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Abstract

In this paper, we construct and analyse a mortar finite volume method for the dis-
cretization for the biharmonic problem in R?. This method is based on the mortar-type
Adini nonconforming finite element spaces. The optimal order H>-seminorm error estimate
between the exact solution and the mortar Adini finite volume solution of the biharmonic
equation is established.
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1. Introduction

In recent years, the mortar finite element method as a special nonconforming domain de-
composition technique has attracted many researchers’ attention. More and more papers on
this method have appeared. We refer to [3] and [19] for the general presentation of the mortar
element method and [2], [7],[12], [15], and [20] for details.

In the mortar finite element method, the computational domain is first decomposed into
a coarse sub-domain partition. The triangulations on different sub-domains need not match
across sub-domain interfaces. The basic idea of this method is to replace the strong continuity
condition by a weaker suitable constraint on the interfaces between different sub-domains.
Suitable constraint, i.e., the mortar condition, guarantees the optimal discretization schemes.

On the other hand, the finite volume method (also called the box method, generalized differ-
ence method) is popular in computational fluid mechanics due to their conservation properties
of the original problems. In the past several decades, many researchers have analysed the finite
volume method for the selfadjoint (or non-selfadjoint and nondefinite) elliptic partial differen-
tial equations using the finite element spaces. Professors Ronghua Li et al have systematically
studied the finite volume method and obtained many significant results, we refer to the mono-
graph [18] for the general presentation of the finite volume method and [1], [5] [6], [8], [9] [13],
[16], [17], [21], and [22] for details.

Recently, Ewing, Lazarov and Lin [11] consider the mortar finite volume element approxi-
mations of second order elliptic equations on non-matching grids. The discretization is based
on the Petrov-Galerkin method with a solution space of continuous piecewise linear functions
over each sub-domain and a test space of piecewise constant functions. They use finite volume
element approximations on the sub-domains and finite element on the interfaces for Lagrange
multipliers and get an optimal order convergence in energy norm.

In the paper [14], we extend the mortar finite element method to the mortar finite volume
method, construct and study a mortar finite volume method which is based on the mortar
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Crouzeix-Raviart finite element space. The optimal order error estimates in broken H'—norm
and in L?—norm have been developed.

In this paper, we construct and analyse the mortar finite volume method with Adini noncon-
forming element which is used to solve the biharmonic problem. The restriction of the mortar
finite element space to any sub-domain is the Adini nonconforming finite element space. In this
paper, we will prove the optimal order error estimate in broken H2—seminorm.

The remainder of this paper is organized as follows. In Section 2 we introduce notation,
construct a triangulation 75 of Q and give the corresponding dual partition. In Section 3, we
consider the mortar finite volume method, and get some lemmas which will be used in later
convergence proof. In Section 4, we estimate the difference between the exact solution and the
mortar finite volume approximation in H? broken seminorm.

2. Notation and Preliminaries

In this section, we provide some preliminaries and notation. In this paper, we suppose the
boundary of the multi-rectangular domain  parallel to the OX; and OX> axises. Consider
a geometrically conforming version of the mortar finite volume method, i.e., Q is divided into
non-overlapping rectangular sub-domains (2;

0 =ul

where Q; N ﬁj is an empty set or a vertex or an edge for i # j.

Each sub-domain ; is triangulated to produce an rectangular quasi-uniform mesh 75, =
{K} with mesh parameter h;, where h; is the largest diameter of the elements in 7,,. The
triangulations of sub-domains generally do not align at the sub-domain interfaces. Let I';;
denote the open straight line segment which is common to €2; and €2; and I' denote the union
of all interfaces between the sub-domains, i.e., I' = U0Q;\02. We assume that the endpoints
of each interface segment in I' are vertices of 7p, and Tj,. Let 7j, denote the global mesh U; 7y,
which is assumed quasi-uniform in this paper and h = max;<;<n h;.

Since the triangulation T}, is independent over the sub-domains, each side T';; = Q; N Q;
is provided with two different and independent 1-D meshes, denoted by 7y, (I';;) and Ty, (I';),
respectively. We define one of the sides of I';; as a mortar one, the other as a non-mortar one,
which are denoted by ~; and §;, respectively. The sets of vertices belonging to 0, Q;, 9Q;, 6,
7, 0; and K are denoted by Qp, Qi n, 00 n, O, Yi,n, 05, and Kj,, respectively.

Define the Adini nonconforming finite element space on sub-domain (2;:

Vii = Vai() = {v € L*() : v|x € P3(K) @ span{afzs, &123} for K € Th,
U, Uy, , Vg, are continuous at the vertices and
v(a) = vy, (a) = v,(a) =0, Ya € 0, NON}.

We can now introduce the global space ‘N/h :
~ N ~
Vi, = H Vh,i ()
i=1

with the so called broken H?2-seminorm:

[N

1
2

N
v]2,n = |v]2,n,0 = <Z|v|3,h,m> sl = DL e
=1

KETh;
Let W (d;) be the subspace of the space L*(T;;):
W((SJ) = {1} S Co(gj),v|?ﬁ6]_ S Pl(Fﬁ 6]'), VK € 77L]}
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Let the subspace of W (4;) denoted by I7V\(6j) be the space formed by continuous piecewise linear
functions which are constants on two elements which touch the ends of the non-mortar side ;.

Let a and b be the extremities of the non-mortar side ;. We denote by 7 the operator
from C°(3;) into W}(8;) defined for any function v of C°(8;) by

(mpv)(a) = v(a), and (mhv)(b) = v(b),

/ (v—miv)pds =0, @€ W\h(éj).
9;

The following stability property of this operator is given in the proof of Lemma 4.3 in [3]:
lmhvllze(s;) < Cllvllrs;)- (2.1)
We introduce the orthogonal projection operator 7, from L?(d;) onto Wh (6;) :
(Th0, ) 1255y = (0,0) 12055y, Vo € Wi (0)).

The following property of this operator is given in Lemma 4.1 in [3]:
Lemma 2.1. For any function v € H*(J;),s =0,1/2,1, we have

Il = mnvllizes;) < OBlollaees,)-

In this paper, as a auxiliary tool, we introduce the bilinear interpolation operator Ip; :
Vhi = Skt =1,...,N and I, = Hfil Ip;, where Sy ; is the piecewise bilinear finite element
space on the sub-domain ;. For w; € V3 ; and K € Tp,,

Ihiwi(Pg) = wi(Po), P e Kh, Ihiwi|K S Ql(K)
We say that the functions w € V,, satisfies the mortar conditions if

v (p) = wls;(p), VP E Gjin- (2.2)

w

/ (Ihi 6nu)
6.

J

/ (Ihia,—w
5

J

v = I, 0nwls; )pds = 0, o € W(3)), (2.3)

2 = In,0nwls;)pds = 0, € W(5)), (2.4)

where n denotes the unit outside normal along the interface v; = 0; = I';; with the direction
from ; to d§; and 7 is the tangential unit corresponding to n.
_ We define the mortar-type Adini nonconforming finite element space V}, as the subspace of
Vb, in which the function v satisfies the mortar conditions (2.2) —(2.4) and is continuous at all
crosspoints till its first derivatives.

For each non-mortar §; = I';; C T, we introduce the L? orthogonal projection Q% :
L2(Fij) — M((S]) defined by

(Qajua 1/})112(6]‘) = (U, 1/})112(6]‘)7 Vi € M(6])>
where M (d;) is the piecewise constant function space defined on the non-mortar side 6;. Simi-
larly we can define M (vy;) and Q7.
From the definition of Q7 and Q% the trace theorem, we get
Lemma 2.2. Assume that s C 09; is a side of Q;, (s may be a mortar or non-mortar side ).
For any v € ‘N/M and u € H*(S;), we have

1 1
[lv — Q%vl|L2(s5) < Ch} ]1,n,0:5 llu — Q%ul|r2(s) < Ch uliq;-
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In order to give the descriptions of mortar finite volume method, we build the dual partition
of the original triangulation 7p, which has a one to one corresponding with the vertices of the
original mesh. In each sub-domain ;, we construct the dual partition of 7, as follows. Choose
an interior vertex P of K, there are four elements surrounding it. We suppose that they are
Ky, K, K3 and K4. Taking the barycenter Zg, of the element K;, (i = 1,2,3,4), and connecting
71, 2Ky, LKk, and Zg,, we get the covolume K}, corresponding to the vertex P. Moreover, we
also associate a corresponding covolume with each nodal point P € 9Q;j. Thus we obtain a
group of covolumes covering the domain €2, which is the dual triangulation of the original one.
This procedure is illustrated in Figure 2.1.

Q;
ZKs ZKes

5, P .
. )

Vi ZK4 ZK3

P
Q;
Zii | Zr,

Fig.2.1: Non-matching meshes on the interface I';;

We shall denote the dual partition as 7, = UK}, and associate with it the test function
space Uy, :
Up = {veL*N) vk € Pi(Kp), v|lk; =0 on any

boundary dual element Kp}.

Given a function wy € Vj,, the corresponding function IIjwy, in the test function space Uy, is
defined as
Owp (P, Owy, (P,
M= 3 <wh(P0)xIJ§BO) 1 QenlBo) gy M\Ifﬁ}) . Vun € Vi,
Pyl 8561 8562

where \Ilg%), \115310) and \Ilgo) are three basis functions of U}, with respect to the vertex Py(z?,29) :
/o |1, PoeKp, (1) [z -1, PyeKp,
‘I’PO(P)‘{ 0, Rgkp, =0 Rekg,

0 *
(2) | wy—x3, Py€ Kp,
W, (Fo) = { 0, PygKp.

In this paper, the notation of Sobolev spaces and associated norms are the same as those in
Ciarlet [10], and C denotes the positive constant independent of h and the associated functions
and may be different at different occurrence.

3. Mortar Finite Volume Method

Let  be a multi-rectangular domain in R? and f € L?(Q2). Consider the following boundary
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value problem of the biharmonic equation

A’y =f, in Q,
{ u = g—g =0, on ON0. (3.1)
The equivalent variational form of (3.1) is: Find u € HZ(Q) such that
A(u,v) = (f,v), Vv € HZ(Q), (3.2)
where 2 2 2, 52 2, 52
0%u 0%v 0°u 0%v  0%u 0%v
A = AuA e = - =57) ] d
(,0) /Q ( uhv +( 0r10wy 0x1019 Oz} 023 Ol 83:%)) v
(F0) = [ foda.
Q
We know that
A(w,v) < C|w|2,9|v|2,9) C|’U|§,Q < A(v,v), Vw,v€E Hg(Q) (3.3)

Then the problem (3.2) has a unique solution u € HZ(Q).
Multiplying a function v, € U, on both sides of (3.1), integrating over the associated box
K3 and using the following Green’s formulae (cf. (1.2.7) and (1.2.9) in [10]),

A?uudz = AuAvdz + / 8Auvds - Au%

K* K* K * n OK* 3n
/ %u v %ud*v  O%*u 82U)d B / 0%u v O%u v
K lé]

« 0109 010> B 8—30%8—:6% B 8—30%8—33% K+ onor or W%) %

ds,

we get
0Au ovp, 0%u vy, O%u dvuy,
— Au—— — — = ]d
/BK* < an “on + onor or o2 on )
= / fondz,  vp € Up, (3.4)
where % and % denote respectively the derivatives along the outer normal and the tangent
directions.

Based on the above equality, we construct the mortar finite volume method as follows: Find
up € Vp, such that for any vy € V3,

ap(up,Mjop) = Z / fyopde, (3.5)
KreTr /"
where
ah(uB, H;;Uh) = Z IK(’LLB, H;;’Uh), (36)
KeTs

oA oI
Ir(up,Mv) = Y (/M K(a—nuBH?Lvh—AuB—hvh)ds
N

on
PeKy,

Kink Ondr 0T ot2  0On

+/ 62UB 6H7Lvh aQUB aH?LUh)dS) ‘
o
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From (3.4)-(3.5), we obtain for any function v, € V4,

dA I
an(u —up,Mv) — > (/ (Ti[nguh]—Au {8—';””])@
6;CT 8;
9%u Ol vy, 9%u oIy vy,
+/5j(ﬁ { n ] ~ Pnor { or ])ds
= 0, (3.7)

where [-] denotes the jump of the associated functions along the interface 4;.

Given a rectangle K € Ty, with vertices Pp,(z", 25")(m = i,j,k,1) where the left-below,
right-below, right-above and left-above vertex is P;, Pj, P, and P, respectively, we set Az =
|P;Pj|, Azy = |P;P| and Ak = (Az2/Azy)?. For the rectangle K € T, there exists a invertible
affine transformation: & = (z; —2%)/Axy, n = (x5 — 24)/ Az, which maps K onto the reference
element K = [0,1;0,1]. We introduce the following norm in the space V}, :

2

a1 = (Z mumuh)%muh)) , (338)

KeTn
where
pr(v) = |:’Ui_vj+vk_Ul;(g_z)i+vi_vja(g_z)j+Ui_vj;
(g_z)k +Ul_vka(g_z)l+vl_Uk:(g_;)i+vi_vla
(5o + s = o (Gde + 13 v, (G + i = '

The notation v;, (g—g)i denote v(P;), (g—g)(Pi) respectively and the others can be understood in
the same way.
Lemma 3.1, There ezists a constant independent of Vi, and K € T, such that

|H;;wh — Ihwh| < ChK|wh|2,K, xr € K, (39)
2 (MWon - o)l |2 (Wyn — Tnwn)] ) < Clon] (3.10)
;nea})(( 61‘1 hWh hrWh)|, 31’2 hWh hWh S Wh|2,K - .

By means of the same method as that in [9], we know that the following lemmas also hold
for the mortar Adini finite element space Vj.
Lemma 3.2. There exist constants C; and Cy independent of the function up € Vi such that

C’1||uh||h < |uh|2’h < C2||Uh||h, Yup € V. (311)

The seminorm |v|s p, is a norm indeed over the space Vj,. |v]2,, = 0 means that v is linear in
all elements of 2;, then from the continuity of v,dv/0z;,0v/0xy at all vertices of Q; we know
that v linear in ; and from the mortar conditions (2.2)-(2.4) follows that v linear in Q. The
boundary condition yield v = 0.

Lemma 3.3. Assume that % < Mg < %, VK € Tp. Then the bilinear form ap(un,jup) is
Vi, -elliptic, i.e., there exists a constant a independent of up, such that

a|uh|§’h < ap(up, Mjup), Yup € V.
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Then, from Lemma 3.3, we know that the problem (3.5) has a unique solution.

The following Lemma 3.4 is proved in [8]. We formulate it here which will be used in our
convergence proof.
Lemma 3.4. There exists a constant C independent of hx such that v|x € H'(K) for every
KeTy,

/ v2ds < C(hid ol + helol ), VK € Th. (3.12)
OK

From Lemma 3.1 and Lemma 3.4, we get
Lemma 3.5. Assume that s C 0Qy, is a side of Qy., (s may be a mortar or non-mortar side).
For any wy, € Vi, i, we have

I wn — Inwnllz2(s) < OB |wn 2,
10 (Wwn, — Tnwn) || 2(s) < ChY|whl2 s

110, (W wn, — Tnewon)||L2(s) < Chi* |wnlo,ncp -

4. Error Estimate in H?-seminorm

In this section, we prove the error estimate for the mortar finite volume method presented
in the previous section. First, we give the proof of approximation error.

Let @; be the interpolation of u_defined at all degrees of freedom of Adini element at all
nodal points of ; . We have i; € V,; (see e.g. [10]),

lu — @] pre () < Ch *luls,, s=0,1,2. (4.1)

Let dlg, = @;,i = 1,..., N. The function @ € ‘711 may not satisfy the mortar conditions across
the interface. In the following, we define a function w such that u! = @ + w satisfies the mortar
conditions.
To do it, given each side I';; = 7; = §;, we first define three functions on the non-mortar
side 9; :
w1 = Ihj (ﬁz

vi T aj|6j)7 wy = 7y (In; Onthily, — Ihjanﬂj|5j)7

w3 = 7 (In; Or |y, — In; Orjls,).

From the mortar conditions (2.2)-(2.4) and the definition of 7}, we know

w1 (p) = il (p) — Gjls;(P), P € Gjn, (4.2)

/ watpds = / (In; Ontiily; — In, Ontijls; )ds, ¢ € W (8;), (4.3)
d; d;

/ wspds = / (Ihia,—ﬁi v~ Ihja-rﬂj|5j)(,0ds, p e W((Sj), (4.4)
5 5

J J

We now define a global function w € Vi by setting the values of all degree of freedom at all
nodal points of all sub-domains. We first set to zero all degree of w at nodal points which are not
in any non-mortar side J;. For the vertex p on non-mortar side ¢;, we set w(p) = w1 (p), Opw(p) =
wy(p), O-w(p) = ws(p). We define u! = @ + w as the interpolation of u. Obviously, the function
ul € V}, and satisfies the mortar conditions (2.2)—(2.4).
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Lemma 4.1. For any u € H3 () N H3(Q), there exists a constant C' such that

N 3
lu—ul|pp < C (Z h?|u|§79i> _ (4.5)

i=1
Proof. From (4.1) and the triangle inequality, we have
N

lu — UI|§,h < C(lu-— ﬁgh + |W|§h) <C (Z h%|“|§9 + |‘U|§h> . (4.6)
i=1

Let the non-mortar side J; be parallel to the axis OX;. Then 0,wls; = Oz, wls; or Opwls;, =
—0g,w|s;. By means of the reference rectangle and scaling argument, we obtain

|W|g,h = Z|w|§,h,9j

6;CID
< CY > (07 ) + 0w )’ + (0w (p)?)
8;CI pEdjn
< C Z (hj_3||‘*’1||2L2(5]-) + h],_1||LU2||%2(5].) + hj—1||w3||%2(6j)) . (4.7)
6;CT

From the triangle inequality, the standard interpolation theory and the trace theorem, we
get

llwille2;) < Chjltily, = @ls; [ s;) + il — 651l p2(65)
< Chj(laly; — ulgrsy) + lu = jls; | m1(s;))
+||ﬂ/l Yi T U’|L2(5j) + |U’ - aj|6j |L2(6j))
< O lulsq, + 5 luls.0,), (4.8)

From (2.1), the triangle inequality, the standard interpolation theory and the trace theorem,
we get the estimate for ||wal|2(s;)

||w2||L2(6J-) < O Ontiily, — Ihjanaj|5j||L2(5j)
< C(|{n; Ontily; — Ontisy, L2(s;) T |[On il — 6nu||L2(6]-)
+[0nu — Oniijs, ||L2(s;) + ||Ontjls; — In; Ontijls, |2 (s;))
< ChPlulsg, + 1 |ulsg;)- (4.9)

The term [|ws||L2(s;) can be estimated in a similar way. Consequently, combining (4.7)-(4.9)
with (4.6), we obtain the desired result (4.5).

Next, we define a local equivalent mapping M : Vi i(Q;) — IN/,fi(Qi), (see [19] and [4]),
where IN/hB(QZ) is a C'! smooth functions that are bicubic in each rectangular element of Tp,,

known as Bogner-Fox-Schmit finite element space.
Definition 4.1. We define M : Vj,:(Q;) — V,fi(Qi) by setting their values of all respective

degrees of freedom at all nodal points of Q;, as follows, let p be a nodal point of Q;,u € Vhﬂ',
then

Mitu(p) = u(p),
O, Mitu(p) = ug,(p), j=1,2,
8m1m2/\/l;4u(p) =0.

In the following lemma, we state some properties of the operator M. The proof of this lemma
can be found in [4], see Lemma 5.1 there.
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Lemma 4.2. Suppose u € V}, ;(Q;). Then we have
A
|Mz u|Hs(Qi) ~ |’U‘|S7hyQi’ s=0,1,2,
- M hilu — M2 < COh?
Iz i ullrzo,) + hilu i ulm o) < Chilulzng;-

Lemma 4.3. Let s C 0Qy, be a side of Q, (s may be a mortar or non-mortar side ). For any
wp, € Vi, we have

Iy wils — whlsllz2(s) < ChyY > lwnlonon; (4.10)
[T, Onwhls — Onwals||L2(s) < Chllc/2|wh|2,h,9k§ (4.11)
[T, Orwn s — Orwhls||p2(s) < Chllc/2|wh|2,h,9k- (4.12)

Proof. We only prove (4.10) holds. The other estimates can be proved in a similar way.
From Lemma 3.4, we get

Tnewnls = walslT2ornsy < Clh Hnwnlx — wnlkllzz(x)

+hic Inwnl k= wnlk 7 (k)

< Chiclonld . (4.13)
Summing all these 0K in s, we obtain (4.10).
Lemma 4.4. Suppose wy, € V},. Then we have
[1Thwnly = Tnyonls;llog, < Oy lwonleng + 5 onlon.0,)- (4.14)
J

Proof. From the mortar condition (2.2) and the definition of the operator M we have
Ih].wh vi = Ih].wh|5]. and

v = In;wnls; ]o,s;
vi T MiAwh Yi
vi T Ihj (M?wh) i 110,85

vi)llo,s; - (4.15)

From the interpolation theory, the trace theorem and Lemma 4.2, we have

v = In;wnls;llos, = |[Ins (Mitwy)
12, (Mi'wp)
+[MAwp
+|[Tn; (M7 wn)

|1, wn

IN

0,5

i — Wh

T, (MBwn) |y — Mwnlllos; < ChY|wnlo s (4.16)

Yi

M whls — Iny (M wn)llos; < OB |wnlo g, (4.17)

Yi
Using the triangle inequality and the interpolation estimate for I, we get

|1 Tn; (M wn) i)

|0,6,~ < ||M24Wh vi — Wh
+Chj| Mwy,

vi — Wh vi 110,65

2= bl (4.18)

From Lemma 3.4 and Lemma 4.2, we obtain

A
(2),5j = Z | M7 wn

KeTh,;

M iw

2
vi T Whly vi T Whlvilly K,
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< 0 Y (b IMPwn — wnllf k
K€eTh;
+hi Mwn — wal} k)
|M;4wh i — Wh Vi %,5]‘ S Chi|wh|g,h,9i' (420)

Combining all above inequalities yield the desired result (4.14).
Lemma 4.5. Suppose wy, € Vi,. Then

vi = In; Onwns; || L2(vi) < C(h;/2|wh|2,h,9i + h;/2|wh|2,h,9j); (4.21)

|1, Onwn

[[Tn; Orwh|y; — In; Orwhls; ||12(s;) < C(h;/2|wh|2,h,9i + h;/2|wh|2,h,Qj)- (4.22)

Proof. We only need to prove (4.21) holds. (4.22) can be proved in a similar way. From the
mortar condition (2.3), we get for any v € L*(4;)

|(Ih; Onwn

v = Tn;Onwhls; , v)o,5;

= |(In;Onwhly: = In;Onwnls;, v — Thv)o,s, |

= |(In,0nwh|y; — Ta M Opwnly, — In, Opwnls, + Wthanwhbj,U — ThV)0,5, |

< Clvllo,s; (| In;0nwhly; — Onwnly; [l + |1Onwnly; — M?anwh i 110,73
HI M Bnwnlye — Ta M Bnwnlelloe + 11Tn; Onwnls; — Onwnls;llo.s;

+||6n(Uh|§j - M]Aanwh|5j||0,5j + ||-/\/l]Aa’n,(4'-}h|5J - WhM]Aanwh|§j||U,5j) .
From Lemma 4.2 and Lemma 3.4, we obtain

0,v: < Chi/2|wh|2,h,9i- (4.23)

A
= M D

||Onwh Vi

From Lemma 2.1, the trace theorem and Lemma 4.2, we have

||M248nwh yi 71'h-/\/l?(‘)nu’h 0y < Ch;/2|wh|27h79j‘ (4.24)

Vi
The terms ||3nwh|5]. - M?@nwhbj”o,aj and ||M;‘8nwh|5]. - nth(?nwhb]. ||075]. can be also es-

timated as above. Then, combining all inequalities above with Lemma 4.3, we have

1 1
|(In; Onwh ly; = In; Onwils,; s v)o,s; | < Cllvllo,s; (R |whl2,n,0: + b |whl2n0;)-

From the definition of L?(§;)-norm, we obtain the desired result (4.21).
Theorem 4.1. Suppose that w and up are the solutions of (3.2) and (8.5), respectively. Then,
there exists a constant C' such that

N 2
|u—uB|2,hsc(zhmu@,m+h%|u|z,gi>> | (1.25)
=1

Proof. From Lemma 3.3, we have for u’ € V},

an(up — u’, Wiwn) (4.26)

lup — uI|2,h <C sup
0w EVh |wh|2,h
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From (3.7), we get

ap(up — ul, T} wp)

AA Bl
= an(u—u \Twy) — Y </5 (a—n“[ “on] — Au {#ﬂ)ds

6;CT
9%y oIy wy, 8%y oIy wy,
— — — ds | . 4.27
/5].(372 { an } anaT{ ar ]) N (4:27)
In order to estimate ap(u — uf,II}wy), from (3.6), we may rewrite it as
ap(u—ul,wy) = Z I (u—ul iws)
KEeTs
= Y (Bg+ Ex + By + Ex + Ey), (4.28)
KeTh
where 9AL
Ej= > / T} wyds,
Pek, 7 OKpNK on
A I
Ei = Z / —a—uﬂzwhds,
Pk, ) OKpNK on
H*
EK_ Z / )a hwhdsa
pek, JOKp mK on
Bl = Z / 32(u—u)6H;‘Lwhds
e Joksnk or? on
Ep=Y / O (u —u) Ol 4
o, Jorcunk onot or

Using Lemma 4.1 and the technique given in the proof of theorem 3 in Chen [9], we obtain
the estimation of E%, E%., Ef and E3 :

E%l, 1Bkl 1Bkl 1Ek] < Chicluls x|wnlz x,

In the following, we estimate E}. Since Inwy € C°(£;), we have

0Au
Bkl = [ S~ Twn)ds
pek, JOKpnk ON
aAu
< Chklwhl2,x Z (4.29)

Pk, OKp mK

where Lemma 3.1 is used.
From the Cauchy-Schwarz inequality and Lemma 3.4, we obtain

A A :
S [ 1%t < o Y (/ |28u “|2ds>
pek, ) OKENK 6” pek, \JOKinK on
< C(|u|371( + hK|u|47K). (4.30)

From (4.29) and (4.30), we get

|Ek| < Chi(|uls,x + hilula,x)|whl2 k-
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From the inequalities as above, we have

N 2
|an(u — u', Mjwy)| < C (Z B (Jul3 o, + h?l“li,g)) |wl2,n- (4.31)
i=1
Next, we estimate the remainder terms of right side of (4.27). First, we have
0Au
2T wr1d
5; on [ hwh] s
0Au 0Au
= | —(Iywnl~, —Ihiwh)ds+/ —— (Mpwnls; — In;wn)ds
/Yi on VR 5; On h
0Au
+/ a—(IhiWh vy — Ihjwh|6j)d3- (4.32)
5; on

From Cauchy-Schwarz inequality, Lemma 3.5, we get

080 e lds < O Juls,

Wnlana: + 1 uls g5 lwnl2n.0;)

5; On
+| /6j %(Ihiwh i — In;whls; )ds|. (4.33)
From Lemma 3.4, we can derive that
luls.5; < C(h; ®Juls0; + b2 |ula,). (4.34)

Therefore, from Cauchy-Schwarz inequality and Lemma 4.4, we get

0Au

[ St nonls — Tagenls sl < C ((bifulagy + Bl lonlena,

9

+(hjluls.o; + Bjlulse,)lwnl2.ne;) - (4.35)
Combining (4.33) with (4.35), we have
0Au a :
S [ G Ml <c (Z(hﬂu@,m + h;*|u|4,m>> fnlo (4.36)
§;cr o i=1

Since 0,11} wy,, 0-117 wy, are piecewise constants on the dual meshes of v; and d;, Iy, Opwn |,
Iy, Opwnls; In,0rwhly, and Iy, 0rwy|s; are continuous piecewise linear functions, we have

/(aanLst — In, Onwn|s)pds =0, Vo e M(s), (4.37)

/ (O TTwnls — In, Doonls)ods = 0, Ve € M(s), (4.38)
where s is a mortar side or a non-mortar side of the sub-domain €, and M (s) is the piecewise

constant, function space defined on the original mesh of the side s, which is given in section 2.
From (4.37), we have

/ Au [0, wp] ds
d;

:/ Au(@nH;wh v — [hianwh)ds +/ Au(@nH;whbj — Ih].(?nwh)ds
Vi 0
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+/ A’U,(Ihl.anwh — Ihjanwh)ds
6;

=A (Au— Q7 Aw)(,

i

vi T Ihl.@nwh)ds + / Au(Ihic’)nwh — Ihjc’)nwh)ds
4;

+ / (Au— QY Au)(@u T wnls, — In, Opeon)ds
8;
= T+ T+ Ts, (4.39)
where Q7 (Au) € M(y;) and Q% (Au) € M (6;).
From Cauchy-Schwarz inequality, Lemma 2.2, Lemma 3.5 and the standard interpolation
theory, we have
T < [|Au— Q" Aullo,5;)([|0nIlwn — OpIn,whllo,s;)
F|OnIn;wn — Onwhllo,s;) + [10nwn — In; Onwnllo,s;))
|2,n,9; (4.40)

IN

Similarly, we get the estimation for |T5|.
T3] < Chjlulz,q; |whl2,n,0,- (4.41)

From the mortar condition (2.3), Lemma 2.1 and Lemma 4.5, we get

| /5J- (Au — m(Au)) (11,0

|T2| vi T Ihjanwh|5j)d5|

Chyluls 0, (b lonlon.o + by (wnl2n.;)
Chjlulz,o; (lwnl2,n.0, + |whl2,n,0;) (4.42)
From (4.39)-(4.42), we obtain

<
<

=1

/ Au[d,ITwy] ds| < C (Z h2|u|39> |lwhlo.n- (4.43)
6;CI

Similar estimates can be obtained:

8%u [0 w N >
Z/ 5 [ h h}ds §C<2h3|u|§g> |wh |2, (4.44)

6;CT i=1

1
N 5
0%u GH;‘Lwh 2 2
> o M)y <o(Sutia ) ke 0
60;CT i=1

From (4.26), (4.27), (4.31), (4.36), (4.43)-(4.45), and Lemma 4.1 we get the desired result
(4.25).
Remark. Theorem 4.1 is proved under H* smoothness hypothesis and the regularity assump-
tion underlying the original partial differential equation is not used.
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