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Abstract

We consider the numerical approximations of the complex amplitude in a coupled bay-
river system in this work. One half-circumference is introduced as the artificial boundary
in the open sea, and one segment is introduced as the artificial boundary in the river if the
river is semi-infinite. On the artificial boundary a sequence of high-order artificial boundary
conditions are proposed. Then the original problem is solved in a finite computational
domain, which is equivalent to a variational problem. The numerical approximations for
the original problem are obtained by solving the variational problem with the finite element
method. The numerical examples show that the artificial boundary conditions given in this
work are very effective.

Mathematics subject classification: 65N05, 76B20.
Key words: Coupled bay-river system, Complex amplitude, Artificial boundary conditions,
Finite element method.

1. Introduction

This paper is to solve the two-dimensional complex amplitude in a coupled bay-river system.
Consider a bay located at a river mouth and connected to the open sea through a narrow
entrance(see Figure 1). Such a coupled bay-river system, may be agitated into resonant states
by external oscillations with particular periods. The water depth everywhere in the domain is
assumed to be constant, and the solid boundary is considered to be impermeable. The model
river possesses an invariant cross section, and the length of river could be either semi-infinite
or finite. In these two cases, the non-reflective and perfect reflective conditions will be used in
the end of the river respectively. Additionally, the width of the river and the bay entrance are
assumed to be small compared with both the dimension of the bay and the wavelength.

The river mouth , bay entrance and coastline are defined by

t t
e = {(_a>y)|_§ <y< 5})
€ €
Iy = {(an)|_§ <y<§}7
€
L= {0l > 5

Let Q, , Q, and Q4 denote the domain occupied by the river , the bay and the open sea
respectively. Then we have

t t
Q, = {(a:,y)|—s—a<a:<—a,—§<y<§},
Qs {(z, )|z > 0};
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= —a =10

Figure 1: The physical and the computational domain

where s is the length of the river. s = 0 represents no river and s = oo represents a semi-infinite

river.
In the following, we only discuss the case s = oo .
The Q, can have any shape, Figure 1 shows one applicable choice.
Denote Qp,. = Q, UQp ULy, and Ty = Qe \ [y -
We have the following equations and boundary conditions for the complex amplitude of

water surface oscillation(cf. [17]):

An+ (1 +i€)%k*n =0 in Oy, (1.1)
An+kn=0 in Q, (1.2)
0

a—z -0 on Ty, (1.3)
0

a—z -0 on Ty, (1.4)
n, % is continuous on [y, (1.5)

. on—mo) . .

Jim \/F[T —ik(n —mo)] =0, (1.6)

In the river n is bounded and
represents waves that

propagate in the negative x — direction; (1.7)

where 7 is the complex amplitude of water surface oscillation, of which the modulus and the
argument represent the conventional amplitude and the relative phase of the local water surface
oscillations, respectively; k denotes wave number; £ is the resistance coefficient to model the
effects of dissipation, in the open sea, dissipativity is generally insignificant, so (1.2) takes (1.1)

when ¢ = 0; %

represents outward normal derivative of 9Qy,. or 0Qs; r = /22 + y? when

x > 0, condition (1.6) is known as the Sommerfeld radiation condition; 7 represents the water
surface oscillation induced by the incident wave along with the coastline reflection in case of
a vanishing bay entrance and, consequently, a continuous coastline. If the incident wave is of
a wave height Hy and is in the direction forming an angle a with the x-axis, then 7y can be
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expressed by (cf. [15])

N = %eik(ysina—mcosa) + &eik(ysina—kx cosa) _ Hoeikysina cos (kCE cos a). (18)

For a special case, the shape of both the bay and river has been extremely simplified, X.
Yu [15] employed a method of patching formal expression to obtain the analytic solution of
problem (1.1)-(1.7). Furthermore, X. Yu and H. Togashi [16] numerically studed the natural
and wave-induced oscillations in Nagasaki Bay, which is a coupled bay-river system. In the
paper, a simple no-interference condition is introduced near the mouth of the river to reduce
the problem on a bounded computational domain. One difficulty in the numerical simulation
of a coupled bay-river system is the unboundedness of the physical domain.

In the past two decades, there have been many important progress in solving partial differ-
ential equations in unbounded domains, see, e.g. [2]-[13]. One of the most popular approach
is the artificial boundary condition method, which is used to handle the unboundedness of the
physical domain of the given problem (1.1)-(1.7) in this paper.

The main purpose of this work is to design a class of high-order artificial boundary conditions
for the problem (1.1)-(1.7). We introduce a artificial boundary I's in the open sea and a artificial
boundary I'y, in the river. (see Figure 1). The high-order artificial boundary conditions are
then obtained by using the integral of known information on the artificial boundary.

The organization of this paper is as follows. In section 2, we will discuss the artificial bound-
ary conditions on both ' and 'y, and reduce the original problem to a problem defined on
bounded computational domain. In section 3, we will get the equivalent variational problem
for the reduced problem. The efficiency and accuracy of the proposed schemes will be demon-
strated by several numerical examples in section 4. Some concluding remarks will be given in
the final section.

2. The Artificial Boundary Conditions

To begin with, we first introduce some notations.

€ . i . .
We choose R > 37 introduce an artificial boundary in the open sea as:

I'r = {(z,y)la” +y> = R*,x > 0}.

Choosing L < —a, we define artificial boundary in the river as:

t t
I ={(z,y)|lr = L,—§ <y< 5}

Denote Q = Qp, U Qg U [y, let
Qg = {(z,y)l2* +y* > R*, 2 > 0}
and
Q= {(z,y)|z < L,—% <y< %}
Then the bounded computational domain 7 is:
Qr =0\ (QrU Q).

2.1. The Artificial Boundary Conditions on the Artificial Boundary 'y in the
Open Sea



410 H.D. HAN AND X. WEN

In this subsection we consider the artificial boundary condition on the artificial boundary
g in the open sea. The restriction of the solution of the problem (1.1)-(1.7) on the domain
Qg satisfies:

An+ k=0 in Qg, (2.1)
% - {(0,9)llyl > R}, (2.2)
rlgglo ﬁ[w —ik(n —no)] = 0; (2.3)

where 79 is described in (1.8).

Let
' =n—"1o, (2.4)
we can verify that no also satisfies (2.1)-(2.2), so i’ satisfies:
Ay +kn =0 in Qg, (2.5)
=0 (0.l > B) (26)
or Y)Y ) .
. on' ..
Jim \/F[E —ikn']=0. (2.7)

We can get the general solution of (2.5)-(2.7) by using separation of variables in polar
coordinates in the plane:

n'(r,0) = Z em HSV (kr)cos(m(0 + I)) r>R,—

™
<0< = 2.
- <o<7, 23)

N

m=0

where H{} is the Hankel function of the first kind and of the m order, {em} are constants to
be determined.
Combining (1.8),(2.8) and (2.4) we have:

77(72 0) = nl(rv 0) + 1o (’I", 0)
= Z cm HY (kr)cos(m(0 + g))
m=0
+ ethysina o (kz cos @) (2.9)
and
677 _ > (1)1 ™
o > emkH (kR) cos (m(6 + 5))

m=0

+ iksinfsin aeiky sina

ikysino gy (kxcosa). (2.10)

cos (kz cos @)

— kcosfcosae

We need to find out the expressions for {cp, }.
The functions {cos (m(f + g)) m =0,1,---} are orthogonal on [—g, g]

/%r cos (k(0+g))cos(j(0+g))d0:0, k#j.
T2
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We have:
T T
3 0= m)lecos (m(®+ 50 = enHDER) [ % cos? (i + )8
"2 "2
memHW (kR) m =
a gcmHﬁ,P(kR) m >0
Therefore we have:
m
9 m
tm [ 7 (1= 10)[r s cos (m(0 + 5))df
2
Cm = , m2>0 (2.11)
) (kR)
with )
— m =0
b = g (2.12)
— m >0
T
Substitute (2.11) into (2.10), we get:
, o tmkHS (KR) cos(m(® + 2)) [ (7= 1)l cos (m(® + 5))db
ol _ =
or Irs mz::O HY (kR)
+ iksin@sin aetFYSIMA o (kx cos @)
—  kcosf cos aetFY SN @ iy (kz cos a). (2.13)

The condition (2.13) is the exact boundary condition satisfied by the solution 7 of problem
(1.1)-(1.7). Let

vtk Hi (kR) cos(mi(8 + 3)) /_ (1= 1) cos (m(8 + 3))d6
D) = 3

e Hyy) (kR)

+  iksin@sin aetFYSINA g (kz cos @)

—  kcosf cos ety SN gy (kx cos @) (2.14)
for M =0,1,2,---, then we obtain a sequence of approximate artificial boundary conditions on
the artificial boundary I'g:

an M
— =D . 2.15
2| =D (215)

2.2. The Artificial Boundary Conditions on the Artificial Boundary I';, in the
River

We need to set up proper artificial boundary conditions on the artificial boundary I'y, in the
river.
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We consider the restriction of the solution of the problem (1.1)-(1.7) on the domain Qf, ,
which satisfies:

An+ (1+i€)’k*n =0 in Qp, (2.16)
on t

— = +- L 2.1
By 0 {(z, £5)lz < L}, (2.17)

1 is bounded and
represents waves that

propagate in the negative x — direction; (2.18)

the general solution of (2.16)-(2.18) can be obtained by separation of variables:

o0
1 —
n= Z amer™ @=L cos (5 + %)mw, (z,y) € Qr, (2.19)

m=0
where {a,,} are constants to be determined, {u.,} have the following expression:

/
%)2 1+ i§)2]1 2, m > 0. (2.20)

According to condition (2.18), the waves represented by n should propagate in the negative x-
direction, so the imaginary part of {u,,} should be non-positive, since £ > 0, we can verify that
the real part of {u,,} is non-negative when the imaginary part of {u,,} is negative, and we can
choose the definition of square root in (2.20) so that the real part of {u,,} is non-negative when
the imaginary part of {u,} equals zero. In any situation, we can always choose the definition
of square root in (2.20) so that {u,,} has a non-negative real part and non-positive imaginary
part for m > 0, thus {a,,e"™(#~1)} represent non-growing waves propagating in the negative
x-direction. By taking this choice, 5 expressed by (2.19) would then satisfies condition (2.18).

Hm = k[(

t
The functions {cos (5 + %)mﬂ' m=0,1,---} are orthogonal on [—5, 5]:
t
9 1 1
/_22 cos(§+%)lmcos(ﬁ—k%)jwdyzo, k # 7,
2
then
t t
2 1y _ 2 L. 1 gy
/_z nlr,, cos(§ + E)mwdy = am/_z cos (5 + ;)mwdy
2 2
tam m =
- L >0’
—Qp, m
2
so we have: ;
_ 2 1.y
Um = Pm [ 3 1lr, cos (5 + ?)mﬂ'dy, m > 0, (2.21)
"2
where
1
Z m =0
D = 5 (2.22)
z m >0
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From (2.19) we have:
on
Oz

o0
1
= E am,umcos(——f-y)mw, (2.23)
r, A~ 2t

substitute (2.21) into (2.23), we have:

t

o on S 1.y /5 1.y

on| __on __ i cos (= + 2 2+ Yymray, 2.24

O] =B psenty B [T D 220
= 2

0 .
where — represents outward normal derivative of Q7.

n
The condition (2.24) is the exact boundary condition satisfied by the solution 7 of (2.16)-
(2.18). Let

t
N 2
1.y Ly
UN@m) = - E D fbm cos(§ + z)mﬂ/% nlr,, cos(§ + ;)mwdy (2.25)
m=0 -5
2

for N =0,1,---.
On the artificial boundary I';, we obtain a sequence of approximate artificial boundary
conditions:
on

on

L =UF ). (2.26)

2.3. The Reduced Boundary Value Problem of Problem (1.1)-(1.7)

Using the artificial boundary conditions given in this section, the problem (1.1)-(1.7) can
be reduced to a boundary value problem on the computational domain Q.
We denote

Q= QrnQ,,
Q5 = QrnQ,,
I = 004\ Ty,
r¢ = Tun{(0,y)llyl <R}.

The reduced boundary value problem is:

An+ (1 +i)’k*n =0 in QY7 (2.27)
An+kn=0 in Q% (2.28)
0

a_Z =0 Th\ Ty, (2.29)
In

e Uy (n) Lp, (2.30)
0

a_Z =0 e, (2.31)

on . .

Moy B continuous on I'pg, (2.32)
on

el Dy (n) Iy (2.33)

In the following section the equivalent variational problem of the reduced problem (2.27)-
(2.33) will be given.
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3. The Equivalent Variational Problem of Problem (2.27)-(2.33)

In this section the equivalent variational problem for the problem (2.27)-(2.33) will be pro-
posed. Let H™(Q7r) denote the usual Sobolev spaces on the domain Q7 with integer m , cf.
[1].

From (2.27) we have:

I'e

VnVCda:dy—/ k2(1+i£)anda:dy:/ @Cdy—k/ @Cdy Y¢ e HY(Qr), (3.1)
QLF Tps 371 8n

br
QT

3}
where 7 is the solution of problem (2.27)-(2.33); n represents outward normal derivative of
onkr.

From (2.28) we have:

s

VnVCda:dy—/ k:2n§d:rdy:/ @Cdy+/ %Cd() Y¢ e HY(Qr), (3.2)
I'r

Qs r,, On

0 N
where — represents outward normal derivative of 0€2%..

on
on
Adding (3.1) and (3.2), and noting — 9 is continuous on I'y,, we get:

VnV{dzdy — k(1 + i&)*nCdedy — / k*nCdzdy
Qr Qbr Qs

on on
/I‘L 3_ncdy + /FR a—nCdO V¢ e H' (Qr), (3.3)

0 .
where — represents outward normal derivative of 0.

n
Substituting (2.26) and (2.15) into (3.3), we can get the equivalent variational problem of
problem (2.27)-(2.33):

Find n € H'(Qr), such that

Ayn(m,¢) = F(¢), V(e H (Qr), (3.4)
where
A}\/IN(n:C) = AT(T’)C) +AL(77)C) +AR(T’)C)7
Ar( Q) = [ VnV(dady - / K2 (1 + i€) 2 Cdady — / KonCdudy,
Qr Qbr Q.
t :
AL = meum J3 Clry cos (5 + Dymmdy [ 3 s, cos (5 + Lymrdy,
2 2
Mt kRHSY (KR) [ 2, 1l cos (m (9+ ))d8 %, Clr cos (m(6 + g))de
Ag(n, ¢) = — ,
r(1,0) mz:[) (1)(kR)
Mt kRHY (KR) [ 2, nolr, cos (m (0+ ))do [, . (I cos (m @+ T))de
F(Q) =~ : :

b7 653 (kR)
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jus
2

+R ik sin 0 sin aetRItsindsina . (kR cosf cos a)(db

[ I3

-R k cos§ cos aetFRSIMOSING g (kR 056 cos ) ¢d6.

[NE]

Remark. When there is no river or the river has finite length, we would perform the perfect
reflective condition in the end of river, thus we only need to use the artificial boundary conditions
(2.15) to reduce the original problem to a problem on a finite computational domain. The
deductive method is similar, so we only list the equivalent variational problem for this case in
the following;:

Find n € H'(Qr), such that

A3 (n,Q) =F(C), V(e H'(Qp), (3.5)
where

4. Numerical Results

In the following numerical examples, the domain Q is divided into small triangles. Let V},
denote the standard finite element subspace of H'(Q7) by the linear elements. Namely

Vi = {vn|vn, € C°(Qr) and on each triangle vy, is a linear function}.
Then we obtain the finite element approximation of the problem (3.4) :

Find n, € V},, such that

Abrn(ns C) = F(Gr), V(h € Vp, (4.1)

and the finite element approximation of the problem (3.5):
Find 7y, € V},, such that

A% (1, Cr) = F(Cn), V(¢ € Vi. (4.2)

After solving the problem (4.1) or (4.2) we obtain the approximate solution 7, of the original
problem (1.1)-(1.7) on the computational domain Q7.

In this section, we first present a numerical experiment which demonstrate the effectiveness
of the artificial boundary condition, then we will calculate numerical solution of the problem
(1.1)-(1.7) and the relations between amplification factor and wave number, finally, we will test
the effect of choosing different terms in the artificial boundary condition and choosing different
location of the artificial boundary.

We will calculate problem (4.1) or (4.2) for two different shapes of the bay.

Let

b b
0 = {(m,y)|—a<w<0,—§<y<§}’

b b
Q = {(Zﬂ,y)|—a<w<0,—§<y<§}

U {2 et D - 02 < )

b a b a’
< —= ~)? -2 < —}
U {@yly <=5 @+5)°++5)° <}
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When calculate with Qj, we choose a = 12,b = 5,e = 1,t = 1, R = 2.5, three meshes are
employed in our computations in this case. For a given mesh, the mesh size h is defined as the
maximum of the border-lengths of all triangles in the mesh. Figure 2 shows the partition for
mesh A (h=0.25) of Q7. We can see in this case, some nodes in Q5" have the same position with
the other nodes in Q5. Mesh B(h=0.125) is generated by dividing each triangle in mesh A into
four equal smaller triangles. Mesh C (h=0.0625) is obtained from mesh B in a similar way.

When calculate with Q2, we choose a = 4,b = 1,e = 1,t = 1,R = 2.5, two meshes are
employed in our computations in this case. Figure 3 shows the partition for mesh A’'(h=0.25)
of Qr. Mesh B’(h=0.125) is generated by dividing each triangle in mesh A’ into four equal
smaller triangles.

-14 -12 -10 -8 -6 -4 -2 n] 2

Figure 2: Mesh A

Figure 3: Mesh A’

4.1. Numerical Results of a Test Problem

We consider the case no river is present.
Let o
— olkysina

m cos (kz cos @),

consider following boundary value problem which is similar to problem (2.27)-(2.33):

An+kn=0 in Qr, (4.3)
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87] _ 87]1 br

an " an I, (44)
877 _ cl

7 =0 re (4.5)
on

o = D (n) Lg; (4.6)

0
where — is the outward normal derivative of 0Qr.

n
It can be verified that 7, is the exact solution of the problem (4.3)-(4.6). It can also be
verified that the Problem (4.3)-(4.6) is equivalent to the following variational problem:

Find n € H'(Qr), such that

Ar(n,Q) + Ar(1,Q) = F(O) + F(Q), Y (€H (), (47)
where Agr(n, (), F(¢) is described in section 3 and

Ar(n,¢) = - VnVidady - | k*n¢dzdy,
~ 0
Fo = | SL(ds.

It can be verified that Ar(n,¢) is the same as A7 (n,¢) when & = 0. In this case, (4.7) and
(3.5) have the same bilinear form.

We choose Q} as the shape of the bay. By using our finite element method, a numerical
solution 7, of variational problem (4.7) is obtained. The relative errors of 1y, — my in Leo-, La-
and H'-norm are given in the Table 1 for mesh A, B, C, respectively.

Table 1: comparison of 1, with n;

Errors h=025 h=0.125 h=0.0625
max|n, — 1|/ max|n| 11.61% 4.711% 0.57%
||7]h — 771||0,QT/||771||0,QT 5.72% 2.37% 0.29%
||7]h —7]1||1,QT/||771||1,QT 6.57% 3.51% 1.83%

Asg shown in Table 1, n, tends to n; when the mesh size h decreases. The results demonstrate
our artificial boundary conditions are very effective. When use our artificial boundary condition
to solve problem in a unbounded domain, the convergence rate of the mesh size is consistent
with the usual finite element error estimation for the problems in a bounded domain.

4.2. Numerical Results of Problem (1.1)-(1.7)

We can obtain approximate solution 7y, of problem (1.1)-(1.7) by computing problem (4.1)
or (4.2).

We have mentioned before the wave amplitude H is the modulus of complex amplitude 7,
the amplitude factor is then H/Hy. Figures 4-6 show some results of the amplitude factor on
mesh B when k& = 0.8333, for different case of river or ¢ .
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Figure 4: Wave amplification factor with € = 0 on mesh B. An enclosed river with s/a = 10 is present

Figure 5: Wave amplification factor with £ = 0 on mesh B. A semi-infinite river is present

Figure 6: Wave amplification factor with £ = 0.05 on mesh B. A semi-infinite river is present
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.HXHO 7 T T T T T
% 1 2 3 4 5 5 7 o
Figure 7: Wave-number response of amplification factor in the bay at x = —a and y = b/2 on mesh A
for £ =0, 0.05 respectively. No river is present
H;Ho 7 T T T T T
ka
Figure 8: Wave-number response of amplification factor in the bay at z = —a and y = b/2 on mesh A

for £ =0, 0.05 respectively. An enclosed river with s/a = 1.5 is present
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B Hy

ko

Figure 9: Wave-number response of amplification factor in the bay at x = —a and y = b/2 on mesh A
for £ =0, 0.05 respectively. An enclosed river with s/a = 10 is present

H;H-o 7 T T T T T

o 1 1 1 I 1 1 ka

Figure 10: Wave-number response of amplification factor in the bay at = —a and y = /2 on mesh
A for £ =0, 0.05 respectively. A semi-infinite river is present
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4.5 T T T T T
H/H,
4 i
ka
Figure 14: Wave-number response of amplification factor in the bay at £ = —a and y = —b/2 on mesh
A’ for £ =0, 0.05 respectively. No river is present
H/H,
ka
Figure 15: Wave-number response of amplification factor in the bay at £ = —a and y = —b/2 on mesh

A’ for £ =0, 0.05 respectively. An enclosed river with s/a = 1.5 is present



The Artificial Boundary Conditions for Numerical Simulations of the ... 423

4.5 T T T T T

HiHy

35k £=0.05 -------------------- B

25

Figure 16: Wave-number response of amplification factor in the bay at £ = —a and y = —b/2 on mesh
A’ for £ =0, 0.05 respectively. An enclosed river with s/a = 10 is present

4.5 T T T T T

B/ H,

ka

Figure 17: Wave-number response of amplification factor in the bay at £ = —a and y = —b/2 on mesh
A’ for £ =0, 0.05 respectively. A semi-infinite river is present
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Table 2: The effect for M in the artificial boundary conditions &k =0.8333 £ =0

Errors M=0 M=2 M=4 M=6 M =10 M =20
max|ni% — M| 2.3912E-2  3.3004E-3 2.2238E-3  1.5179E-3 9.9754E-4  3.3969E-4
1720 — nfljo.0p  2.8435E-2  1.212E-3  6.1579E-4 3.2517E-4 2.1312E-4  8.4854E-5

7% — M|l o, 2.2032E-1 2.4534E-2 1.7445E-2 1.3732E-2 1.1141E-2 5.8338E-3

Table 3: The effect for M in the artificial boundary conditions &k = 0.8333 £ = 0.05
Errors M =0 M =2 M=4 M =6 M =10 M =20
max|n;’® — nM|  1.4432E-2 3.1427E-3  2.0188E-3 1.4237E-3  9.0045E-4 3.2239E-4
1720 — nfllo.0p 1.6245E-2  1.1096E-3 5.0729E-4 3.1452E-4 1.8375E-4 8.1391E-5

7% — M|l o, 1.4315E-1 2.2541E-2 1.5321E-2 1.2621E-2 9.7451E-3  5.2347E-3

Table 4: The effect for M in the artificial boundary conditions k = 0.4167 £ =0

Errors M=0 M=2 M=4 M=6 M =10 M =20
max|n;’ — M|  4.7352E-3  5.9373E-4 5.1315E-4 2.9728E-4  2.2965E-4  6.8783E-5
5% — 9 ljo.ar  5.4331E-3  2.0967E-4 1.9474E-4 7.8812E-5 6.4291E-5 2.1572E-5

100

7% — M|l o, 4.1236E-2  5.1109E-3 5.3374E-3  3.4231E-3  3.2236E-3  1.5297E-3

Table 5: The effect for M in the artificial boundary conditions k& = 0.4167 £ = 0.05
Errors M=0 M=2 M=4 M=6 M =10 M =20
max|’17;1100 — 17;]2/I| 4.5124E-3 5.7518E-4 4.9804E-4 2.9035E-4 2.2296E-4 6.7325E-5
0% — Mo, 5.2256E-3 2.0219E-4 1.8817E-4 T.7117E-5 6.2243E-5 2.1182E-5

1720 — pMl1,0, 3.9321E-2 5.3345E-3 4.9256E-3 3.3475E-3  3.1200E-3  1.4234E-3

Table 6: The effect for M in the artificial boundary conditions k= 0.2778 £ =0

Errors M=0 M =2 M=4 M=6 M =10 M =20
max|n;® — M|  1.4247E-3  1.8916E-4 1.9448E-4 1.2495E-4 1.0963E-4 3.2266E-5
7% — pM o, 1.9345E-3 8.5505E-5 6.6155E-5 3.5769E-5 3.2821E-5 1.1184E-5
N — M|l o, 1.4262E-2 2.2326E-3 2.1007E-3 1.7353E-3 1.6247E-3  7.8243E-4

Table 7: The effect for M in the artificial boundary conditions k = 0.2778 £ = 0.05

Errors M =0 M =2 M =4 M =6 M =10 M =20
max|np?0 — 17,11‘/[| 4.9233E-4 1.5626E-4 1.7609E-4 1.1003E-4 9.2000E-5 2.777E-5
|Ink00 — 77,17/%“07(211 7.0730E-4 7.1564E-5 6.1769E-5 3.1954E-5 2.7514E-5 9.7988E-6
|Ini%° — 77,12/[||1,QT 5.3999E-3 1.8852E-3 1.8175E-3 1.4292E-3 1.3612E-3 6.422E-4

We will calculate the amplification factor for different wave number. Figures 7-10 show the
relations between amplification factor H/Hy at * = —a and y = b/2 with the relative wave
number ka when £ = 0, 0.05 with no river , enclosed river with different length , and semi-
infinite river respectively. Calculations are performed on mesh A. These results are in good
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agreement with results found in the literature [15].

Figures 11-13 show some results of the amplitude factor on mesh B’ when k& = 1.5, for
different case of river or .

Figures 14-17 show the relations between amplification factor H/Hy at = —a and y = —b/2
with the relative wave number ka when & = 0,0.05 with no river , enclosed river with different
length , and semi-infinite river respectively. Calculations are performed on mesh A’.

4.3. Test of Artificial Boundary Condition on 'y

We choose the shape of the bay as Qé to perform the numerical test.

We will first test the effect of choosing different terms in the artificial boundary condition.
Consider the case no river is present. We will test the effect for different M used in artifical
boundary condition on I'r. Let 77,11\/" denote the finite element solution of the problem (4.2), where
M is the number used in the bilinear form Ag(n, () and linear form F(¢). M + 1 represents the

terms used in artificial boundary condition. Tables 2-7 show the maximum error of 1% — pM

over mesh points, || 7:°° — nM|lo.o, and [|7.%° — nM||1 o, for mesh B with k = 0.8333,0.4167
and 0.2778,¢& = 0,0.05, respectively.

As shown in Tables 2-7, the error caused by using different terms in the artificial boundary
condition is very small, this means the artificial boundary condition on I'p is a good approxi-
mation to the exact boundary condition even if M is small. Therefore in the computation very
few terms in the bilinear form Ag(n,() and linear form F({) are only needed in order to get
good accuracy.

We will then test the effect of choosing different location of the artificial boundary I'r. Still
consider the case no river is present. We take R = 2,2.5,3 and 3.5, respectively. For each R, we
use a corresponding mesh with the mesh size h=0.125. Let n denote the finite element solution
of (4.2) when R = 3.5 and M = 10. Table 8 show the maximum error of  — 7;° over mesh
points in QFF, |ln — m;°llo.qzr and [l —7;°|l; qur for different location of the aitificial boundary
Cg.

Table 8: The effect of the location of the artificial boundary '

Errors R=2 R=25 R=3
max |n — n;°| 2.0055E-3 9.3841E-4 1.7580E-4
ln — n°[lo,22 7.4046E-3 3.5122E-3 6.4931E-4
lln = ni° 11,00 3.38E-2 1.5827E-2 3.009E-3

As shown in table 8, the influents caused by choosing different location of artificial boundary
I'g is very small. This means the artificial boundary condition on I'g always has high accuracy
wherever the artificial boundary 'y is located. Therefore for a given accuracy, it is possible to
use a small bounded computational domain to save computational cost.

5. Conclusions

A sequence of high-order artificial boundary conditions at the artificial boundaries in the
open sea and the river are designed for the complex amplitude problem in the coupled bay-river
system. Then the original problem is reduced to a problem defined on a finite computational
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domain, which is equivalent to a variational problem. The variational problem can be solved
by finite element method. Then the numerical approximation for the original problem is ob-
tained. Numerical examples show that our artificial boundary conditions are very effective.
Summarizing this paper, we can make some conclusions on our method:

e Our artificial boundary conditions are very effective, with this method, the finite element

approximate solution have high accuracy and only a few terms in the artificial boundary
conditions are needed in computation.

The convergence rate of the mesh size is consistent with the usual finite element error
estimation for the problems in a bounded domain when using our artificial boundary
conditions to solve a problem in an unbounded domain.

The influents caused by different location of artificial boundary Iy is very small. Therefore
we can choose a small bounded computational domain to get high accuracy.

References

R.A. Adams, Sobolev Spaces, New York: Academic Press., 1975.

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves,
Math. Comp., 31 (1977), 629-651.

K. Feng, Asymptotic radiation conditions for reduced wave equations, J. Comput. Math., 2 (1984),
130-138.

D. Givoli, Numerical Methods for Problems in Infinite Domains, Elsevier, Amsterdam, 1992.
C.I. Goldstein, A finite element method for solving Helmholtz type equations in waveguides and
other unbounded domains, Math. Comp., 39 (1982), 309-324.

T.M. Hagstrom and H.B. Keller, Exact boundary conditions at artificial boundary for partial
differential equations in cylinders, STAM J. Math. Anal., 17 (1986), 322-341.

T.M. Hagstrom and H.B. Keller, Asymptotic boundary conditions and numerical methods for
nonlinear elliptic problems on unbounded domains, Math. Comp., 48 (1987), 449-470.

L. Halpern and M. Schatzman, Artificial boundary conditions for incompressible viscous flows,
SIAM J. Math. Anal., 20 (1989), 308-353.

H. Han and W. Bao, An artificial boundary condition for two-dimensional incompressible viscous
flows using the method of lines, Int. J. Numer. Methods Fluids, 22 (1996), 483-493.

H. Han and W. Bao, An artificial boundary condition for the incompressible viscous flows in a
no-slip channel, J. Comput. Math., 13 (1995), 51-63.

H. Han, J. Lu and W. Bao, A discrete artificial boundary condition for steady incompressible
viscous flows in a no-slip channel using a fast iterative method, J. Comput. Phys., 114 (1994),
201-208.

H. Han and X. Wu, Approximation of infinite boundary condition and its application to finite
element method, J. Comput. Math., 3 (1985), 179-192.

H. Han and X. Wu, The approximation of exact boundary condition at an artificial boundary for
linear elastic equation and its application, Math. Comp., 59 (1992), 21-27.

G. B. Whitham, Linear and nonlinear waves, Wiley-Interscience, New York, 1974.

Xiping Yu, Oscillations in a coupled bay-river system. 1. Analytic solution, Coastal Engineering,
28 (1996) 147-164.

Xiping Yu and Hiroyoshi Togashi, Oscillations in a coupled bay-river system, 2, Numerical
method, Coastal Engineering, 28 (1996) 165-182.

Xiping Yu and Hiroyoshi Togashi, Irregular waves over and elliptic shoal, Coastal Engineering,
28 (1996) 165-182.



