 6 \\
2 & 3 & 7 \\
3 & 4 & 5
\end{array}\right), A^{*}=\left(\begin{array}{rrrrrrrr}
-1.5 & 2.4 & -2.2 & 1.7 & 1.3 & 2.4 & 1.9 & 2.7 \\
3.5 & 1.9 & -2.5 & -1.4 & 1.4 & 2.1 & -1.5 & 0.8 \\
-1.4 & -1.5 & 1.9 & 1.5 & -0.8 & 1.5 & -2.1 & -2.4 \\
1.5 & -1.2 & 2.4 & -1.5 & -2.7 & -1.9 & -2.4 & -1.3 \\
-1.3 & -1.3 & -0.6 & -2.5 & -0.5 & 1.5 & -1.5 & 1.7 \\
1.6 & 1.4 & -2.7 & -1.2 & -1.5 & -1.7 & -2.7 & -1.8 \\
1.2 & 0.7 & -3.4 & -1.6 & -1.8 & -2.7 & -1.7 & -1.5 \\
2.5 & 1.6 & 1.3 & 1.3 & 1.7 & -1.5 & 1.5 & -2.5
\end{array}\right) .
\end{aligned}
$$

we obtain $X_{1}^{+}, X_{2}^{+}, B_{1}$ and B_{2} are,respectively,

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
0.0043 & 0.0220 & -0.0211 & 0.0004 \\
0.0176 & -0.0198 & 0.0198 & 0.0208 \\
-0.0043 & -0.0220 & 0.0211 & -0.0004 \\
0.0176 & -0.0198 & 0.0198 & 0.0208
\end{array}\right),\left(\begin{array}{rrrr}
-0.0473 & 0.1829 & 0.1798 & -0.1576 \\
0.0113 & -0.0137 & -0.0549 & 0.0299 \\
0.0473 & -0.1829 & -0.1798 & 0.1576 \\
0.0113 & -0.0137 & -0.0549 & 0.0299
\end{array}\right) \\
& \left(\begin{array}{rrrr}
-6.7882 & 55.1543 & 6.7882 & 55.1543 \\
15.6978 & 65.7609 & -15.6978 & 65.7609 \\
50.2046 & 61.5890 & -50.2046 & 61.5890 \\
57.5585 & 33.3047 & -57.5585 & 33.3047
\end{array}\right),\left(\begin{array}{rrrr}
2.6870 & -33.7997 & -2.6870 & -33.7997 \\
1.6971 & -44.1235 & -1.6971 & -44.1235 \\
7.4953 & -8.5560 & -7.4953 & -8.5560 \\
-1.9799 & -4.1719 & 1.9799 & -4.1719
\end{array}\right)
\end{aligned}
$$

By a direct computing, we know that $B_{i} X_{i}^{+} X_{i}=B_{i} \quad(i=1,2)$. According to step 4 , we get two orthogonal matrices $U=\left(U_{1}, U_{2}\right), P=\left(P_{1}, P_{2}\right)$ as follow

$$
U_{1}=\left(\begin{array}{rr}
0.6637 & 0.2642 \\
0.3353 & -0.6353 \\
-0.2971 & 0.6231 \\
0.5990 & 0.3719
\end{array}\right), \quad U_{2}=\left(\begin{array}{rr}
0.6976 & 0.0555 \\
-0.1328 & 0.6829 \\
-0.0109 & 0.7234 \\
-0.7040 & -0.0850
\end{array}\right)
$$

$$
P_{1}=\left(\begin{array}{rr}
0.0769 & 0.1568 \\
0.7197 & -0.5875 \\
-0.6899 & -0.6024 \\
-0.0093 & 0.5170
\end{array}\right), \quad P_{2}=\left(\begin{array}{rr}
0.9296 & -0.3244 \\
-0.0860 & -0.3597 \\
0.0187 & -0.4010 \\
-0.3578 & -0.7775
\end{array}\right)
$$

After calculating according to step 5 and 6 , the condition (b) of Theorem 1 is satisfied. Hence, the conditions of Theorem 1 are satisfied, and the corresponding problem 2 has an unique solution \hat{A}. After calculating by (24)-(27), we have \hat{A} as follow:

$$
\left(\begin{array}{rrrrrrrr}
1.0000 & 2.0000 & 6.0000 & -1.7316 & 5.5018 & 2.6940 & 1.7672 & -0.8298 \\
2.0000 & 3.0000 & 7.0000 & -1.5539 & 5.6900 & 2.4985 & 2.6065 & -1.2239 \\
3.0000 & 4.0000 & 5.0000 & -2.0757 & 3.9990 & 2.0306 & 2.1184 & 0.0052 \\
3.5291 & 0.1945 & -0.4371 & 0.8850 & -1.5600 & -1.6861 & -0.3234 & 0.2630 \\
0.2630 & -0.3234 & -1.6861 & -1.5600 & 0.8850 & -0.4371 & 0.1945 & 3.5291 \\
0.0052 & 2.1184 & 2.0306 & 3.9990 & -2.0757 & 5.0000 & 4.0000 & 3.0000 \\
-1.2239 & 2.6065 & 2.4985 & 5.6900 & -1.5539 & 7.0000 & 3.0000 & 2.0000 \\
-0.8298 & 1.7672 & 2.6940 & 5.5018 & -1.7316 & 6.0000 & 2.0000 & 1.0000
\end{array}\right) .
$$

References

[1] L.R. Fletcher, An Inverse Eigenvalue Problem from Control Theory, in Numerical Treatment of Inverse problems for Differential and Integral Equations, eds. P. Deuffhard and E. Hairer, Birkhauser, Beston, 1983, 161-170.
[2] W.M. Wonham, Linear Multivariable Control: A Geometric Approach, Springer-Verlag, 1979.
[3] V. Barcilon, Inverse Problem for a Vibrating Beam, J. Appl. Math. Phys., 27 (1976), 346-358.
[4] G.M.L. Gladwell, Inverse Problems in Vibration, Martinus Nijhoff, Dordrecht, The Netherlands, Boston, MA, 1986.
[5] K.T. Jeseph, Inverse Eigenvalue Problem in Structural design, AIAA. J., 30 (1992), 2890-2896.
[6] S. Friedland, The Reconstruction of a Symmetric Matrix from the spectral data, J. Math. Anal. Applic., 71 (1979), 412-422.
[7] S.Q. Zhou, H.Dai, The Algebraic Inverse Eigenvalue Problem (in Chinese), Henan Science and Technology Press, Zhengzhou, China, 1991.
[8] J.G. Sun, Some New Result on Algebraic Inverse Eigenvalue Problems, in Proceedings of the First Chinese National Conference on Inverse Eigenvalue Problems, 1986.
[9] S.F. Xu, An Introduction to Inverse Eigenvalue Problems, Peking University Press, Beijing, China, 1998.
[10] J.L. Zhen, X.H. Zhen, Special Matrices (in Chinese), Qinghua University Press, Beijing, China, 2001.
[11] A.P. Liao, A Generalization of a Class of Inverse Eigenvalue Problems, Journal of Hunan University, 2 (1995), 7-10.
[12] C.C. Paige and M.A. Saunders, Towards a Generalized Singular Value Decomposition, SIAMJ Numer. Anal., 18:1 (1981), 398-405.
[13] G.H. Golub and C.F. Van Loan, Matrix Computations, The Johns Hopkins University Press, American, 1983.
[14] G.W. Stewart, Computing the CS-decomposition of a partitional orthogonal matrix, Numer. Math., 40 (1982), 298-306.
[15] Z. Xu, K.Y. Zhang and Q. Lu, The fast algorithm for solving Toeplitz matrices (in Chinese), Xibei Industry University Press, 1999.

[^0]: * Received January 27, 2002.
 ${ }^{1)}$ Research supported by National Natural Science Foundation of China (10171031), and by Hunan Province Educational Foundation (02C025).

