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Abstract

A mutually orthogonal system of rational functions on the whole line is introduced.
Some approximation results are established. As an example of applications, a modified
Legendre rational spectral scheme is given for the Dirac equation. Its numerical solu-
tion keeps the same conservation as the genuine solution. This feature not only leads to
reasonable numerical simulation of nonlinear waves, but also simplifies the analysis. The
convergence of the proposed scheme is proved. Numerical results demonstrate the efficiency
of this new approach and coincide with the analysis well.
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1. Introduction

In sciences and engineerings, we often need to solve some problems in unbounded domain
numerically, such as fluid flows in an infinite strip, nonlinear wave equations in quantum me-
chanics and so on. One of numerical methods for such problems is to use spectral approxima-
tions associated with certain orthogonal systems of polynomials in unbounded domains, such
as the Hermite and the Laguerre approximations, see, Funaro and Kavian [8], Maday, Pernaud-
Thomas and Vandeven [23], Guo [9], Guo and Shen [17] and Shen [25]. The next is to reform
the original problems in unbounded domains and then use the Jacobi approximation to resolve
the resulting singular problems in bounded domains numerically, see, Guo [10-13]. Another ef-
fective method is based on rational approximations. Boyd [5,6] and Christov [7] provided some
spectral schemes for linear problems on infinite intervals by using certain mutually orthogonal
systems of rational functions. Recently, Guo, Shen and Wang [18,19], Guo and Wang [21],
and Wang and Guo [27] developed various rational approximations on infinite intervals. The
rational spectral methods have several advantages. For instance, their weights are much weaker
than the Hermite and Laguerre spectral methods and so it is not needed to reform the original
problems usually. Moreover they are easier to be used for exterior problems than the Jacobi
spectral methods. However, the non-uniform weights in the standard rational approximations
may bring in some difficulties in actual computation in some applications. In particular, for
the numerical simulations of hyperbolic systems, non-parabolic dissipative systems and non-
linear waves, such as the Schodinger equation, the Korteweg-de Vries equation and the Dirac
equation etc.. Indeed the solutions of these systems satisfy some conservations which play
important roles in theoretical analysis and numerical simulation. But the appearance of the
non-uniform weights may destroy the corresponding conservations for the numerical solutions.
This fact decreases the exactness of numerical experiments, and makes the numerical analysis

* Received January 29, 2002; final revised March 25, 2003.
1) The work of these authors is supported in part by E-institutes of Shanghai Municipal Education Com-
mission, N.E03004 and The Special Founds for Major Specialities of Shanghai Education Commission.



458 7.Q. WANG AND B.Y. GUO

complicated. To remedy this deficiency, Guo and Shen [17] proposed a modified Legendre ra-
tional approximation on the half line with the weight x(z) = 1. The purpose of this paper is to
develop a modified Legendre rational approximation on the whole line and its applications to
numerical solutions of nonlinear wave equations. In this case, the numerical solutions keep the
same conservations as in continuous cases. Meanwhile, the corresponding numerical analysis is
simplified essentially.

This paper is organized as follows. In the next section, we introduce a mutually orthogonal
system of rational functions on the whole line with the weight x(z) = 1, and discuss its basic
properties. We also recall some basic results on the Jacobi approximation, which will be used
in the sequel. Then we study the modified Legendre rational approximation in Section 3, and
the corresponding interpolation approximation in Section 4. Some approximation results are
established, which form the mathematical foundation of the modified Legendre rational spectral
method on the whole line. Section 5 is for some applications of this new approach. We take the
Dirac equation on the whole line as an example to show how to use this method for nonlinear
wave equations. The convergence of the proposed scheme is proved. Some numerical results
are presented in the final section, which demonstrate the efficiency of this new approach, and
coincide with the analysis well. It is easy to generalize the results of this paper to other nonlinear
problems in multiple-dimensions.

2. Modified Legendre Rational Functions and Some Basic Results on
Jacobi Approximation

2.1. Modified Legendre Rational Functions

Let A = {z| —oo <z < o0} and x(x) be certain weight function in the usual sense. Denote
by (u,v)y and |[v]|, the inner product and the norm of the weighted space L2 (A) respectively,
ie.,

1
(w,v)y = /Au(a:)v(a:)x(a:)da:, [lv]ly = (v,v)%.
Further let 0 v(x) = %v(m), etc.. For any non-negative integer m,
_ k 2
H"(A) ={v | 0;v € Ly(A),0 <k <mj}.

The inner product, the semi-norm and the norm of H (A) are given by

m

(U V)mx = Z(afu’aglﬁcv)x,
k=0 L
[Vlm,x = 1107 0]lxs  |[V]lm,x = (v,0),x

respectively. For any real r > 0, we define the space Hy (A) with the norm [[v[|,,, by space
interpolation. If x(z) = 1, then we denote H, (A), [v]rx, |[v]|rx, |[v]lx and (u,v), by H"(A), |v];,
[[v]]7, [|v]| and (u,v), respectively. In addition, ||v||ee = [|]|Lo (a)-

Let L;(y) be the Legendre polynomial of degree [,1 = 0,1,2---. They are the eigenfunctions
of the singular Sturm-Liouville problem

and satisfy the following recurrence relations
20+1 l
= — ——L_ > .
Liy1(y) 1 yLi(y) 7 1L 1(y), 1>1, (22)
QI+ 1) Li(y) = 0yLisa(y) — Oy Li1(y), 1 2 1. (2.3)

Besides
L) =1, L-1)= (1, 9L = gl+1), 8,L(-1)= (-1 1(+1).
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Let I = (—1,1). The set of Legendre polynomials is mutually orthogonal on I, namely,

1
[ B L)y = 0+ 5) b (24)
I
where d; , is the Kronecker function. By virtue of (2.1) and (2.4),
1
[ B0, L)1 = )y =10+ 1)1+ 5) (25
I
The modified Legendre rational function of degree [ is defined by
— (g2 -3 r -
RZ(Z’)—(I' +]—) 4Ll( 562-{—1)’ l_0)172) .
Let y = \/xﬁﬁ Clearly,
dy 2 _3 d.’I} o\_3
. 1 hatnd -
ot Toa-g)
Thus by (2.1),
(2% +1)50,((2> + 1)20,((z*> + 1) Ry(x))) + [(l + DRi(z) =0, 1=0,1,2---. (2.6)
Due to (2.2) and (2.3), the modified Legendre rational functions satisfy the recurrence relations
20+1 =z l
= — - — > °
R (@) = o7 === Ri@) = g R @), 121, (2.7)

and
20+ D Ri(2) = (z° + 1) (8x((2* + DI R (7)) — 8u((2® + DR 1 (2)), 1>1.  (2.8)
It can be checked that
lim (* + DR = 1, lm (o + DER() = (1),

lim (2 +1)30,((2* + D)¥ Ri()) = %l(l +1), (2.9)
zg@m(mz +1)20,((2 + DR (2)) = (—1)’“%1(1 +1).
The set {R;(x)} is the L?(A)—orthogonal system, i.e.,
/ARl(m)Rm(m)dm =+ %)*16,,,,1. (2.10)

Let wy (z) = (22 +1)2. By virtue of (2.6) and (2.10), the set {9,((22 +1)% R;(z))} is a mutually
orthogonal system in the space Lf,l (A), namely,

/Iam((a;2 + 1) Ry(2))0 (2% + 1) % Ry (2))w1 (2)da = (I + 1)(I + %)*Hi,,m. (2.11)

The modified Legendre rational expansion of a function v € L?(A) is

o(@) = 3 0Ri(a)
=0

with

1
o=+ 5)/ v(z)Ry(z)dw, 1=0,1,2,---.
A

Let IV be any positive integer, and
Ry =span{Ry, R1,---,Rn}.

Denote by ¢ a generic positive constant independent of any function and N. We now establish
several inverse inequalities and embedding inequalities which will be used in the sequel.
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Theorem 2.1. For any ¢ € Ry and 1 <p < q < oo,
18]l < eNXPGE=3 ][] |1
where X(p) = 3p — 1 for p > %, and X(p) = 1 otherwise.

\/1 y?
degree at most N. For any ¢ € Ry, we set ¢(y) = (1 —y )_%¢(\/1—2) Clearly 9 (y) € Pn.
—y

Proof. Let y € I and =z = . Denote by Py the set of all algebraic polynomials of

Let x(@9(y) = (1 —y)*(1 +y)?, a, # > —1. By an inverse inequality in Py (see Theorem 2.1
of Guo [15]), for any ¢ € Py and 1 < p < ¢ < o0,

1

/ @)X @D ()dy)+ < eNo@DG=D) / () Px P () dy)

e (@.8)+2, if max(0,5) > -}
| 2max(a,B) + 2, if max(a > -3,
o(e, f) = {1, otherwise.
Therefore
3 3,3
el = [ W@ =ttty < [wwra - t-ta

e

<CNU(4P 2,4[) (771)(/| (y)|p(1_y )%pigdy)
I
_CNU(4P—§7ZP g_1)”425“%1’(1\)

By a simple calculation for o(3p — 2,3p — 2), we reach the desired result.
Remark 2.1. By Theorem 2.1, for any ¢ € Ry and ¢ > 1,

1
16llz20 < eN'a|g]l.
In particular,
||¢llec < eNJ|¢]-

Theorem 2.2. For any ¢ € Ry and r > 0,
|¢lr < eN"[|(2* + 1) 72 gl.

Proof. Let y € I, x\*P)(y), Py and 9 (y) be the same as in the proof of the last theorem.
According to an inverse inequality (see Theorem 2.2 of Guo [15]), for any ¥ (y) € Py, non-
negative integer r, and o, 8 > r — 1,

@@y < N [ )y (2.12)
By induction,
k
Op(w) = 3 (1= ") 5 g;(0)00 ) (2.13)

where ¢;(y) are some polynomials which are bounded uniformly on I. Hence we use (2.12) and
(2.13) to obtain

1012 Scz / 2)423 (911 (y)) 2
< cZ v [ (4= ) ay)

< eN* (#* +1) "¢ (z)da
)

< eN?*||(@ + 1)~ 2 4|1,
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The general result follows from the above and space interpolation.
2.2. Some Basic Results on Jacobi Approximation

For analyzing the Legendre rational approximation, we need some basic results on the Jacobi
approximation.
Let x(®®(y) be the same as before, and

L35 (I) = {v | v is measurable on I and llollz2 (1) < oo}

where

Mol

1
(1 = (/I V()X (y)dy)=.
For any non-negative integer r,
Hl o) ={v | Oy € Ly am(), 0 <k <7}
with the norm

1
0]yt = ZH@’“vlle L)

For any real r > 0, we define the space H7(, s, (I) with the norm ||v||, .5 by space interpo-
lation as in Adams [1].

For technical reasons, Guo [14,15] introduced the space H” ~(I). For any non-negative

NI
integer r,
H;(a’m’g(f) = {v | v is measuable on I and ||v[|, (a0 5 < 00}
where
1
[lv]l,. (8, A Z (1 - kar k”|| @ T ||U||[2§]7X(a.6))2' (2.14)

For any real r > 0, the space H" 7(I) and its norm |[v],  (as 7 are defined by space

NCWY
interpolation. Next, for any non- negatlve integer u, we define

H o D) = {0 | 00 € H'A, (1)),

H 0 p) u D) ={v [ v € H ), 1 (I), 0<k<p}

with the norms

ol o we = 1OLVIL, e
1
||v||rx(”‘ B) e,y — Z”’UHTX(Q 8) *k)z'

For any real 1 > 0, we define the spaces H (. 5, , u([)’ HY (a5 e u(I) and their norms by space

interpolation.
For simplicity, we denote H. s . ,(I) by H (. s ,(I). It can be verified that

o[> =AY () + AP S (v) (2.15)

o (@o8)
where

AL 50) = Z / Ov(y))? (1 —y?) (1 — )2 (1 + y) dy,
5 (2.16)

SNOEDY / Ok u()(1 - 9)*(1 + ) dy.
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The orthogonal projection ﬁN,aﬂ : Li(""’) (I) - Py is a mapping such that for any v €
Li(a,ﬁ) (I))

ﬂd%@ﬂﬂw—vwnwwx@mwﬂyzm Vi) € Py.

The following lemmas come from Theorems 2.3 and 2.4 of Guo [15].

Lemma 2.1. For any v € H; (I) and r > 0,

(e.8), A

||PN,a,6v — U||X(a,3) < CN_THUHT,X(«:.L?),X-

Lemma 2.2. Ifa+r>1 or 8+r > 1, then for anvaH;

(@8 pu D)y 7> 1and0< p<r,
||ﬁN,a7ﬁ’U o U”%X(”"ﬁ) S CNJ(MT)||’U||T,X(ﬁ.ﬁ),**,ﬂ

where
op,r) =2p—r.
In particular, for any a = 3 > —1, the above result is valid with

-1
U(,u,r):{2’u r—s5, foru>1,

Su—r, for0< <1

3. Modified Legendre Rational Approximation

This section is devoted to various orthogonal projections. The L?(A)-orthogonal projection
Py : L*(A) — Ry is a mapping such that for any v € L%(A),

(PNU_U7¢):07 V¢ERN,
or equivalently,

N
PN’U(CE) = Z @Rl (.7;)
=0

For technical reasons, we introduce the Hilbert space H% (A). For any integer r > 0,
H'\(A) = {v | v is a measurable on A and ||v||; 4 < 00},

equipped with the norm
ollra = 3 Nl + 1) dfol*).
k=0

For any real r > 0, we define the space H’(A) and its norm ||v||, 4 by space interpolation.
Theorem 3.1. For any v € H}(A) and r >0,

1Pyw — ol < N7 Jollna.

Proof. By the definition of Py, for any ¢ € Ry,
/(PNU(:L’) —ov(z))p(z)dx = 0.
A

Let y = b, uy) = @+ Do) o= _a, uie®) = (@ + 1) Pyo(a)|o=_a and vi(y) =

2 1—y

(#° +1)%6(@)l= 2 - Then ¥(y), uiy(y) € Py and

1-y2

/ (uly(4) — u(y)b(y)dy =0, Vi € Py.

I
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Therefore, uy (y) = .[:';N’O’()U(y). By virtue of Lemma 2.1, for r > 0,
[Py = ol |* = ||uy — U||2Li(0’0) () = I1PNoou—ull> < eNT|ull2 o0 1-

By induction,
k .
Oyuly) =Y pi(@)(@® + )M EH55]u(x) (3.1)
j=0

where p;(z) are some rational functions which are bounded uniformly on A. Thus, we have from
(2.14) that for any integer r > 0,

(23] r—k 5] &
||u||i (@0 A <c Z Z / (2% + 1) (8iv(x)) dr + CZZ/($2 +1)2KH (91 y(2))2dx
' ' k=0 j=0"4 k=0j=0"A

r (5]
< CZ/W + 1) (9]v(x)) de + cZ/<w2 + 1) (8]v(x))*da < o[} 4-
j=07h =074

The previous statements with space interpolation lead to the desired result.
We now introduce another Hilbert space Hj(A). For any non-negative integer r,

Hp(A) = {v | v is measurable on A and ||v||, B < o0}

where
r+

=0l )E

lollrs = QI +1)

k=0
For any real r > 0, the space Hi(A) and its norm ||v||,, g are defined by space interpolation.

Theorem 3.2. For anyv € HR(A),r>1 and 0 <p <1,
[P = olly < eN 2ol

Proof. Let y, u(y) and u} (y) be the same as in the proof of Theorem 3.1. By Lemma 2.2,

[Pro=off = [ @u(Prol) = o@)) o

< c/(l — ")y (ui (y) — u(y))’dy + 0/(1 = y*)* @y (un (y) — u(y))dy 652
~ I .
< ell Prco.ot = ul? +lld, (Pyoou — w)l* < eN*2 |l o) ...,
= Nl o + IR o 0)
=cN (||u||7‘,X(0’0)yA~ + ||6yu||r71’x(o,o)’A~)'
The upper-bound of [|ul[, .0 5 has been estimated in Theorem 3.1. We now estimate the
term ||8yu||i71,x(0,0),2' By (3.1),
[gfl]rfk ] ]
10,012, 00 5 < el 3 Z/(l‘" + 1) (B ()2 de
k=0 j=0"’A
(554 k41 . .
+ Z/(9«°2 + 12 (0] 0(2))dz) < clloll} g
— /A
k=0 j=0

Therefore by (3.2),
|Pyv = vl < eNE7|[v]],5.

The above with Theorem 3.1 and space interpolation leads to the desired result.

When we apply the modified Legendre rational spectral method to nonlinear problems, we
need to estimate the upper-bounds of various orthogonal projections. One of them is stated
below.
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3
5d

Theorem 3.3. For anyv € HZ"(A) and 1 > d > 1,

1PN oo < cllvllga,n-

Proof. By the embedding theory and Theorem 3.2, for any 1 > d > %,

1PN 0lloo < [[0lloo + [[Prnv = 0lloo < [[ofla + [[Prv = vlla
<Holla + ellvlls4,5-

In order to analyze the modified Legendre rational interpolation, we need another orthogonal
projection. To do this, we introduce the space

H}?o (A) = {v | v is measurable on A and [[v][, 7, < oo}
equipped with the norm
1
Ivll, 2, = (1(@* + 1)u0ll* + [Jv][*) =,

and
H[(A) = {v | v is measurable on A and ||v||,c < co}

with the norm
F 3
[w]lro = [|(2* + 1)30:((2* + 1)50)[|s—1,4.

The H (A)—orthogonal projection Pl : H% (A) = Ry is a mapping such that
0 0

/ am(ﬁ]{,v(a:) — ()8, ¢(x)(2? +1)%dx + / (131{,1)(3:) —v(z))p(x)der =0, V¢ € Ry.
A A

Theorem 3.4. For any v € Hl\(A) and r > 1,

IPxv =l 7, < eN' Mol

Proof. Let u(z) = (* + 1)%v(z) and
¢(x) = (a* + 1)%(/;(22 + 1) Py (2% + 1) 10u(2))dz + 0(0)).

By the definition of Py _1, there exists a polynomial gny_1 € Py_1 such that

Py (22 + D) i0.u(2) = (22 + 1) dqy_1 (———)

V22 +1

whence

b(z) = (22 +1) / VR G (2)dz + 0(0)).

Clearly ¢ € Ry. By the Hardy inequality (see Hardy, Littlewood and Pélya [22]) and Theo-
rem 3.1,

¢ —vl|* = /AW + 1)‘%(/0%(22 +1)7H (P 1 (22 + )3 0:u(2)) — (22 + 1) 3 0:u(2))dz) da
< /A(;ﬁ’ + 1)*1(/0 (22 + 1) 4 (Py_1((22 + 1)30.u(2)) — (22 + 1)1 0,u(2))dz)2dx

< c/ (22 +1)"2 (Pnv_1((2® + 1) 30,u(z)) — (2% + 1)7 0pu(z))dz

A
< eNZ72|(a + 1)30,ulfP_y 4 = eN227|(@? + 1)50, (2% + 1)50)[[2_; 4
= N2} oo
Next, we have

0up(x) — Orv(x) = F(x) + G(2)
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where
F(z) = (2 +1)7 % (Py_1((2* + 1) ¥0,u(2)) — (2 + 1) ,u(2)),

G(z) = —ga:(mQ +1)°% /Om(z2 + 1) (Py_1 (22 + DF0.u(2)) — (22 + 1) F0.u(z))dz.

It can be verified that

I(2* + 1)F|| < [|Px—1((2? + 1)0,u) — (2 + 1)1 0,ul|
< eNY||(22 4 1) 5 0yullp—1.4 = N[0 |-

Again by the Hardy inequality,
1@ + DG < N[l
Consequently,

1Pxv =vlly 3, <16 —vll, 5, <@+ DEF + G|+l —vl]
< eN' ol e

4. Modified Legendre Rational Interpolation

We now consider the modified Legendre-Gauss rational interpolation. Let {n ; be the IV +1
distinct real zeros of Ryy1(x), 0 < j < N. Indeed, we have

ON,j

N =—F——==—, 0<j<N, (4.1)
2
VI—on;
where oy ; are the roots of Lyy1(z). We denote
wny = (;+1)%pn; 0<j<N, (4.2)

where py,; are the weights of the Legendre-Gauss quadrature,
2

T (1= 0% ) @y Lni(on,;))?
By virtue of (15.3.10) in Szeg6 [26],
27 1
PN j ~ m(l — 012\,7].)2.
Thus,
27
We define the discrete inner product and norm as follows,
N 1
(w,v)nv = ) ulEn)vEnj)wns  lvllv = (v,0)5-
j=0

Lemma 4.1. For any ¢ € R;, v € R; with i +j <2N +1,

In particular,

¢l = lléllx, V¢ € Ry. (4.4)
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Proof. Let y € I and Py be the same as before. Set

ay) = @@+ D)i¢@)om_v_, r(y) = (@* +1)39(@)]pm_v__

1—y2 142

Then g € P; and r € P;. By the property of the Legendre-Gauss quadrature,

(¢,9) =

—

N
f qW)r)dy =Y qlonj)r(on;)on s
=0

PN YEN, W, = (¢ Y) N

<
I
=)

Il
.MZ

For any v € C'(A), the modified Legendre-Gauss rational interpolant Zyv € Ry such that
Inv(én,j) =v(énj), 0<j<N,

or equivalently,

(INU—U,¢)N =0, Vo € Ry
The following theorem is related to the stability of rational interpolation.
Theorem 4.1. For any v € H}Z (A),
0
IZnoll < e(l[v]] + N7H|(@® + 1)zv]).

Proof. By (4.3) and (4.4),

N
IZnol? = [1ZnollZ = D 0* (Enj)wn,
=0
N J
<eNTEY 0t (En) (6 + 1)

j=0
Let x = ctgh (0 < 0 < 7) and 0(#) = v(ctgd). Then
N
IZnol)> < eNT'Y 8% (On,5) sin™> O ;.

=0

According to (4.1) and Theorem 8.9.1 in Szegd [26],

= —(y 1 <j<N 4.
On.,;j N+1(J7T+O( ), 0<j5 < (4.5)
where O(1) is bounded uniformly for all 0 < j < N. Now, let ag = % and a; = N’;\fiﬁ(l)
Then On,; € K C [ag,a1], K; being of size 5. Consequently,
N
|| Zno|]> < eN 7! Z sup [0(6)sin~* 4>
—PEK;
Jj=0 J
According to (13.7) of Bernardi and Maday [4], for any f € H'(a,b),
1
max |f(z)] < C(ﬁﬂfﬂm(a,b) + Vb — a0 flL2(a,p))- (4.6)
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Thus N
|Znol]” < CZ(II@(@ sin” ! 0|17k, + N 7210 (0(8) sin ™ 0)[[72 ;)
< {1506) S0 011220, + N=21100(006) sin " 6)[ 2 1)
< ¢(||o(8) sin™* 9||2L2(077r) + N~2||9p0(6) sin™* 0”%2(0,77))

cos’0
o2, Nrsmzg PO llize.m)

< ¢(||o(8) sin™* 9||2L2(077r) + N2||9p0(6) sin™* 0||%2(07ﬂ)).
It can be verified that
2?4+ 1=sin"20, dr=—sin"26dh, 0O,v(x)= —sin®09v(h).

Accordingly
IZnoll* < e(loll® + N72I(2* + 1)d.v][?).

We now state the main result of this section.

Theorem 4.2. For any v € HL(A) and 0 < p <1<,

IZnv = vf]e < eN* o]l

Proof. Since Ty (PLv) = Pv, we use Theorems 3.4 and 4.1 to obtain that

IZyv = Pyol| < e(|[Pyv —oll + N7H|(2? + 1)0:(Pyv —v)|)) )
< Nl e

Using Theorem 3.4 again yields

1Zvo — ol < |[Pyo —of| +||Znv — Pyol| < eN'"[Jo]n.c. (4.8)
Furthermore, by (4.7) and Theorems 2.2 and 3.4,

|Znv — |y < |PLv —vly + [Iyv — PLof

< |l3]{,v—v|1+cN||(x2+1)_%(INU—ﬁ1{,v)|| 49)

IN

|PArv = vl + N2 [o]|no

A

N>~ ol

We complete the proof by (4.8), (4.9) and space interpolation.

5. Modified Rational Spectral Method for Dirac Equation

This section is for some applications. We take the Dirac equation on the whole line as an
example to show how to deal with nonlinear wave equations by using the modified Legendre
rational approximation.

We first introduce some notations. Let i = v/—1 and v(z) be a complex valued function,

v(z) = vr(z) +ivr(x)
where vg(x) and vy (z) are the real part and the imaginary part of v(z), respectively. Define

[o(@)| = (Jvr(@) + [vr(2)2)?.
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Let T be the complex conjugate of v, and

(o) = [ u@p@ds, (o] = (0,0)%
A
If vg, vy € H"(A), we say that v € H"(A), with the following semi-norm and norm,
1 1
ol = (lorl7 + lor) 2, [lolly = (lorll? + [lor]7)=.
We define the space H (A), Hg(A), H}(A) and their norms ||v|,.4, ||v||r,B, ||V||rc similarly.
Now let V' = (v1,v2)7T be a complex-valued vector function,
1 1
V1= (ol + o2, NIVIE= (loall? + [fo2]]*) =
If vy, vo € H"(A), we say that V € H"(A), with the following semi-norm and norm,
1 1
V= (Jouli + J2[2) 2, VI = (o7 + el )%
We define the space H (A), Hg(A), H}(A) and their norms ||v|,.a, ||v||r,B, ||V||rc similarly.
The Dirac equation plays an important role in quantum mechanics, see, e.g., Alvarez and
Carreras [2], Alvarez, Kuo and Vazquez [3] and Makhankov [24]. Let m and A be certain real
numbers, ¥(z,t) = (1 (x,t),¢¥2(x,1))T and f(z,t) = (fi(x,1), f2(x,t))T. For simplicity, set
Ql(\IJ(ma t)) = Z(|’L/}2(1‘, t)|2 - |1/11(:L’, t)|2)¢1 (1‘, t):
Q2(¥(z,1)) = i(|9h1 (z,1)|* — |2 (. 1))z, 1).
Then the initial value problem of the Dirac equation is of the form

8t1/)1(.’,17,t) + 8331/}2(.’1,',15) + lml/}l(m:t) + 2)\@1(‘1’(5[7,1})) = fl(mat)a T € Aa 0<t<T,
Opha(z,t) 4+ Op 01 (z,t) — imapa(z,t) 4+ 20Q2(¥ (2, 1)) = fo(z,t), z €A, 0<t < T,

lim ¥(z,t) =0, 0<t<T, (5.1)
|z]— 00
U(z,0) = O (z), z €A

A weak formulation of (5.1) is as follows
(Op)1 (t) + Opha(t) + imapy (t) + 20Q1 (¥ (1)), v) = (fi(t),v), Yv € HY(A), 0 <t < T,
(Optha (t) + Opthr () — imaha(t) + 20Q2(¥(2)),v) = (f2(t),v), Yv € H'(A), 0<t<T, (5.2)
T(0) = v,
We next check the conservation. For simplicity, let f(z,t) = 0. We note that for any
complex-valued functions u, v € H*(A),

(81, v) + (Bpt, v) + (u, Byv) + (u, Dpv) = 0. (5.3)
Next, for any complex-valued vector function U = (uy,us)” € L*(A),
(QuU),u1) + (@1 (U),w) =0, (5:4)
(Q2(U), u) +(Q2(U), u2) = 0. (5:5)
Furthermore, for any complex-valued function v € H(0,T; L?(A)),
@ro(1), v (1)) + (Beo(t), 0(1)) = Al (B)]>. (5.6)

Now, we take v = ¢ in the first formula of (5.2) with f = 0 and v = 1 in the second one,
respectively. Then we take the complex conjugates of these two resulting equations. Putting
the four results together, and using (5.3)-(5.6), we get that

| e®)|* =0, 0<t<T.
Thus the solution of (5.2) possesses the following conservation

el = [1T]]. (5.7)
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We shall use the modified Legendre rational spectral method for (5.2). Let ¢ = ¢r +i¢py. If
br, ¢1r € Ry, then we write ¢ € Ry . For any vector function ® = (¢, ¢2)7, if ¢1, ¢2 € Ry,
then we write ® € Ry.

The modified Legendre rational spectral scheme for (5.2) is to find ¥n(z,t) € Ry for all
0 <t < T such that

(01, () 4 022, (1) + imapy N (1) + 20Q1(¥N (1)), 8) = (f1(F),¢), Vo € Rn,0 <t <T,
{ (Octpa, N (t) + 0291, N (t) — imap2 N (t) +20Q2(¥N (1)), ¢) = (f2(t), ¢), VP E RN, 0<t < T.
Ty (0) = Py¥® = (Pryf”, Pyof”)T.
(5.8)
Following the same line as in the derivation of (5.7), we get that for f =0,
1Zn @I = 1] (5.9)

So the numerical solution possesses exactly the same conservation as the genuine solution W.
Indeed, this is one of the main advantages of the modified Legendre rational spectral method.
We now deal with the convergence of (5.8). To do this, let

TN () = W7 v s 8) " = (Prtor, Pri) T
By (5.2),
(07 N (1) + 0293 N () +imep] N () + 20Q1 (P (1)) + En(t) + 2AF1 (1), ¢) = (f1(t), ¢),
VopeRn, 0<t<T,
(O3 N (1) + 0297 (1) — imap3 N (8)+ 20Q2(Yy (1)) + Ea(t) 4+ 2AF3(t), ¢) = (f2(t), 8),
Vo e RN, 0<t<T,
T%,(0) = Pyo(O),

(5.10)
where
E, (t) = az1/]2(t) - 6m1/})2k,N(t);
E2(t) = azdjl(t) - 6m1/})1k,N(t);
Fj(t) = Q;(¥(1) — Q;(¥x(?), Jj=1,2
Next, let

Uy = @1, Pon)” = (h1,n — Y N on — U5 N)T
Subtracting (5.10) from (5.8), we obtain

(Bpthr, N (1) + Bytho, v (t) + imay n (8)+ 20Q1 (T (1)), ¢) (Ev(t) + 2XFy (t) + 2)G1(t), 9),

Vo e Ry, 0<t<T,
(Or2, N () + Oxt1, N (t) — imap2 N (8)+ 2AQ2(Un (2 )) @) = (Ea(t) + 2X\Fa(t) + 2XGa(t), 4),
Ve Ry, 0<t<T,
Ty (0) =0,
(5.11)
where

Gj(t) = —Qi(Tx(t) + Tn(t) + Q5 (TN (1) + Q;(In (D), j=1, 2.
We take ¢ = Jj,N in the j—th formula of (5.11), and then take the complex conjugates of those
two resulting equations. Putting the four results together, we use (5.3)-(5.6) to get that

2
d = 2 2 2 2 2
NI < AT N @)+ WB @I + NFON + 1G5 @) (5.12)
Jj=1

Then it remains to estimate the upper-bounds of the last term in (5.12). By Theorem 3.2,

IE; (I < eN°2 2 (@)]]7 g, 4 = 1,2. (5.13)
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Next, thanks to Theorems 3.2 and 3.3,

IEOIE <3S s OIS 15w O — 50 (0] (5.14)

k=0 j=1
< C*(\I’)N72T||\I’( )||7'B7 J=1 2,

where ¢*(¥) is a positive constant depending only on ||¥|ze (o, 7;z(A)n, (a))- Finally Theo-
rem 2.1 implies

1G5 @12 <CZZII¢]N M1 > 14hsx (1)1 75
b=ta= (5.15)

¥) Y NPT (1)
k=1

Substituting (5.13)-(5.15) into (5.12) and integrating the resulting inequality with respect to ,
we get that

[En (01> < (2 / SN DYy (8)[ds + (DN B sy (510
k=1

Lemma 5.1. (See Guo, Shen and Xu [20]) Assume that
(i) a and ay, are non-negative constants,
(ii) E(t) is a non-negative function of t,
(iii) p > 0 and for all 0 <t < iy,

E(t) < p+ a/ (E(s) + Y _ N E*(s))ds,
0 k=2

(iv) for certain t; > 0, pe™** < min N~ =3

2<k<n
Then for all 0 <t < tq,
E(t) < pe™.

Applying Lemma 5.1 to (5.16) and using Theorem 3.2, we obtain that

Theorem 5.1. If forr > 3, W € L>(0,T; L>(A) N HE(A)) N L*(0,T; HE(A)), then for all
0<t<T,
W) —¥n (@) < ()N2""|[¥]|z2(0,1; 15 (1)) -

6. Numerical Results
In this section, we present some numerical results. Take the test function
t _
’(/}1(1’,t) = 1/}2(1‘,t) = tanh(wg + 1)(1’2 + 1) °

We shall use (5.8) to solve (5.1). Let 7 be the mesh size in time. The corresponding fully
discrete rational spectral scheme is as follows,

(L +imr)y n(t+7), Ri) = (1 — im7) 1 N (t — T) — 270,402 N (t) — AXNTQ1 (TN (2))
+7(filt+71)+ fi(t—71)),Rr), 0< k<N, (6.1)

(1 = imr)pan(t+7), Ri) = (1 + im7)pa n (t — T) — 270,901 N (1) — 4ATQ2 (T ()
+7(f2(t +7) + fo(t = 7)), Rk), 0<k<N.
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Figure 1: Convergence rates of scheme (6.1), 7 = 1072,¢ = 1.
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Figure 2: Convergence rates of scheme (6.1), 7 =103t =1..

-4

Figure 3: Stability of scheme (6.1), 7 = 1073, N = 32.
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Set m = A = 1. For any complex-valued function v(z,t), we define the discrete maximum
norm as

[lo®)lloe,n = jmax {lvr(En.j. 1)l [vr(En., )]}

The numerical error En(t) is given by

En(t) = max [, n () — 95 ()]0, N

We first take 7 = 1072 in scheme (6.1), In Figure 1, we plot the logip of En(t) at t = 1 vs.
N. Figure 2 is for the corresponding cases with 7 = 1073, They indicate the high accuracy and
the convergence of this method as IV increases and 7 decreases. In Figure 3, we plot the logig
of En(t) of numerical solution of scheme (6.1) with 7 = 1072 and N = 32. It indicates the
stability of scheme (6.1). They coincide with theoretical analysis very well.

For comparison, we also use the finite difference method as in [2] to solve (5.1). As usual, let
A be a positive number and impose the artificial boundary condition ¥(—A,t) = ¥(A4,t) =
Let h = % and ; = lh, — N <[ < N. The numerical solution is denoted by ¥x. Then the
corresponding fully discrete finite difference scheme for (5.1) is as follows,

(1 +im7) 1 n(zr,t +7) = (1 —im7)y N (20,8 — T) — 7 (2, N (2141, 1)
—th2, N (T1-1,1)) — AATQ1 (YN (21, 1)) + T(fl(ﬂfz,tJr ™)+ filz,t —7),

(1 —im7) Yo n(z1,t +7) = (L +im7)e N (21,1 — 7) — 7 (1,8 (T141, 1)
=1, N (T1-1,1)) — AIATQ2 (YN (21, 1)) + T(fa(wr, t + 7) + falm, t — 7).

For description of numerical errors, let

(6.2)

W@®)lloo,n = _max v, O, oz, 1},

En(t) = max [, n () — 45 ()]l oo, N

In calculation, we take A = 30 and 7 = 1073, In Figure 4, we plot the Enx(t) at t = 1 vs.
N. It is clear that the new scheme (6.1) provides much better numerical results than the finite
difference scheme (6.2).

0 L L L L L L L L L
100 120 140 160 180 200 220 240 260 280 300
N

Figure 4: Convergence rates of scheme (6.2), 7 = 1072,¢ = 1.
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