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Abstract

By using Moore-Penrose generalized inverse and the general singular value decompo-
sition of matrices, this paper establishes the necessary and sufficient conditions for the
existence of and the expressions for the centrosymmetric solutions with a submatrix con-
straint of matrix inverse problem AX = B. In addition, in the solution set of corresponding
problem, the expression of the optimal approximation solution to a given matrix is derived.
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1. Introduction

Inverse eigenvalue problem has widely used in control theory [1, 2], vibration theory [3, 4],
structural design [5], molecular spectroscopy [6]. In recent years, many authors have been
devoted to the study of this kind of problem and a serial of good results have been made [7, 8,
9]. Centrosymmetric matrices have practical application in information theory, linear system
theory and numerical analysis theory. However, inverse problems of centrosymmetric matrices,
specifically centrosymmetric matrices with a submartix constraint, have not be concerned with.
In this paper, we will discuss this problem.

Denote the set of all n-by-m real matrices by Rn×m and the set of all n-by-n orthogonal
matrices in Rn×n by ORn×n. Denote the column space, the null space, the Moore-Penrose
generalized inverse and the Frobenius norm of a matrix A by R(A), N(A), A+ and ‖A‖, respec-
tively. In denotes the n × n unit matrix and Sn denotes the n × n reverse unit matrix. We
define the inner product in space Rn×m by

〈A, B〉 = trace(BHA), ∀A, B ∈ Rn×m.

Then Rn×m is a Hilbert inner product space. The norm of a matrix generated by this inner
product space is the Frobenius norm. For A = (aij), B = (bij) ∈ Rn×m, we using the notation
A ∗ B = (aijbij) ∈ Rn×n denotes the Hadmard product of matrices A and B.

Definition 1 [10,15]. A = (aij) ∈ Rn×n is termed a Centrosymmetric matrix if

aij = an+1−j,n+1−i i, j = 1, 2, . . . , n.

∗ Received January 27, 2002.
1) Research supported by National Natural Science Foundation of China (10171031), and by Hunan Province

Educational Foundation (02C025).



536 Z.Y. PENG, X.Y. HU AND L. ZHANG

The set of n × n centrosymmetric matrices denoted by CSRn×n.
In this paper, we consider the following two problems:

Problem 1. Given X, B ∈ Rn×m, A0 ∈ Rr×r, find A ∈ CSRn×n such that

AX = B, A0 = A([1, r]),

where A([1, r]) is a leading r × r principal submatrix of matrix A.

Problem 2. Given A∗ ∈ Rn×n, find Â ∈ SE such that

‖A∗ − Â‖ = min
A∈SE

‖A∗ − A‖,

where SE is the solution set of Problem 1.

In Section 2, we first discuss the structure of the set CSRn×n, and then present the solv-
ability conditions and provide the general solution formula for Problem 1. In Section 3, we first
show the existence and uniqueness of the solution for Problem 2, and then derive an expression
of the solution when the solution set SE is nonempty. Finally, in section 4, we first give an
algorithm to compute the solution to Problem 2, and then give a numerical example to illustrate
the results obtained in this paper are correction.

2. Solving Problem 1

We first characterize the set of all centrosymmetric matrices. For all positive integers k, let

D2k =
1√
2

(
Ik Ik

Sk −Sk

)
, D2k+1 =

1√
2

⎛
⎝ Ik 0 Ik

0
√

2 0
Sk 0 −Sk

⎞
⎠ . (1)

Clearly, Dn is orthogonal for all n.

Lemma 1 [10]. A ∈ CSRn×n if and only if A = SnASn.

Lemma 2. A ∈ CSRn×n if and only if A can be expressed as

A = Dn

(
A1 0
0 A2

)
DT

n , (2)

where A1 ∈ R(n−k)×(n−k), A2 ∈ Rk×k.

Proof. We only prove the case for n = 2k, the case for n = 2k+1 can be discussed similarly.
Partition the matrix A into the following form

A =
(

A11 A12

A21 A22

)
, A11, A22 ∈ Rk×k.

If A ∈ CSR2k×2k, then we have from Lemma 1 that

(
0 Sk

Sk 0

)(
A11 A12

A21 A22

)(
0 Sk

Sk 0

)
=
(

A11 A12

A21 A22

)
,
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which is equivalent to
A22 = SkA11Sk, A12 = SkA21Sk.

Hence

DT
n ADn = 1

2

(
Ik Sk

Ik −Sk

)(
A11 SkA21Sk

A21 SkA11Sk

)(
Ik Ik

Sk −Sk

)

=
(

A11 + SkA21 0
0 A11 − SkA21

)
.

Let
A1 = A11 + SkA21, A2 = A11 − SkA21,

and note that Dn is a orthogonal matrix, we have (2).
Conversely, for every A1, A2 ∈ Rk×k, we have

(
0 Sk

Sk 0

)
Dn

(
A1 0
0 A2

)
DT

n

(
0 Sk

Sk 0

)
= Dn

(
A1 0
0 A2

)
DT

n .

It follows from Lemma 1 that A = Dn

(
A1 0
0 A2

)
DT

n ∈ CSR2k×2k.

Next, we give some lemmas. According to [7], the following lemma is easy to verify.

Lemma 3. Given Z ∈ Rm×s, Y ∈ Rn×s, then the matrix equation AZ = Y has a solution
A ∈ Rn×m if and only if Y Z+Z = Y . In that case the general solution can be expressed as
A = Y Z+ + GPT , where P ∈ Rn×(n−t) is an unit column-orthogonal matrix, R(P ) = N(ZT )
and t = rank(Z).

Let
Γ = {A ∈ CSRn×n|AX = B, X, B ∈ Rn×m}. (3)

Partitioning DT
n X and DT

n B into to the following form

DT
n X =

(
X1

X2

)
, DT

n B =
(

B1

B2

)
, (4)

where X1, B1 ∈ R(n−k)×m, X2, B2 ∈ Rk×m. We have the following lemma.

Lemma 4. Γ is nonempty if and only if B1X
+
1 X1 = B1 and B2X

+
2 X2 = B2. Furthermore,

any matrix A ∈ Γ can be expressed as

A = Dn

(
B1X

+
1 + G1U

T
2 0

0 B2X
+
2 + G2P

T
2

)
DT

n , (5)

where G1 ∈ R(n−k)×(n−k−r1), G2 ∈ Rk×(k−r2) are arbitrary matrices, r1 = rank(X1), r2 =
rank(X2), R(U2) = N(XT

1 ), R(P2) = N(XT
2 ).

Proof. If Γ is nonempty, we have from Lemma 2 and Dn being an orthogonal matrix that

A = Dn

(
A1 0
0 A2

)
DT

n , (6)
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with A1 ∈ R(n−k)×(n−k), A2 ∈ Rk×k satisfy

A1X1 = B1, A2X2 = B2. (7)

It follows from Lemma 3 that

B1X
+
1 X1 = B1, B2X

+
2 X2 = B2 (8)

and
A1 = B1X

+
1 + G1U

T
2 , A2 = B2X

+
2 + G2P

T
2 , (9)

where G1∈ R(n−k)×(n−k−r1), G2∈ Rk×(k−r2) are arbitrary matrix, r1=rank(X1) , r2=rank(X2),
R(U2) = N(XT

1 ), R(P2) = N(XT
2 ). Substituting (9) into (6), we have (5).

Conversely, if B1X
+
1 X1 = B1 and B2X

+
2 X2 = B2, then we have from Lemma 3 that there

exist A1 ∈ R(n−k)×(n−k) and A2 ∈ Rk×k such that

A1X1 = B1, A2X2 = B2,

which is equivalent to (
A1 0
0 A2

)(
X1

X2

)
=
(

B1

B2

)
.

It in turn is equivalent to

Dn

(
A1 0
0 A2

)
DT

n X = B.

So the matrix A = Dn

(
A1 0
0 A2

)
DT

n ∈ Γ. And this illustrate Γ is nonempty.

Now, we investigate the consistency of Problem 1 with a centrosymmetric condition on the
solution.

Obviously, solving Problem 1 is equivalent to find A ∈ Γ such that A0 is a leading principal
submatrix of A, i.e., find A ∈ Γ such that

(Ir , 0)A(Ir, 0)T = A0, (10)

where (Ir, 0) ∈ Rr×n. Note that any matrix A ∈ Γ can be expressed as (5), we partition the
matrix (Ir , 0)Dn into the following form

(Ir, 0)Dn = (W1, W2), W1 ∈ Rr×(n−k), W2 ∈ Rr×k. (11)

Let
Ẽ = A0 − W1B1X

+
1 WT

1 − W2B2X
+
2 WT

2 . (12)

Then equation (10) is equivalent to find G1 and G2 as in (5) such that

W1G1N1 + W2G2N2 = Ẽ, (13)

where N1 = UT
2 WT

1 , N2 = PT
2 WT

2 . Decomposing the matrix pairs (WT
1 , WT

2 ) and (N1, N2)
using the General Singular-Value Decomposition (GSV D) (see[12, 13, 14]):

WT
1 = ŨΣ1M1, WT

2 = Ṽ Σ2M1, N1 = P̃Σ3M2, N2 = Q̃Σ4M2, (14)
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where Ũ , Ṽ , P̃ and Q̃ are orthogonal matrices, and M1 and M2 are nonsingular matrices of
order r, Σ1 ∈ R(n−k)×r, Σ2 ∈ Rk×r, Σ3 ∈ R(n−k−r1)×r, Σ4 ∈ R(k−r2)×r, with

Σ1 =

⎛
⎜⎜⎜⎝

I1

...

S1

... 0

01

...

⎞
⎟⎟⎟⎠ ,

r3 r4 p1−r3−r4 r−p1

Σ2 =

⎛
⎜⎜⎜⎝

02

...

S2

... 0

I2

...

⎞
⎟⎟⎟⎠ ,

r3 r4 p1−r3−r4 r−p1

(15)

Σ3 =

⎛
⎜⎜⎜⎝

I3

...

S3

... 0

03

...

⎞
⎟⎟⎟⎠ ,

r5 r6 p2−r5−r6 r−p2

Σ4 =

⎛
⎜⎜⎜⎝

04

...

S4

... 0

I4

...

⎞
⎟⎟⎟⎠ ,

r5 r6 p2−r5−r6 r−p2

(16)

here I1, I2, I3 and I4 are identity matrices, 01, 02, 03 and 04 are zero matrices, p1=rank(C1)
=rank(W1, W2), p2=rank(C2)=rank(N1, N2), and

S1 = diag(α1, . . . , αr4), S2 = diag(β1, . . . , βr4), (17)

S3 = diag(σ1, . . . , σr6), S4 = diag(δ1, . . . , δr6), (18)

with 1 > α1 ≥ . . . ≥ αr4 > 0, 0 < β1 ≤ . . . ≤ βr4 < 1, 1 > σ1 ≥ . . . ≥ σr6 > 0, 0 < δ1 ≤ . . . ≤
δr6 < 1, and α2

i + β2
i = 1, (i = 1, . . . , r4), σ2

i + δ2
i = 1, (i = 1, . . . , r6). Some submatrices in

equations (15) and (16) may disappear, depending on the structure of the matrices W1, W2, N1

and N2. Define Y = ŨT G1P̃ , Z = Ṽ T G2Q̃ and E = M−T
1 ẼM−1

2 . Equation (13) now reads

ΣT
1 Y Σ3 + ΣT

2 ZΣ4 = E. (19)

Note that transforming equation (13) to (19) does not change the equation’s consistency. Par-
titioning the matrices Y, Z and E according to the Σ’s, equation (19) is equivalent to

⎛
⎜⎜⎝

Y11 Y12S3 0 0
S1Y21 S1Y22S3 + S2Z22S4 S2Ỹ23 0

0 Z32S4 Z33 0
0 0 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

E11 E12 E13 E14

E21 E22 E23 E24

E31 E32 E33 E34

E41 E42 E43 E44

⎞
⎟⎟⎠ . (20)

From the above discussion, we can prove the following theorem:

Theorem 1. Problem 1 is solvable if and only if

(a) BiX
+
i Xi = Bi (i = 1, 2).

(b) E13 = 0, E31 = 0, E14 = 0, E24 = 0, E34 = 0, E41 = 0, E42 = 0, E43 = 0, E44 = 0.

When the conditions (a) and (b) are satisfied, the general solution can be expressed as

A = Dn

(
B1X

+
1 + G1U

T
2 0

0 B2X
+
2 + G2P

T
2

)
DT

n , (21)
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where

G1 = Ũ

⎛
⎝ E11 E12S

−1
3 Y13

S−1
1 E21 S−1

1 (E22 − S2Z22S4)S−1
3 Y23

Y31 Y32 Y33

⎞
⎠ P̃T , (22)

G2 = Ṽ

⎛
⎝ Z11 Z12 Z13

Z21 Z22 S−1
2 E23

Z31 E32S
−1
4 E33

⎞
⎠ Q̃T , (23)

with Y13, Y23, Y31, Y32, Y33, Z11, Z12, Z13, Z21, Z22, Z31 are arbitrary matrices.

Proof. Problem 1 having a solution A ∈ CSRn×n is equivalent to there exists A ∈ Γ such
that (10) holds. Condition (a) is the necessary and sufficient conditions for Γ is nonempty.
Condition (b) is the necessary and sufficient conditions for equation (10) has centrosymmetric
solution with the given matrix as its submatrix. The general solution can be obtained by the
definition of Y and Z and the Equations (5) and (20).

3. Solving Problem 2

Let us first introduce a lemma.

Lemma 5 [11]. Given E, F ∈ Rn×n, Ω1=diag(a1, . . . , an)> 0, Ω2=diag(b1, . . . , bn)> 0, Φ =
( 1
1+a2

i
b2

j

) ∈ Rn×n, then there exists an unique matrix Ŝ ∈ Rn×n such that ‖S−E‖2 +‖Ω1SΩ2−
F‖2 = min, and Ŝ can be expressed as Ŝ = Φ ∗ (E + Ω1FΩ2).

Partition the matrix DT
n A∗Dn into a 2× 2 block matrix (A∗

ij)2×2 with A∗
11 ∈ R(n−k)×(n−k),

A∗
22 ∈ Rk×k. Partition matrices ŨT A∗

11U2P̃ and Ṽ T A∗
22P2Q̃ into 3 × 3 block matrices (Ỹij)3×3

with Ỹ11 ∈ Rr3×r5 , Ỹ22 ∈ Rr4×r6 , Ỹ33 ∈ R(n−k−r3−r4)×(n−k−r1−r5−r6), and (Z̃ij)3×3 with Z̃11 ∈
R(k+r3−p1)×(k−r2+r3−p2), Z̃22 ∈ Rr4×r6 , Z̃33 ∈ R(p1−r3−r4)×(p2−r5−r6), respectively. Then we
have the following theorem.

Theorem 2. Given X, B ∈ Rn×m, A0 ∈ Rr×r and A∗ ∈ Rn×n. X, B, A0 satisfy conditions of
Theorem 1. Then Problem 2 has an unique optimal approximate solution which can be expressed
as

Â = Dn

(
B1X

+
1 + Ĝ1U

T
2 0

0 B2X
+
2 + Ĝ2P

T
2

)
DT

n (24)

where

Ĝ1 = Ũ

⎛
⎝ E11 E12S

−1
3 Ỹ13

S−1
1 E21 S−1

1 (E22 − S2Ẑ22S4)S−1
3 Ỹ23

Ỹ31 Ỹ32 Ỹ33

⎞
⎠ P̃T , (25)

Ĝ2 = Ṽ

⎛
⎝ Z̃11 Z̃12 Z̃13

Z̃21 Ẑ22 S−1
2 E23

Z̃31 E32S
−1
4 E33

⎞
⎠ Q̃T , (26)

Z̃22 = Φ ∗ [Z̃22 + S−1
1 S2(Ỹ22 − S−1

1 E22S
−1
3 )S4S

−1
3 ] (27)

with Φ = (ϕij) ∈ Rr4×r6 , ϕij = α2
i δ2

j

α2
i
δ2

j
+β2

i
σ2

j

, U2, P2 are the same as (5), and Ũ , Ṽ , P̃ and Q̃ are

the same as (14).
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Proof. Because X, B and A0 satisfy the conditions of the Theorem 1, the solution set
SE of Problem 1 is nonempty. According to the proof of theorem 7.4 in [7], it is easy to
verify that SE is a closed convex cone. Hence, the corresponding Problem 2 has an unique
optimal approximate solution. Choose U1 and P1 such that U = (U1, U2) and P = (P1, P2)
are orthogonal matrices. Attention to U, P, D, Ũ , Ṽ , P̃ and Q̃ are orthogonal matrices, and
R(U2) = N(XT

1 ), R(P2) = N(XT
2 ), we have from (21)-(23) that

‖A − A∗‖2 = ‖B1X
+
1 + G1U

T
2 − A∗

11‖2 + ‖B2X
+
2 + G2P

T
2 − A∗

22‖2 + ‖A∗
12‖2 + ‖A∗

21‖2

= ‖G1 − A∗
11U2‖2 + ‖G2 − A∗

22P2‖2 + ‖(B1X
+
1 − A∗

11)U1‖2

+ ‖(B2X
+
2 − A∗

22)P1‖2 + ‖A∗
12‖2 + ‖A∗

21‖2

=

∥∥∥∥∥∥
⎛
⎝ E11 E12S

−1
3 Y13

S−1
1 E21 S−1

1 (E22 − S2Z22S4)S−1
3 Y23

Y31 Y32 Y33

⎞
⎠− ŨT A∗

11U2P̃

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
⎛
⎝ Z11 Z12 Z13

Z21 Z22 S−1
2 E23

Z31 E32S
−1
4 E33

⎞
⎠− Ṽ T A∗

22P2Q̃

∥∥∥∥∥∥
2

+ ‖B1X
+
1 U1 − A∗

11U1‖2 + ‖B2X
+
2 P1 − A∗

22P1‖2 + ‖A∗
12‖2 + ‖A∗

21‖2.

Hence, there exists A ∈ SE such that ‖A − A∗‖ = min is equivalent to

⎧⎨
⎩

‖Yi3 − Ỹi3‖ = min, ‖Y3j − Ỹ3j‖ = min, ‖Zi1 − Z̃i1‖ = min, (i = 1, 2, 3, j = 1, 2),

‖Z12 − Z̃12‖ = min, ‖Z22 − Z̃22‖2 + ‖S−1
1 (E22 − S2Z22S4)S−1

3 − Ỹ22)‖2 = min .

(28)

It follow from Lemma 5 that

Yi3 = Ỹi3, Y3j = Ỹ3j , Zi1 = Z̃i1, (i = 1, 2, 3, j = 1, 2), Z12 = Z̃12 (29)

and
Z̃22 = Φ ∗ (Z̃22 + S−1

1 S2(Ỹ22 − S−1
1 E22S

−1
3 )S4S

−1
3 ). (30)

Substituting (29) and (30) into (21)-(23), we obtain (24)-(27).

4. The Algorithm Description and Numerical Example

According to discuss in section 2 and 3, we now give a method for solving Problem 2 as
following steps:

step 1. According to (4) calculate Xi, Bi (i = 1, 2), furthermore calculate BiX
+
i Xi (i = 1, 2).

step 2. If BiX
+
i Xi = Bi(i = 1, 2), then the set Γ is nonempty and we continue. Otherwise

we stop.

step 3. According to (11) calculate W1, W2. According to (12) calculate Ẽ.

step 4. Find unit column orthogonal matrices U2, P2 basis of linear equations XT
1 u = 0

and XT
2 v = 0. Chosen U1, P1 such that U = (U1, U2), P = (P1, P2) are orthogonal

matrices.

step 5. According to (14) decomposing the matrix pairs (WT
1 , WT

2 ) and (N1, N2) using the
GSV D.

step 6. Partitioning the matrix E according to the right side of (20).
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step 7. If E13 = 0, E31 = 0, E14 = 0, E24 = 0, E34 = 0, E41 = 0, E42 = 0, E43 = 0, E44 = 0,
then the solution set SE to Problem 1 is nonempty and we continue. Otherwise we
stop.

step 8. Partition the matrices DT
n A∗Dn, ŨT A∗

11U2P̃ and Ṽ T A∗
22P2Q̃ into block matrices

according to DT
n ADn in (21), ŨT G1P̃ in (22) and Ṽ T G2Q̃ in (23), respectively.

step 9. According to (24)–(27) calculate Â.

Example 1. Taking

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8.3 9.2 −8.3 9.2
9.9 7.7 −9.9 7.7

−7.9 −7.3 7.9 −7.3
6.3 8.3 −6.3 8.3
7.5 8.3 −7.5 8.3

−6.1 9.4 6.1 9.4
5.3 −9.2 −5.3 −9.2
8.3 7.3 −8.3 7.3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2.9 15.1 2.9 15.1
12.3 15.3 −12.3 15.3
40.8 37.5 −40.8 37.5
39.3 20.6 −39.3 20.6
42.1 26.5 −42.1 26.5
30.2 49.6 −30.2 49.6
9.9 77.7 −9.9 77.7

−6.7 62.9 6.7 62.9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A0 =

⎛
⎝ 1 2 6

2 3 7
3 4 5

⎞
⎠ , A∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.5 2.4 −2.2 1.7 1.3 2.4 1.9 2.7
3.5 1.9 −2.5 −1.4 1.4 2.1 −1.5 0.8

−1.4 −1.5 1.9 1.5 −0.8 1.5 −2.1 −2.4
1.5 −1.2 2.4 −1.5 −2.7 −1.9 −2.4 −1.3

−1.3 −1.3 −0.6 −2.5 −0.5 1.5 −1.5 1.7
1.6 1.4 −2.7 −1.2 −1.5 −1.7 −2.7 −1.8
1.2 0.7 −3.4 −1.6 −1.8 −2.7 −1.7 −1.5
2.5 1.6 1.3 1.3 1.7 −1.5 1.5 −2.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

we obtain X+
1 , X+

2 , B1 and B2 are,respectively,

⎛
⎜⎜⎝

0.0043 0.0220 −0.0211 0.0004
0.0176 −0.0198 0.0198 0.0208

−0.0043 −0.0220 0.0211 −0.0004
0.0176 −0.0198 0.0198 0.0208

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−0.0473 0.1829 0.1798 −0.1576
0.0113 −0.0137 −0.0549 0.0299
0.0473 −0.1829 −0.1798 0.1576
0.0113 −0.0137 −0.0549 0.0299

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−6.7882 55.1543 6.7882 55.1543
15.6978 65.7609 −15.6978 65.7609
50.2046 61.5890 −50.2046 61.5890
57.5585 33.3047 −57.5585 33.3047

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

2.6870 −33.7997 −2.6870 −33.7997
1.6971 −44.1235 −1.6971 −44.1235
7.4953 −8.5560 −7.4953 −8.5560

−1.9799 −4.1719 1.9799 −4.1719

⎞
⎟⎟⎠ .

By a direct computing, we know that BiX
+
i Xi = Bi (i = 1, 2). According to step 4, we get

two orthogonal matrices U = (U1, U2), P = (P1, P2) as follow

U1 =

⎛
⎜⎜⎝

0.6637 0.2642
0.3353 −0.6353

−0.2971 0.6231
0.5990 0.3719

⎞
⎟⎟⎠ , U2 =

⎛
⎜⎜⎝

0.6976 0.0555
−0.1328 0.6829
−0.0109 0.7234
−0.7040 −0.0850

⎞
⎟⎟⎠
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P1 =

⎛
⎜⎜⎝

0.0769 0.1568
0.7197 −0.5875

−0.6899 −0.6024
−0.0093 0.5170

⎞
⎟⎟⎠ , P2 =

⎛
⎜⎜⎝

0.9296 −0.3244
−0.0860 −0.3597

0.0187 −0.4010
−0.3578 −0.7775

⎞
⎟⎟⎠ .

After calculating according to step 5 and 6, the condition (b) of Theorem 1 is satisfied. Hence,
the conditions of Theorem 1 are satisfied, and the corresponding problem 2 has an unique
solution Â. After calculating by (24)-(27), we have Â as follow:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 2.0000 6.0000 −1.7316 5.5018 2.6940 1.7672 −0.8298

2.0000 3.0000 7.0000 −1.5539 5.6900 2.4985 2.6065 −1.2239

3.0000 4.0000 5.0000 −2.0757 3.9990 2.0306 2.1184 0.0052

3.5291 0.1945 −0.4371 0.8850 −1.5600 −1.6861 −0.3234 0.2630

0.2630 −0.3234 −1.6861 −1.5600 0.8850 −0.4371 0.1945 3.5291

0.0052 2.1184 2.0306 3.9990 −2.0757 5.0000 4.0000 3.0000

−1.2239 2.6065 2.4985 5.6900 −1.5539 7.0000 3.0000 2.0000

−0.8298 1.7672 2.6940 5.5018 −1.7316 6.0000 2.0000 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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