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Abstract

In this paper, we deal with the boundedness and the asymptotic stability of linear and
one-leg multistep methods for generalized pantograph equations of neutral type, which
arise from some fields of engineering. Some criteria of the boundedness and the asymptotic
stability for the methods are obtained.
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1. Introduction

Consider generalized pantograph equations

{ Y'(t) = AY (t) + BY (pt) + CY'(pt), t >0, )

Y (0) = Yo,

where A, B,C € C%*? p e (0,1). The above equations possess numerous applications in some
fields of engineering (cf. [1]), and therefore has induced much research (cf. [1]-[9]). In particular,
Iserles [1, 2] and Liu [3] proved respectively that

[] (1.1) has a unique solution Y (t) on space CN*1[0, 00), provided that pN||C|| < 1 for any
given norm || o || and matrices I — p"C (n=0,1,..., N — 1) are nonsingular;

[IL] the solution Y (t) of (1.1) is asymptotically stable (i.e., tiiglooY(t) = 0), provided

p(AT'B) <1 and a(A) <0, (1.2)

where p(e) denotes the spectral radius and a(e) the spectral abscissa (i.e., the maximal real part
of the eigenvalues of the corresponding matriz).

A remarkable fact is that there exist some differences between equations (1.1) and delay
equations of the form

YI(t) = AY(#)+BY(t—1)+CY'(t—1), t>0,
{ Y(t) = }/O(t)) -7<t<0.
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These differences are embodied mainly in the smoothness of solutions and the numerical treat-
ment of equations (cf. [1]-[9]). The most significant difference is in storage (cf.[5, 6]). Namely,
when solving (1.1) with a numerical method, we first need to resolve the storage problem for
the existence of infinite delays in (1.1), while the computation for (1.3) will not suffer such a
difficulty, because there is only a constant-delay in it. To overcome the computational storage
problem for (1.1), Liu [4] (see also Koto [9]) considered a transformation of the form

y(t) =Y (exp(t)), t >to+1Inp (to > 0), (1.4)
which converts (1.1) into the equations

{ y'(t) = exp(t)Ay(t) + exp(t)By(t + Inp) + p 1Cy'(t + Inp), t > to,

y(t) =Y (exp(t)), to+Inp <t <to, (1.5)

where Y (t) (0 <t < exp(tp)) can be obtained numerically by the assigned numerical methods
to (1.1).

Making use of the above technique, Liu [4] and Koto [9] studied the stability of §-methods
and Runge-Kutta methods for (1.1), respectively. We note that the previous research dealt
mainly with one-step methods while multistep methods have not been involved. Hence, in the
present paper, we focus on the boundedness and the asymptotic stability of linear and one-leg
multistep methods. The corresponding results can be found in section 3 and section 4. In
section 5, some examples are given to illustrate the applicability of the obtained theoretical
results.

2. Multistep Methods

For the initial value problems of ordinary differential equations

x'(t) = f(t,z(t), t>0,
() = f(t,z(t)) @.1)
z(0) = xo,
two standard discretization schemes are the linear multistep methods
k k
Zajﬂ:nﬂ' = h25jfn+j, (2.2)
j=0 j=0
and the corresponding one-leg methods
k k k
Zajl‘nJrj = hf(z ﬁjtn+j,2ﬁjl‘n+j). (23)
j=0 7j=0 7j=0
They can be characterized by the polynomials
PO =) &, QE)=) B¢, ¢eC,
7j=0 7j=0
where o;, 3; (j=0,1,...,k) are real constants with
P(1)=0, P'(1)=Q(1)=1. (2.4)

Motivated by an idea of Hu and Mitsui [11] (see also [13]), we adapt (2.2) and (2.3) to (1.5),
respectively, and thus obtain two computational schemes:

k k k
> aiyni; =hY Biexp(tar;)(AYntj + Bynijm) +9'C Y yntjm, (2.5)

j=0 j=0 j=0
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k k k k k
Z AjlYntj5 = hexp(z 6ztn+z)(A ZﬁjynJrj + B ZﬁjynJrjfm) +p_lczajyn+jfm> (26)

j=0 i=0 j=0 j=0 j=0

where the stepsize is h = —h‘wp, m is a positive integer and greater than k, t, = to + nh, y, is

an approximation to y(t,) (n =1,2,...,). When —m < n <0, we set y, = y(tn)-

Theorem 2.1. Suppose that the method (2.5) satisfies one of the following conditions:
(1) ar #0, Br =0;
(2) ﬁk 7£ 0, a(A) <0, % > 0.

Then this method has a unique solution

k—1 k
Yn+k = Z Rn,jyn+j + Z Sn,jyn+j—m: (2-7)
j=0 Jj=0

where
Ry j = —[oly — hfBy exp(tnir) Al oy la — hBj exp(tny;)Al,
Sn,j = [CkkId — hﬂk exp(thrk)A]*l[hﬁj exp(tnﬂ-)B + a]-p’lc']
and I, is the d x d identity matrizx.

Proof. We only need to prove that the matrices [aylq — hfBk exp(tn+r)A] (n > 0) are
nonsingular. Otherwise, we have

d
H[Oék — hpB exp(tn+k)>\;4] = det[akfd — hpBy exp(tn+k)A] =0, (2.8)

i=1

where A (i = 1,2,...,d) are the eigenvalues of the matrix A. When (1) holds, (2.8) leads
obviously to a contradiction. When (2) holds, (2.8) will yield another contradiction. In fact, it
holds by (2.8) that there exists some ip (1 < ip < d) such that

ar = hfy exp(tn+k)Re()\;?)).
Hence, it follows that
(&7
Br exp(tn+k)

which implies that % < 0. Therefore, this proof is completed.
Along the similar line to the proof of Theorem 2.1, we can obtain a counterpart for the
method (2.6).

= hRe(\y) < ha(4) <0,

Theorem 2.2. Suppose that the method (2.6) satisfies condition (1) or (2) in Theorem 2.1.
Then this method yields a unique solution,

k—1 k

Yn+k = Z Rn,jyn+j + Z S’n,jyn+jfm, (2.9)
7j=0 7j=0
where
. k k
Ry = —[arls — hBrexp(Y_ Bitn+) Al oy 1o — hjexp(Y_ Bitnyi)Al,
=0 =0
and

k k

Sn,j = lewIy — hBy eXP(Z Bitnti) Al 1B, eXP(Z Bitn+i)B + ajp~' C).

i=0 1=0
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3. Boundedness

In the subsequent discussion, it will be a remarkable fact when 3; # 0 that

— B; -
R]—nIL}H;OR’]— m[ j—O,l,,k—l,
S]:nlbnéos"]: mA B jZO,l,...,k, (31)
Aj::nILH;ORn’j_ Id, ]:0,1,...,/6—1,
Sj = nlLH;OSnJ = EA’lB, j=0,1,...,k.

Moreover, we also introduce the following notations:
Ri =Ry, = —

With (3.1), equations (2.7) and (2.9) can be viewed as the perturbation of the difference equa-
tions

k—1 k
T({u:}i20:m) =tk — p_ Rijttnsj — 3 Sjtbngjm =0 (3.2)
7j=0 j=0
and
R k=1 koo
T({vi};’io,n) = Unptk — Z Rj'UnJrj - Z Sj’l)nJrjfm = 0, (33)
j=0 7j=0
respectively.

Theorem 3.1. Suppose that By # 0, g’“ >0 and \B | E |Bj] < 1. Then the solution {y;}52,

of the method (2.5) is bounded whenever (1.2) holds.

Proof. Write

k—1
( yn-‘r] + Z yn+] ms (3.4)
=0
by which, (2.7) (or (2.5)) can be read as
T({yi}iZo,n) = Fh. (3.5)

k
Moreover, let w, = — >~ Rjyn+j. Then (3.5) becomes

=0
wn = —(A"'B)wn_m + Fp. (3.6)
Induction in (3.6) yields
n—1
wn = (AT B)"wn_gum + Y (~AT'B) Fr_jm, (3.7)
=0

where ¢, is a positive integer with

3
S

—<qp, < —+1L (3.8)
m

3
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It follows from p(A~'B) < 1 that there exists a matrix norm || e ||, induced by some vectorial
norm || || on C?, such that
|A™'B|| < 1. (3.9)

Also, since (3.1) implies that

lim ||Rl7j — R]H =0 (] =1,2,...,k— 1) and lim ||Sl7j — S]H =0 (] =1,2,.. .,k), (3.10)
[—o00 l—o0

we deduce that there exists a positive integer Ny, which depends only on m, such that when
[ > Ny,

||Rl’j—Rj|| < exp(—lh) (] =12,.. .,k—l), ||Sl’j—Sj|| < exp(—lh) (] =1,2,. ..,k), (3.11)

where it is remarkable that h = _me' Moreover, (3.10) also suggests that there is a positive
constant My such that
1B — Rl < Mo, (1S, — Sjll < Mo (3.12)

for all 1, j. It follows from (3.4) and (3.11) that

< - ; i
Il < exp(=th)(k max llyi;ll + (k +1) max |lyisj—ml|)
< (2k+1 — ;
< (2k+1)exp( lh)l_msn;ggrk_lllyyll (3.13)
< 2k+1 _ . .
< (Samexp(=ih) | max = [lyjll, V1> No

When 0 <1 < Ny, it is derived from (3.4) and (3.12) that

1Bl < Mo(k max |yl + (k + 1) max flyiej—ml)
0<j<k

0<j<k—1
< Mp@k+1) max oyl
(MR exp(ih)mexp(~1h) max sl (3.14)
< [MoCEED) oxp(Noh))m exp(—1h) _adnax, lly;ll
= (ML) exp(—Neltymexp(—1h) | max ]l
Combining (3.13) with (3.14) yields
|Ell < Mmexp(=lh) | max s, V>0, (8.15)

where M = max{2ktL, W exp(—%)}. A combination of (3.7),(3.8) (3.9) and (3.15)
yields
k=1
lynsill < { X I1R;1l + M(n + m) exp[—n(1 — 7)h]
=0 (3.16)

k
A-1B||= ; > 0.
+ | I EOIIRJII}7mgrln§anx+kflllyzll, n>0

k—1
By i 3 |81 < 1, we have
Bl 2

k—1 k
SIRII<1, D IR <2 (3.17)
j=0 7j=0
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Inserting (3.17) into (3.16) generates

1 n
< — - 1 m > .
lyn+el] < {1+ M(n+m)exp[—n(1 m)h] +2||A7 B~} Jmax lwill, n >0, (3.18)

which implies that

%] max lwll, n>0. (3.19)

n 1
< . i - —1
lynirll <TI0+ M(i + m) exp[—i(1 —)h] +2|A7B e 1

=0

On the other hand, one readily check that the sequence

TTt + M(i + m) expl—i(1 - %)h] +2)47'B

i=0

]

is convergent as n — oco. Therefore, this concludes the proof.
For the method (2.6), we also have an analogous result.

Theorem 3.2. Suppose that the method (2.6) satisfies the same conditions as in Theorem 3.1.
Then the solution {y;}52, of this method is bounded whenever (1.2) holds.

4. Asymptotic Stability

A natural expectation is that the solutions of the methods (2.5) and (2.6) should possess
a similar long time dynamical behavior as the analytic solution of system (1.1) under the
condition (1.2). For this , in what follows, we first examine the asymptotic behavior of the
difference equation (3.2). This will be based on its characteristic polynomial

k—1 k
G(N) = det A" (XN Ty = Y M R;) = > NS (4.1)
j=0 j=0

Applying the Corollary 1.2 in in’t Hout [10] to (4.1) yields.

k
Lemma 4.1. G()\) is a Schur polynomial if p(A™1B) <1, B # 0 and Y Bjlexp(h)AJ! # 0
=0
for |A] > 1.

Moreover, the following Lemma will also be quite useful in the context.

Lemma 4.2 (cf. [12, 13]). Given matriz L € CN*N and vectorial sequence W,, € CN. Then
the solution sequence of linear difference equation

Un+1 =LU,+W,

satisfies
lim U, =0

n—o0

iff (L) <1 and lim W, =0.
n—o0
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Theorem 4.1. Suppose that

Q

1 k—1

and
k

S Bilexp(BAF #£0 for [N > 1.

Jj=0

Then the method (2.5) is asymptotically stable (i.e., 1i_>m yn = 0) whenever (1.2) holds.

Proof. Write

Yn—m 0
Y, = yn—.m—i-l , w,=| € Cm+hyd
: 0
Yn+k—1 F,
0 I
0 I
J= : € Clm+k)dx (m+k)d
0 I
So Sl Sk 0 0 Ry ... Ry

by which the equation (3.5) can be read as
Yoir = JY, + W, (4.2)

where lim W, = 0, since by (3.1) and Theorem 3.1 it holds that lim F,, = 0. A direct

n— 00 n—o00
computation follows that

Furthermore, by Lemma 4.1, G()) is a Schur polynomial. Hence (4.3) shows that p(J) < 1.
With Lemma (4.2) we conclude that 1i_>m Y,, = 0, which yields 1i_>m yn = 0.
n—oo n—oo

Again, we use the Corollary 1.2 of in’t Hout [10] to get

Lemma 4.3. The polynomial

k—1 k
H(X) :==det]\™ (A1, = Y M Rj) = Y MG
j=0 j=0

k
is of Schur type whenever p(A='B) < 1,8 # 0 and > BiM #£0  for |\ >1.

Jj=0
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With the help of Lemma 4.2, 4.3 and a proof similar as that of Theorem 7?7, we can get the
asymptotic stability results for the method (2.6).

Theorem 4.2. Suppose that

o

1 k—1

and \
D BN £0 for A >1
j=0
Then the method (2.6) is asymptotically stable whenever (1.2) holds.

In view of Dahlquist [15], it holds that an A-stable method (2.2) (or (2.3)) possesses the
following properties:

[D1]  Br #0;
[D2] Q) =0=[¢| <1;

[Ds] |6l > 1= Re[58] > 0.

Hence, by [D;] — [D3] we conclude that

k .
[Da] X Bilexp(R)A) =0 = |A| < 1
j=0
k .
[Ds] > BNV =0=|A[ < 1;
j=0
X H P(g)
[De] 3= |§1|1£>noo Re[gg] 2 0.

Combining the above properties with both Theorem ?7 and Theorem 4.2 yields the following
results.

k=1
Theorem 4.3. Suppose that the method 2.2 is A-stable and satisfies Iﬁl_kl >~ 18j] < 1. Then the
=0

corresponding method (2.5) is asymptotically stable.

k=1
Theorem 4.4. Suppose that the method (2.3) is A-stable and satisfies \B_lk\ > 1B8j] < 1. Then
7=0

the corresponding method (2.6) is asymptotically stable.
k :
Remark 4.1. In Theorem 4.4, we have deleted the unnecessary condition ) ;A\’ # 0 for
=0

k . k=1
[A] =1, since ;:0 Bj[£1]7 = 0 leads to a contradictory inequality ﬁ ;:0 |61 > 1.

5. Some Examples

As applications of the previous results, we consider the following examples.
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Example 5.1. Using A-stable second-order methods (for ODEs)
P(E)x, = hQ(E)fn (5.1)

and
P(E)zn = hf(Q(E)tn, Q(E)zn), (5.2)

where E is the shift operator, P(¢) = $&2 — 2 + § and Q(¢) = 3&* + € — 75, we can derive
the following two methods (for (1.5)):

P(E)yn = hQ(E)[exp(tn)(AYn + Byn-m)] + 0 "CP(E)yn —m (5.3)
and
P(E)y, = hexp[Q(E)(tn)]A[Q(E)yn]+hexp[Q(E) (tn) BIQ(E)yn—m]+p~ CP(E)yn—m (5.4)
with h = —h‘wp (m is a positive integer), respectively. Since
11 as 18 1 —,, 3
bo=37#0 5 =70 mgw—ﬁa,

we infer by Theorem 3.1, 3.2, 4.3 and 4.4 that the methods (5.3) and (5.4) are bounded and
asymptotically stable whenever (1.2) holds.

Example 5.2. Consider the methods

yn+1
= Yn +hl0exp(tnr1)(Aynt1 + Bynti-m) + (1 — 0) exp(tn) (Ayn + Byn—m)] (5.5)
+p_lc(yn+1—m - yn—m)

and

Yn+1
= yn+hexplftni1 + (1 = Otn[{Al0ynt1 + (1 = O)yn] + BlOynt1-m + (1 — O)yn—ml}
+p710(yn+1fm — Yn—m)s

(5.6)
which are induced by linear #-methods and one-leg #-methods (0 < 8 < 1) for ODEs, respec-
tively. It is well known that the both methods are A-stable iff % < # < 1. Hence, we conclude
from Theorem 3.1, 3.2, 4.3 and 4.4 that the method 5.5 is bounded and asymptotically stable
whenever % < 6 < 1; and the method (5.6) is bounded and asymptotically stable whenever

+ < 6 <1 whenever (1.2) holds.
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