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Abstract

It is known that for a given matrix A of rank r, and a set D of positive diagonal
matrices, Supy cp ||(W%A)TW%||2 = (min; 04+ (AP))~!, in which (A®) is a submatrix of
A formed with r = (rank(A)) rows of A, such that (A®) has full row rank r. In many
practical applications this value is too large to be used.

In this paper we consider the case that both A and W (€ D) are fixed with W severely
stiff. We show that in this case the weighted pseudoinverse (W% A)TW% is close to a multi-
level constrained weighted pseudoinverse therefore ||(W%A)TW% ||2 is uniformly bounded.
We also prove that in this case the solution set the stiffly weighted least squares problem
is close to that of corresponding multi-level constrained least squares problem.

Mathematics subject classification: 15A09, 15A12, 65F20.
Key words: Weighted least squares, Stiff, Multi-Level constrained pseudoinverse.

1. Introduction

In this paper we are concerned with the stiffly weighted least squares (stifly WLS) problem

min |W# (Az — )], = min | D(4z — b)) M)

and related weighted pseudoinverse AJ{,V = (WzA)'Wz, where ||-|| = ||-||> denotes the Euclidean
vector norm or subordinate matrix norm, 4 € C™*" b € C™ are known coefficient matrix and
observation vector, respectively,

D = diag(dy,dz, -+, dm) = diag(wlé)wév T ,’11)7%1) = W% (2)

is the weight matrix. WLS problem Eq. (1) with extremely ill-conditioned weight matrix
W (in this case Bjorck [3] called W stiff weight matrix), where the scalar factors wy,- -, wp,
vary widely in size arise, e.g., in electronic network, certain classes of finite element problems,
interior-point method for constrained optimization (e.g., see [8, 15]), and for solving the equality
constrained least squares problem by the method of weighting [16, 1, 14].

In the case that W is severely stiff, it is not at all apparent that an accurate numerical
solution to Eq. (1) is possible, since ill-conditioning in W presumably means extreme sensitivity
to roundoff errors, because in standard numerical analysis, error bounds of the solutions to Eq.
(1) have a weighted condition number k(W2 A) = ||[W= A||||(W=A)T|| as a factor so that when
W becomes ill-conditioned the condition number would become unbounded.
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On the other hand, one can define a new condition number k = ||A||||AJ{,V|| If ||AI,V|| is
uniformly bounded, then s would be uniformly bounded.

Stewart [13] obtained an upper bound of scaled projections when A € R™*™ has full column
rank and weight matrices W range over a set D of positive diagonal matrices. Liu and Xu [10]
then proved that this upper bound for scaled projection is indeed the supremum. Wei [19],
Forsgren [6], Wei [20] respectively have obtained the supremum of weighted pseudoinverses
when weight matrices W range over D, or a set P of real symmetric diagonal dominant semi-
positive matrices. Forsgren [6] and Wei [20] have also extended the results to constrained
weighted pseudoinverses. For more detailed description on this topic, we refer to [21].

In practical applications, the supremum [19, 20)

1
Al —— =
e 14 = ) @

sometimes may be too large to be of practical usefulness. For instance, suppose

1 0
A= 6 0 5 WO = diag(wl,wl,wg),
01

where w; > w3 > 0 are arbitrary, and 0 < § < 1. Then
i tr=l
|Aw,ll =1 and sup [[Ay || = 5 > 1.
weD

This example rises a question: if the weight matrix W is given and is very ill-conditioned,
does exist an upper bound of ||AI,V|| which is of moderate size?

In this paper we will study the above question. Without loss of generality, we make the
following notation and assumptions for A and W.
Assumption 1.1. The matrices A and W in Eq. (1) satisfy the following conditions: ||A(3,:

N = (@i, ain, -+ -, ain)|| have the same order for i = 1,---,m, w; > wy > --- > wg > 0,
my + mso + --- +my =m, and we denote
A1 miy A1
A= : : , Cj = : , j=1,---k, (4)
Ak mg Aj

W = diag(wy Iy, wolnm,, -+ s wiln,),
(5)

0<ey; =221, for1<j<i<ksoe= max {e1;} <1
J 1<j<k
We also set
Py =1y, P;=1-ClCj, rank(Cj) =71, j=1,--,k. (6)

Vavasis and Ye [17] studied interior-point method for solving linear programming problem,
in which the matrices A and W basically satisfy Assumption 1.1.

The paper is organized as follows. In §2 we will derive several equivalent formulas of the
stiffly weighted pseudoinverse; in §3 we will derive the multi-level constrained pseudoinverse and
corresponding multi-level constrained least squares (MCLS) problem; in §4 we will prove that
the stiffly weighted pseudoinverse is indeed close to the multi-level constrained pseudoinverse
therefore is uniformly bounded; in §5 we will deduce upper bounds of difference of the solutions
between of the stifly WLS problem and the MCLS problem; finally in §6 we will conclude the
paper with some remarks.
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2. Equivalent Formulas of the Stifly Weighted Pseudoinverse

In this section we will derive several equivalent formulas of the stiffly weighted pseudoinverse.
We first provide some preliminary results which are necessary for our further discussion.
Lemma 2.1. [20, 2] For given matrices A € C™*"™ and W € D, define

Aw = WAWA) A, (7)
then ) )
Ay = (WrA)TWe, (8)
and
Al Aw = Al A= ATA (9)

IfA= < I[é ) , then we also have rank(A) = rank(L) + rank(K P) and

Al Ay = Al A= ATA=L'L+ (KP)'KP

with P =1 — L'L.
Lemma 2.2. [7] Suppose that D,E € C™*" and rank(D )=rank(E). Then

IDD' — EE'|| < min{||(D — E)D'||, [(D — E)ET|, 1},

(10)
|DD* — EET|| < min{||DY(D - B)||, |[E"(D — E)||,1}.
Lemma 2.3. Under the notation of Assumption 1.1,
(4;P; 1)t 4Py = ClC; - O] Cjy, (11)
rank(A4;Pj_1) = rank(C;) — rank(Cj_1) =r; —rj_1

for j =2,---,k. Denote (A;P;_1)" = Q,R; the unitary decomposition of (A;Pj_1)" (AJH is
the conjugate transpose of the matriz A; ), where Q]HQ]' =TI, _,_, and R; has full row rank
rj —rj—1. Then for j =1,--- K,

J

@1, Q)" (Qu,++,Q)) =1Ly, CIC; =>"QiQf, (12)
=1

APy = A;Q,;QF, (A;P-1)" = Q;(4;Q))". (13)

Proof. The identities in Eq. (11) are just mentioned in Lemma 2.1. For j = 1, Egs. (12)-
(13) are true. Suppose that for 1 < j <t < k, Eqs.(12)-(13) are true. Then for j =t + 1, from
Eq. (11) and the definition of Qt—i—l: (Ql, ey, Qt)HQH_l = 0, SO

t+1

(@1, Q)" (Qu, -, Q1) = Iy, CFy 1 Cigr = >l

=1

Ar1Qei1QF = A1 (Cf Oy + P)Qun QF = A1 PiQueii QFL, = A P,

and by induction hypothesis, we prove Egs. (12)-(13).
Lemma 2.4. [11, 24] Let A € C™*" and A= A+ §A € C™*™. Then we have the following
results.
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1. If |6A]| - [|AT|| < 1, then rank(A) > rank(A). A
2. If ||6A]| - ||AT|| < 1, and rank(A) > rank(A), then ||Af|| > m.
3. If ||6A|| - ||AT]] < 1, and rank(A) = rank(A), then

| AT|| : | A]]
— <Al < —
L+ [[0A]l - [JAT]] L —[[0A]| - | At]]

So ||At|| is bounded for all small perturbation §A with

I6A] - |AT|| < n < 1, if and only if rank(A) = rank(A),

where 0 < n < 1 is a constant.
We now present the main result of this section.
Theorem 2.1. Under the notation in Assumption 1.1,

Aw = B.B'A = A ATA = (BH®BHB,Q",
Al = Q(BIB) ' B,

A, =

A,Q, 0 . 0
B 14201 AQ2 - 0
€k1AkQ1 GkQAkQ2 tee Aka
Aq
€21 4:Q1Q1 + 4:Q2Q%

€1 ArQ1QT + €42Q2Q% + -+ + AL QrQH

M.S. WEI

(14)

in which B, has full column rank r;, = rank(A) = rank(A.), and B, is obtained from B. by

replacing all €;; in B, with ones.
Proof. By applying Lemmas 2.1-2.3, we obtain

w1 Ay wlAlQlQ{I
U)2A2 w2A2(Q1Q{I + Q2Q£I)
WA = . = )

wrAg wpAp(Q1QF + Q2Q8 + - + QrQF)
w1A1Q1 0 0
wrAs@Qr  w2A2Qs - 0 —

= . ) . wtwH
weArQr wpArQz - wpARQi

= B.(WQ™M),

where W = diag(wy I, ,walpy—py -+ Wi Ip, —ro_,), and both B, and QW have full column rank

rr. Then

Aw = WAWATA=B(QW)H(B.(QW)H)T A
B(QW)T(QW)* "B A = BBl A
BEQHQBJA = (BEQH)(BEQH)TA = AEAZA'
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Similarly, we have A = B;Q", and it is obvious that
B.BIA = (B.B)" B.Q" = (B))" (B B1)Q",

in which both (BI) and Q¥ have full row rank, B B; is nonsingular. Therefore we obtain
AJ{,V = Q(BEB,) !B, completing the proof of the theorem.

3. Multi-level Constrained Pseudoinverse and MCLS Problem

In this section we first introduce a multi-level constrained pseudoinverse ATO which is inde-
pendent of W, and corresponding MCLS problem. The MCLS problem was first studied by
Vavasis and Ye [17] in which the MCLS problem is called the layered least squares problem
(LLS).

Theorem 3.1. Under the notation of Assumption 1.1, define

Ay

A (AsPy)T Ay ;
AC = . = B0B0A7 (15)
A (ApPe1)t Ay,

then
AL = (GiGrer -+ Go(A1 Py)t, GGy - - Gs(AP))T,

16
e Gl Ak Po)ly (A Pi)!) = QUBL BL) - BY! (16)

in which By is obtained by setting all €;; in B with zeros, and
Gj=1I,— (A4;P_)t4;, j=2,-,k (17)

Proof. Denote the matrix of the middle side in Eq. (16) by F. We need to prove F' = ATO.
Step 1. We first prove by induction that for [ = 2,---, k,

CiCi= G- Ga(AiP) AL + Gy - Ga(AaP1)T Ay

18
o+ GrAII Po) A + (AP T AL (18)

When [ = 1, Eq. (18) is trivially true. Suppose that the identity in Eq.
(18) holds for 1 <1 <t < k. Then by applying Lemma 2.3, we have

Gi1Gy - Ga(A1P) AL + GGy - - - G3(Ax P Ay + - -
+Gry1 (AP1) A+ (A P)T A
=G [Gro Go(A1Po)T AL + Gy G (AP )T Ay + -+
+(AtPt71)TAt] + (At+1Pt)TAt+1
= Gt+1CtTCt + (AtJrlPt)TAtJrl
= CtTCt - (At+1Pt)TAt+1CtTCt + (At+1Pt)TAt+1
= CtTCt + (At+1Pt)TAt+1Pt - C;r+1ct+1.

So the identity in Eq. (18) also holds for [ = ¢t + 1. Then by the induction process Eq. (18)
holds for all [ = 1,--- k, and finally we obtain

FAo = (FAQ)® =Clcy, = ATA. (19)
Step 2. We now prove that
ACF = diag(Alpg(Al.Po)T,Agpl (AQPl)T, . ,Akpkfl(AkPkfl)T). (20)
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Because A, = Az(QleI + -4 QleI), (Ajpjfl)T = Qj(Aij)T, SO

Ai(AiPo)TAG = A (AP)TA(T — Q(4;Q5)T4))
_ Ai(Ai Pt Ay, i<,
= 10 i=j.

With the above observation, we have that for j <k — 1,

Ai Aszf T, fori= j,
AP AG -+ Gy (4P = { il e
0, 1<k,

(A.P. A T
[Az(Aszfl) Az](AkPkfl) - { Ak(Ak:Pk—l)T: i=k.

therefore
AcF = diag(Ay (A1 Py)T, Ay (A2 P, - Ap(Ap Py)t) = (AcF)X.
Step 3. By applying the identity in Eq. (20 ) we can easily verify

AcFAc = (AcF)Ac = Ac, FAcF = F(AcF) =F.

Then F satisfies all the four conditions as the unique pseudoinverse of A=[2]. So F' = Ag. That
ATC = Q(B B,) ' BE results from Theorem 2.1.

The multi-level constrained pseudoinverse ATC can be obtained from the following multi-level
constrained least squares (MCLS) problem: Let A; € C™i*" b; € C™: be given. Define the
following sets S;:

S1=C" Si={r €S 4w bl = min |4y - b}, 2
Yyeoi-1
fori=2,---k, and let x € C™ sequentially satisfies the following conditions
x €S, €8y,-,x €Sk (22)

Then we have the following result.
Theorem 3.2. Suppose that A € C™*™ satisfies the notation in Assumption 1.1, and Ac is
defined in Theorem 3.1. Then any solution x € C™ of the MCLS problem Eqs. (21)-(22) has

the following form:

b1
v =ap+ Pozp = ALb+ Pz, b=| ¢ |, (23)
b
in which z;, € C™ is an arbitrary vector.
Proof. We will prove that
=z + Pz,
with
b1
o= (G- Go (A R), -+ Gi(As  Poo)t (APs)T) | (24)
b

forl =1,2,---,k. When [ = 1, it is obvious that

Tr = AIbl + (I — AIAl)Zl =x + P12’1
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with z; € C™. Suppose that for 1 <1 < ¢ < k the formulas in Eq. (24) is true. Then from
x € Sii1, 2¢ should satisfy

[Ats1(ze + Peze) = bea|l = min |Ae41(2¢ + Prz) = berall,
therefore
2t = (At+1Pt)T(bt+1 - At+1l°t) + (I - (At+1Pt)TAt+1Pt)Zt+1;
and by applying Lemma 2.3,

r= x+ P2y = Gryrm + (At+1Pt)Tbt+1 + Piy12i41

= T441 + Pz

So for [ = ¢t+1 the assertion is also true. By induction hypothesis Eq. (24) holdsforl =1,-- -, k,
and ¢ = xp, + Przp = Agb + Pz,

4. Differences between Ay — A¢ and Al, — AL,

We now prove that when A and W satisfy Assumption 1.1, then AI,V is close to ATC.
Theorem 4.1. Under the notation and conditions of Assumption 1.1,

€
lw = Acl < T 141l max 144,750 = e (25)
in which € = maxi<j< wlj'):l. Therefore when eE||ATC|| <1
4wl < 7 [Aw = Agll < V2ec[|Ag [l Ay [l (26)
1— el Azl

Proof. From Eqs. (14)-(15), and Lemma 2.2,

4w — Acll = [|B:BIA = BoBJA| = ||(B.Bf — BoBf)A|l
< |[(Be = Bo)B|| - |4l

Now
(Be — Bo)B{
0 0 0 0
€21 A2Q1 0 0 0
= . . . . diag((A1Q1)1, (42Q2)1,- -+, (A, Qx)T)
1 ARQ1  €2ARQ2 -+ €4 k—1ARQr—1 O
0 0 0 e 0
€21 42Q1 (A1 Q1)1 0 0 - 0
1 ArQ1(A1Q1)T  €r2ArQ2(A2Q2)F €k k—1 Ak Qr—1(Ap—1Qr—_1)" 0
therefore
|(B. — Bo)B}||

< ||diag(€21 A2Q1(A1Q1)T, -, b1 AR Qr—1(Ar—1Qr—1)1||
+||diag(e31 A3 Q1 (A1Q1)T, -+ €k k2 Ak Qr—2(Ak—2Qr—2)]|

+ 4+ 5k1||AkQ1(A1Q1)TH

< emaxi<jick [[4;41Q5(A4;Q)) [ + € maxi < jp—1 [|4;42Q;(4;Q5)]
s T AR Q1 (A1 Q)|

(€+ € + -+ e maxicjcicr [|4:Q; (4;Q5)]

<
< 15 maxg<jcick [[Ai (43P,

+
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in which we have applying Lemma 2.3 and used the inequality
€ij = €1 €y <€
for 1 < j < i < k. Then the inequality in Eq. (25) holds. Also notice that
rank(Aw ) = rank(A¢) = rank(A4) = ry,
in the case eE||ATC|| < 1, we can apply Lemma 2.4 to obtain

141 S e
1—||Aw — Ac|| - [|[ALI ~ 1 - e lAL]]

1Al <

Notice that from Lemma 2.1, AJ{,VAW =AtA = AEAC, we then have the following identity:

Al — AL = Al (Aw — Ac)AL + Al (I — AcAL) — (I — Al Aw) AL

2
= Al (Aw — Ac)AL + AL, (I — AcAL). (27)

Therefore, for any z € C™,

|25 (AL, — AL)12 = (|27 Al (Aw — Ac) AL + |25 Al (T — AcAL)|1?
<=l A% N Aw — AclIIALIT2 + [zl AL Aw Al (T — Ac AD)(I1?
< 2lec||z | AL AL,

from which we prove the second inequality of Eq. (26).

When the matrix A has some special properties, such as A has full row rank, or range(AjH )
for j = 1,---,k are mutually orthogonal, then Ay = Ag = A and AJ{,V = ATC = At as
mentioned in the following corollary.

Corollary 4.1. Under the notation and conditions of Assumption 1.1, if further more, A has
full row rank , or range(AJH) for 3 =1,--- k are mutually orthogonal, then

Aw = Ao = A and Al, = AL, = A%

Proof. When A has full row rank m, both B, and By in Egs. (14)-(15) are nonsingular, and
Aw = Ac = A and A}, = A}, = A,
When range(AfI) for j =1,---,k are mutually orthogonal, then

Ajpj—l = Aj = AijQH and AzQ] =0

jo

fori,j=1,---,k and i # j. Therefore from the formulas of Ay and A¢ in Egs. (14)-(15), we
immediately have
Aw = Ac = A and A}, = A}, = A",

5. Difference between the Solution Sets of the Stiffly WLS and
WCLS Problems

In this section we provide upper bounds of the difference between the solution sets of the
stiffly WLS problem Eq. (1) and the WCLS problem Egs. (21)-(22).
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Theorem 5.1. Consider the stiffly WLS problem Eq. (1) and the WCLS problem Egs. (21)-
(22), in which the matrices A and W satisfy the conditions mentioned in Theorem 4.1. Then
for any solution xw to the stiffly WLS problem Eq. (1), there exists a solution x¢ to the MCLS
problem Egqs. (21)-(22), such that

14E1

— 2 (lzcrs| + 1AL - [IrelD), (28)
1—e|lAL

lzw — zc|| < e

in which rcrs = ATCb and rc = b— Aczcrs; and vice versa.
Proof. Notice that from Lemma 2.1 and Theorem 3.1, AJ{,VAW = AtA = AEAC, So any
solution zw to the stiffly WLS problem Eq. (1) has the form

ew = Al b+ (I — ATA)z
for some vector z € C™. Choose

zo = ALb+ (I — AT A)z,
then z¢ is a solution to Eqs. (21)-(22). Therefore

lew —ac|| = ||<¢€V — AL)b| T T
<1l |- DlAw = Acll - lzcrsl + 4w Aly (7~ Ac AL e
A
< el e lweps| + eclALNIrell,
1—ec||AL]l

by applying Lemma 2.2, Eq. (27), and the estimate in Theorem 4.1.
When A has full row rank, or range(AJH) for j = 1,---,k are mutually orthogonal, Ay =

Ac = A and AJ{,V = Ag = A", as mentioned in Corollary 4.1, in this case we immediately have
Corollary 5.1. In Theorem 5.1, if A has full row rank, or range(AfI) for j =1,--- k are
mutually orthogonal, then the solution sets of the stiffly WLS problem Eq. (1), the MCLS
problem Eqs. (21)-(22) and the ordinary least squares problem

min ||Az — b||

are same.

6. Conclusion

In this paper we have discussed the relationship between the stiffly weighted pseudoin-
verse and the corresponding multi-level constrained pseudoinverse, and the solution sets of
the stiffly WLS and MCLS problems. We have shown that when ee||ATC|| < 1 and ||ATC|| <
supwep || 4jy |, then

1431l ~ 1451 < sup || 4]y |
weD

and the solution sets of the stiffly WLS problem Eq. (1) is very close to that of the MCLS
problem Egs. (21)-(22).

There are still some questions concerning the stiffly weighted pseudoinverse and stifly WLS
problem remaining not answered.

1. For fixed A and W with W severely stiff, under what conditions are the perturbations to
the stifly weighted pseudoinverse and the stiffly WLS problem stable? We study this problem
in a separate paper [22].

2. Recently we found that column pivoting and row interchanging/row sorting Householder
QRD, MGS column pivoting and Givens QRD are all numerical unstable for solving stifly WLS
problems. In [23, 25] we respectively propose row block Householder QRD and row block MGS,
and show that these algorithms are numerically stable.
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