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Abstract

The extended discrete gradient method is an extension of traditional discrete gradient

method, which is specially designed to solve oscillatory Hamiltonian systems efficiently

while preserving their energy exactly. In this paper, based on the extended discrete gradient

method, we present an efficient approach to devising novel schemes for numerically solving

conservative (dissipative) nonlinear wave partial differential equations. The new scheme

can preserve the energy exactly for conservative wave equations. With a minor remedy to

the extended discrete gradient method, the new scheme is applicable to dissipative wave

equations. Moreover, it can preserve the dissipation structure for the dissipative wave

equation as well. Another important property of the new scheme is that it is linearly-fitted,

which guarantees much fast convergence for the fixed-point iteration which is required by

an energy-preserving integrator. The efficiency of the new scheme is demonstrated by some

numerical examples.
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1. Introduction

Numerical schemes that conserve geometric structure have been shown to be useful when

studying the long-time behaviour of dynamical systems. Such schemes are sometimes called

geometric or structure-preserving integrators. The structure includes physical/geometric prop-

erties such as first integrals, symplecticity, symmetries and reversing symmetries, phase-space

volume, Lyapunov functions, foliations. Geometric algorithms have important applications in

many fields, such as fluid dynamics, celestial mechanics, molecular dynamics, quantum physics,

plasma physics, quantum mechanics, and meteorology. We refer the reader to [1–3] for recent
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surveys of this research. It has now become a common practice that the consideration of qual-

itative properties in ordinary and partial differential equations is important when designing

numerical schemes. For ordinary differential equations (ODEs) it is possible to devise rela-

tively general frameworks for structure preservation. This seems somewhat much more difficult

for partial differential equations (PDEs) because PDEs are a huge and motley collection of

problems and each equation under consideration normally requires a dedicated scheme (see,

e.g. [6–10]). Fortunately, many attempts have been made to give a fairly general methodology

to develop geometric schemes for PDEs. For example, in [4], by discretizing the energy of the

PDEs to get an ODE system, then applying the average vector field method to the resulting

system, the authors proposed a systematic procedure to deal with evolutionary PDEs as far as

conservation or dissipation of energy is concerned. Another example is the PDEs that can be

formulated into multi-symplectic form to which, one can apply a scheme which preserves a dis-

crete version of this form (see, e.g. [5], for a review of this approach). Many enery-preserving

or multi-symplectic methods are derived for Hamiltonian PDEs based on the multi-symplectic

formulation (see, e.g., [11–14]).

In recent years, there has been an enormous advance in dealing with the oscillatory systems

q̈ +Mq = f(q), (1.1)

which can be obtained by spatial semi-discretization of wave equations and some useful ap-

proaches to constructing Runge-Kutta-Nyström (RKN)-type integrators have been proposed

(see, e.g. [15–20]). Very recently, taking account of the special structure introduced by the lin-

ear term Mq, Wu et al. [20] formulated a standard form of the multidimensional extended RKN

(ERKN) integrators. The ERKN integrators exhibit the correct qualitative behaviour much bet-

ter than classical RKN methods due to using the special structure of the equation brought by

the linear term Mq. For further work on this topic, we refer the reader to [19, 21, 22]. If f is

the negative gradient of a scalar function V , i.e., f = −∇V , then (1.1) is a multi-frequency

oscillatory Hamiltonian system. In [23], integrating the idea of the discrete gradient method

with the ERKN integrator, the authors presented an extended discrete gradient formula for the

oscillatory Hamiltonian system (1.1).

In this paper, we will propose and investigate an efficient approach to dealing with non-

linear wave PDEs following the line of [4]. Firstly, by approximating the functional whose

negative variational derivative is the right-hand side term of the underlying wave equation,

we semi-discretize the conservative wave equations into a Hamiltonian system of ODEs or the

dissipative wave equations into a dissipative system of ODEs. We then apply the extended

discrete gradient method to the resulting system of ODEs. This process gives a conservative

scheme for conservative wave PDEs and a dissipative scheme for dissipative wave PDEs, and

can be applied to a large scope of wave equations in a systematic way.

The outline of this paper is as follows. The preliminaries are given in Section 2. In Section

3, we recall the extended discrete gradient method, based on which a new dissipative scheme

is proposed for dissipative systems with a damping term. In Section 4, the new numerical

schemes are applied to some conservative/dissipative wave equations to show the efficiency and

robustness in comparison with the existing methods in the literature. The last section focuses

on some conclusions and discussions.
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2. Preliminaries

We consider nonlinear wave PDEs of the form

∂2u

∂t2
= −δG

δu
, (2.1)

where

G[u] =
∫

Ω

G[u]dx, Ω ⊆ R
d, (2.2)

and u : Rd × R → R
m, dx = dx1 · · · dxd. The square brackets in (2.2) indicate that a function

depends on u itself as well as the derivatives of u with respect to the independent variables

x = (x1, · · · , xd) up to and including some degree ν. The variational derivative
δG
δu

is an

m-vector, which can be defined through the relation

∫

Ω

δG
δu

· vdx =
d

dǫ

∣

∣

∣

∣

ǫ=0

G[u+ ǫv], (2.3)

for any sufficiently smooth m-vector of functions v(x).

From now on, we assume that the solution has sufficient regularity and the boundary con-

ditions on Ω are chosen such that the boundary terms vanish when calculating integration by

parts (for example, periodic boundary conditions).

Take d = 1, m = 1 as an example. In this case, we have

G[u] =
∫

Ω

G

(

u,
∂u

∂x
, . . . ,

∂νu

∂xν

)

dx,

δG
δu

=
∂G

∂u
− ∂

∂x

(

∂G

∂ux

)

+
∂

∂x2

(

∂G

∂uxx

)

+ · · ·+ (−1)ν
∂

∂xν

(

∂G

∂u(ν)

)

.

For generalm, d, the variational derivatives can be calculated by applying the Euler operator

to G[u] (see, e.g., [24] for details).

By our assumption, the equations of the form (2.1) have in common the energy conservation

property

d

dt
H[u] =

d

dt

∫

Ω

1

2

(

∂u

∂t

)2

+G[u]dx = 0, (2.4)

and usually we call it conservative. An important fact about wave PDEs (2.1) is that they can

be represented as a system of first-order PDEs

(

ut

wt

)

=

(

0 I

−I 0

)

(

δH̃
δu
δH̃
δw

)

, (2.5)

where

H̃[u,w] =

∫

Ω

1

2
w2 +G[u]dx, (2.6)

and w = ut is an intermediate function. Since

S =

(

0 I

−I 0

)
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is skew-symmetric, based on the system representation (2.5), the conservation property is rewrit-

ten as the modified energy conservation property

d

dt
H̃[u,w] = 0. (2.7)

In [4], by discretizing the energy functional H̃ using a consistent approximation H̄∆x, the

authors semi-discretized the conservative PDEs (2.5) into a Hamiltonian system of ODEs with

‘skew-gradient’ form

ẏ = S∇H̄(y), y =

(

U

W

)

, (2.8)

where U and W denote the discrete values of u and w = ut at the mesh grid points.

Applying the discrete gradient method (see the next section) to the semi-discretized system

yields the scheme
yn+1 − yn

∆t
= S∇̄H̄(yn, yn+1),

for advancing the numerical solution yn at time tn to yn+1 at time tn+1, where ∇̄H̄(yn, yn+1)

is the discrete gradient of H̄. The scheme preserves the discretized energy exactly.

Apart from the conservative case, we also consider the wave equations with a damping term

∂2u

∂t2
+ α

∂u

∂t
= −δG

δu
, (2.9)

where α > 0 is a small positive constant. The term αut represents a damping force proportional

to the velocity ut. Since the equations of the form (2.9) have in common the energy dissipation

property

d

dt
H[u] = −α

∫

Ω

(

∂u

∂t

)2

dx < 0, (2.10)

we usually call it dissipative, i.e., H[u] is a Lyapunov function of (2.9). Wave equations (2.9)

can be rewritten as
(

ut

wt

)

=

(

0 I

−I −αI

)







δH̃
δu
δH̃
δw






, (2.11)

and it is easy to verify that

D =

(

0 I

−I −αI

)

is semi-negative definite. Similar to the conservative case, semi-discretizing the disspative PDEs

(2.11) into a dissipative system of ODEs with the form

ẏ = D∇H̄(y), y =

(

U

W

)

(2.12)

and applying the discrete gradient method to system (2.12) gives the scheme

yn+1 − yn
∆t

= D∇̄H̄(yn, yn+1).

The scheme preserves the decay of the energy (see, e.g., [4]).
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It is noted that in the case of the wave equations, in order to fit the framework in [4], we need

to double the dimension of the systems which should be avoided from computational point of

view. Furthermore, the wave equations have their own structures, which cannot be fully taken

account of, if they are transformed into the form (2.5) or (2.11). For instance, the nonlinear

Klein-Gordon equation can be written in the form (2.1):

∂2u

∂t2
= −δG

δu
, G[u] =

u2
x

2
+ η(u).

When using spatial semi-discretizations, a linear term naturally comes up due to the quadratic

term 1
2u

2
x in G[u]. The special structure brought by the linear term could be considered when

an efficient numerical scheme is designed. The extended discrete gradient method favors this

point.

Based on the fact stated above, in this paper, instead of transforming the PDEs under

consideration into the form (2.5), we consider directly the original form (2.1). Furthermore, we

apply the extended discrete gradient method instead of the traditional discrete gradient method

to the semi-discretized system of ODEs. More precisely, we first discretize the functional G using

some consistent approximation Ḡ∆x. The following lemma is useful and the proof can be found

in [4].

Lemma 2.1. Let

H[u] =

∫

Ω

H [u]dx, Ω ⊆ R
d, (2.13)

and let H̄(U)∆x be any consistent (finite difference) approximation to H[u] (where ∆x =

∆x1 · · ·∆xd) with N degrees of freedom. Then in the finite-dimensional Hilbert space R
N with

the Euclidean inner product, the variational derivative δ
δU (H̄(U)∆x) is given by ∇H̄(U).

When approximating H[u] by a spectral discretization, despite that the approximation is

not of the form in Lemma 2.1, the lemma still works since such an approximation can be viewed

as a finite difference approximation where the finite difference stencil has the same number of

entries as the number of grid points on which it is defined.

Let U represent the discrete values of u at the mesh grid points, in the multidimensional

case after choosing an order. By Lemma 2.1, the variational derivative
δG
δu

is approximated by

∇Ḡ. Thus, the wave equation (2.1) is semi-discretized into

d2U

dt2
= −∇Ḡ(U), (2.14)

and the wave equation (2.9) with damping term is semi-discretized into

d2U

dt2
+ α

dU

dt
= −∇Ḡ(U). (2.15)

We then apply the extended discrete gradient method to the systems (2.14) and (2.15), re-

spectively. This process gives a conservative scheme for the conservative wave equations and a

dissipative scheme for the dissipative wave equations. One of the benefits of using the extended

discrete gradient method is that it is linearly-fitted which will be shown in the next section.
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3. Extended Discrete Gradient Method

Discrete gradient methods for ODEs were introduced by Gonzalez [25], for research on

discrete gradient methods, we refer the reader to [26–31].

We recall the definition of a discrete gradient. If Q : Rk → R, the discrete gradient of Q is

defined as follow.

Definition 3.1. Let Q be a differentiable function. Then ∇Q is a discrete gradient of Q

provided it is continuous and for ∀u, v ∈ R
k, u 6= v, satisfies

{

∇Q(u, v) · (u− v) = Q(u)−Q(v),

∇Q(u, u) = ∇Q(u).
(3.1)

Consider the continuous time systems of linear-gradient form:

ẏ = L(y)∇Q(y), (3.2)

with L(y) a matrix-valued function which is skew-symmetric for all y. Note that any ODE

system preserving Q can be written in this form.

The corresponding discrete gradient method for (3.2) has the following form

yn+1 − yn
h

= L(yn, yn+1, h)∇Q(yn, yn+1), (3.3)

where L(yn, yn+1, h) is some skew-symmetric matrix, which approximates the original L(y). It

is required that L(y, y, 0) = L(y) and ∇Q(y, y) = ∇Q(y) for consistency.

There are many possible choices of discrete gradients for a function Q (see, e.g. [25,26,32]),

among which the one used in the average vector field (AVF) method is distinguished due to

the fact that the AVF method has some good features such as linear covariance, automatic

preservation of linear symmetries, reversibility with respect to linear reversing symmetries.

Thus, from now on, we consider only the AVF method. The average vector field is defined as

∇Q(yn, yn+1) :=

∫ 1

0

∇Q((1− τ)yn + τyn+1)dτ. (3.4)

A particular form of linear-gradient system (3.2) is the Hamiltonian system

ẏ = J−1∇H(y), (3.5)

with the Hamiltonian

H(p, q) =
1

2
p⊺p+

1

2
q⊺Mq + V (q), (3.6)

where y = (p⊺, q⊺)⊺, q = (q1, q2, · · · , qN )⊺, p = (p1, p2, · · · , pN)⊺, M ∈ R
N×N is a symmetric

and positive semi-definite matrix. J is the 2N × 2N skew-symmetric matrix

J =

(

0 I

−I 0

)

.

Applying the AVF method to the system (3.5) gives the scheme


















qn+1 = qn + hpn − h2

2

(

1

2
M(qn + qn+1) +

∫ 1

0

∇V ((1 − τ)qn + τqn+1)dτ

)

,

pn+1 = pn − h

(

1

2
M(qn + qn+1) +

∫ 1

0

∇V ((1− τ)qn + τqn+1)dτ

)

.

(3.7)
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It is easy to see that (3.5) is simply the following oscillatory second-order differential equa-

tions
{

q̈(t) +Mq(t) = f(q(t)), t ∈ [t0, T ],

q(t0) = q0, q̇(t0) = p0,
(3.8)

where f : RN → R
N is the negative gradient of V (q).

It is noted from Section 2 that the semi-discretized systems of many conservative wave

equations can be formulated into the form (3.8) if all the linear terms with respect to Ui (i =

1, . . . , N) are attributed to MU .

Now, we are in a position to present the extended discrete gradient method for (3.8). Before

doing that, we define the matrix-valued functions which appeared first in [19]

φl(M) :=

∞
∑

k=0

(−1)kMk

(2k + l)!
, l = 0, 1, . . . (3.9)

The extended discrete gradient formula is given in [23] for (3.8) as follows:

{

qn+1 = φ0(K)qn + hφ1(K)pn − h2φ2(K)∇V (qn, qn+1),

pn+1 = −hMφ1(K)qn + φ0(K)pn − hφ1(K)∇V (qn, qn+1),
(3.10)

where h is the stepsize, K = h2M , pn = q̇n, and ∇V (qn, qn+1) is the discrete gradient of V (q).

Remark 3.1. The matrix-valued functions φi, i = 0, 1, 2 can be approximated by truncation

of Taylor expansion. And Since the matrix-valued functions φi, i = 0, 1, 2 only need to be

calculated once for every fixed stepsize h, it does not add much extra computational cost on

each iteration step. Based on the relationship among φi, i = 0, 1, 2, other efficient algorithms

for the computation of φi, i = 0, 1, 2 can be found in [33] and the references therein.

Choosing ∇V (qn, qn+1) to be the average vector field gives the extended AVF method



















qn+1 = φ0(K)qn + hφ1(K)pn − h2φ2(K)

∫ 1

0

∇V ((1 − τ)qn + τqn+1)dτ,

pn+1 = −hMφ1(K)qn + φ0(K)pn − hφ1(K)

∫ 1

0

∇V ((1 − τ)qn + τqn+1)dτ.

(3.11)

It can be verified that the extended discrete gradient method is linearly-fitted in the sense

that in the particular case where ∇V (q) ≡ ∇V0 is constant, the extended discrete gradient

method gives the exact solution of the system (3.5) or (3.8).

Moreover, note that all the schemes are implicit and require iterative computation, in gen-

eral. A simple and common choice would be the fixed-point iteration. It is shown in [23] that the

convergence of fixed-point iteration for the extended discrete gradient method is independent

of ‖M‖, however the traditional one does. This fact means that in general, a larger stepsize can

be chosen for the extended discrete gradient schemes than that for the traditional discrete gra-

dient methods. The convergence rate of fixed-point iteration for the extended discrete gradient

method is higher than that for the traditional discrete gradient method.

The extended gradient methods can conserve the energy exactly when applied to the Hamil-

tonian system (2.14) (after reformulated into the form (3.8)). However, it cannot be applied
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directly to the system of the form (2.15) because of the existence of the damping term. We

now consider the following damped system

{

q̈(t) + αq̇(t) +Mq(t) = f(q(t)), t ∈ [t0, T ],

q(t0) = q0, q̇(t0) = p0.
(3.12)

We need to revise the extended gradient method so that it can be applied to (3.12). To this end,

we put the term αq̇ to the right-hand side of the system and consider formally f̃(q) = f(q)−αq̇

as the negative gradient of the potential Ṽ (q) = V (q) +
α

2
q̇2. System (3.12) is rewritten in the

form
{

q̈(t) +Mq(t) = f̃(q(t)), t ∈ [t0, T ],

q(t0) = q0, q̇(t0) = p0.
(3.13)

Bearing in mind pn = q̇n and applying the extended discrete gradient method to (3.13) yields















qn+1 = φ0(K)qn + hφ1(K)pn − h2φ2(K)

(

∇V (qn, qn+1) + α
pn + pn+1

2

)

,

pn+1 = −hMφ1(K)qn + φ0(K)pn − hφ1(K)

(

∇V (qn, qn+1) + α
pn + pn+1

2

)

.

(3.14)

The extended AVF method for (3.12) then becomes



















qn+1 = φ0(K)qn + hφ1(K)pn − h
2
φ2(K)

(
∫ 1

0

∇V ((1− τ )qn + τqn+1)dτ + α
pn + pn+1

2

)

,

pn+1 = −hMφ1(K)qn + φ0(K)pn − hφ1(K)

(∫ 1

0

∇V ((1− τ )qn+τqn+1)dτ + α
pn+pn+1

2

)

.

(3.15)

All that remains is to prove that (3.14) preserves the dissipation or the decay of Lyapunov

function H(p, q). The following properties of matrix-valued functions play an important role in

the proof:

φ2
0(K) +Kφ2

1(K) = I, K
(

φ2
1(K)− φ0(K)φ2(K)

)

= I − φ0(K), (3.16a)

φ2
1(K) +Kφ2

2(K) = 2φ2(K), φ0(K) +Kφ2(K) = I. (3.16b)

Theorem 3.1. If h is sufficiently small, the scheme (3.14) with the stepsize h preserves the

dissipation or the decay of Lyapunov function H(p, q) when applied to the damped system (3.12),

i.e.,

H(pn+1, qn+1) 6 H(pn, qn), n = 0, 1, . . .

Proof. We first let

∇Ṽ (qn, qn+1) = ∇V (qn, qn+1) + α
pn + pn+1

2
.

Then compute

H(pn+1, qn+1) =
1

2
p⊺n+1pn+1 +

1

2
q⊺n+1Mqn+1 + V (qn+1). (3.17)

Using the symmetry of K and commutativity of K and all the φl(K) and inserting (3.14) into
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(3.17), with a tedious computation we obtain

H(pn+1, qn+1) =
1

2
p⊺n
(

φ2
0(K) +Kφ2

1(K)
)

pn +
1

2
q⊺nM

(

φ2
0(K) +Kφ2

1(K)
)

qn

+ q⊺nK
(

φ2
1(K)− φ0(K)φ2(K)

)

∇Ṽ (qn, qn+1)− hp⊺n

(

φ0(K)φ1(K)

+Kφ1(K)φ2(K)
)

∇Ṽ (qn, qn+1) +
1

2
h2∇Ṽ (qn, qn+1)

⊺

(

φ1(K)2

+Kφ2(K)2
)

∇Ṽ (qn, qn+1) + V (qn+1). (3.18)

Substituting (3.16) into (3.18) gives

H(pn+1, qn+1) =
1

2
p⊺npn +

1

2
q⊺nMqn + q⊺n

(

I − φ0(K)
)

∇Ṽ (qn, qn+1))

− hp⊺nφ1(K)∇Ṽ (qn, qn+1 + h2∇Ṽ (qn, qn+1)
⊺φ2(K)∇Ṽ (qn, qn+1) + V (qn+1)

=
1

2
p⊺npn +

1

2
q⊺nMqn +

(

qn −
(

φ0(K)qn + hφ1(K)pn

− h2φ2(K)∇Ṽ (qn, qn+1)
)

)⊺

∇Ṽ (qn, qn+1) + U(qn+1)

=
1

2
p⊺npn +

1

2
q⊺nMqn +

(

qn − qn+1

)⊺∇Ṽ (qn, qn+1) + V (qn+1)

=
1

2
p⊺npn +

1

2
q⊺nMqn + α

(

qn − qn+1

)⊺ pn + pn+1

2
+ V (qn). (3.19)

The last equality is due to the definition of discrete gradient. Thus, we have

H(pn+1, qn+1)−H(pn, qn) = α
(

qn − qn+1

)⊺ pn + pn+1

2
. (3.20)

Solving the second equation of (3.14) for∇Ṽ (qn, qn+1) and substituting it into the first equation

of (3.14) yields

qn+1 = φ0(K)qn + hφ1(K)pn + φ−1
1 (K)φ2(K) (hpn+1 +Kφ1(K)qn − φ0(K)hpn) . (3.21)

Substituting (3.21) into (3.20), we have

H(pn+1, qn+1)−H(pn, qn) = −α(
(

φ0(K)− I
)

qn + hφ1(K)pn

+ φ−1
1 (K)φ2(K) (hpn+1 +Kφ1(K)qn − φ0(K)hpn))

⊺
pn + pn+1

2

=− 2αh

(

pn + pn+1

2

)⊺

φ−1
1 (K)φ2(K)

pn + pn+1

2
. (3.22)

By the definition of matrix-valued functions and the assumption, it can be verified that φ−1
1

(K) φ2 (K) is semi-positive definite. Thus, we have H(pn+1, qn+1)−H(pn, qn) 6 0. The proof

is complete. �

Remark 3.2. If M → 0, (3.14) reduces to the traditional discrete gradient method and (3.22)

becomes
H(pn+1, qn+1)−H(pn, qn)

h
= −α

(

pn + pn+1

2

)⊺
pn + pn+1

2
.

In this case, the scheme preserves the dissipation property regardless of the magnitude of the

stepsize h. This coincides with the fact that discrete gradient methods are unconditionally

energy-diminishing methods for dissipative gradient system (see [34]).
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By now, we can give our scheme as follows.

• The scheme presented in this paper (denoted by EAVF):

1. Discretize the functional G[u] =
∫

Ω G[u]dx using some consistent approximation

Ḡ(U)∆x to get a system of ODEs ((2.14) or (2.15)) as described in the paper.

2. The quadratic terms with respect to U in Ḡ(U) result in the linear terms ∇Ḡ(U) of the

semi-discretized system of ODEs. By attributing all these linear terms to MU , We can

rewrite the system of ODEs in a form to which the extended AVF method is applicable.

3. Apply the extended AVF method to the resulting system of ODEs.

Remark 3.3. By (3.20), we have

H(pn+1, qn+1)−H(pn, qn)

h
= −α

(

qn+1 − qn
h

)⊺
pn + pn+1

2
. (3.23)

Considering (qn+1 − qn)/h and (pn + pn+1)/2 as two different approximations of pn = q̇n, from

this point of view, (3.23) is the discrete analogy of the dissipation property

d

dt
H[u] = −α

∫

Ω

(

∂u

∂t

)2

dx.

Remark 3.4. If the damping coefficient α in (2.9) is space-dependent, i.e., α = α(x) with the

property α(x) > c, where c > 0 is a positive constant, then it can be verified that (2.9) is

still dissipative. To derive the corresponding linearly-fitted dissipative scheme, we only need to

replace α in (3.14) by the diagonal matrix with diagonal entries being the discrete values of α

at the mesh grid points. The preservation of dissipation can be proved in a similar way.

4. Numerical Experiments

In what follows, we apply the scheme presented in this paper to some conservative and

dissipative wave equations to show the efficiency of the scheme. We compare the scheme derived

in this paper with the scheme given in [4]. The scheme is described as follows.

• The scheme given in [4] (denoted by AVF):

1. Discretize the energy functional

H[u] =

∫

Ω

1

2

(

∂u

∂t

)2

+G[u]dx

using some consistent approximation H̄(U)∆x to get a system of ODEs. Here, we choose

H̄(U) =
∑

j

1

2
U̇2
j + Ḡ(U)

when comparing the two schemes. In this case, the resulting system of ODEs is the same

as the one obtained by the scheme EAVF.

2. Then apply the traditional AVF method to the resulting system of ODEs.

All the computations and graphics are performed in MATLAB 7 in IEEE double precision

arithmetic.
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4.1. The AVF and starting approximations for fixed-point iteration

First, we consider the evaluation of the average vector field

∫ 1

0

∇V ((1 − τ)qn + τqn+1)dτ.

For the system obtained by semi-discretizing PDEs, the potential V (q) is typically of the form

V (q) =
N
∑

i=1

aiW (qi), where W is a scalar function, qi is the ith component of q and a =

(a1, . . . , aN ) ∈ RN is a constant vector (usually a = (1, . . . , 1)⊺). The following lemma states

that the average vector field can be evaluated exactly for this kind of special potential.

Lemma 4.1. If V (q) =
N
∑

i=1

aiW (qi), then

∫ 1

0

∇V ((1− τ)qn + τqn+1)dτ =

























a1
W (q1

n+1)−W (q1
n
)

q1
n+1

−q1
n

...

ai
W (qi

n+1)−W (qi
n
)

qi
n+1

−qi
n

...

aN
W (qN

n+1)−W (qN
n
)

qN
n+1

−qN
n

























.

Proof. The proof is straightforward and we skip it. �

Since all the schemes derived in the paper are implicit, it is required to solve a system of

nonlinear algebraic equations iteratively. A good starting approximation would improve the

efficiency of the iteration. We refer the reader to [1] for details on the choice of good starting

approximations for implicit schemes.

For conservative system, the unknowns qn+1 and pn+1 in the two schemes AVF and EAVF

are decoupled. That means that we only need to solve qn+1 implicitly and pn+1 can be calcu-

lated explicitly. However, for dissipative system, the unknowns qn+1 and pn+1 are no longer

decoupled, hence we have to solve them simultaneously by implicit iteration.

The most simple starting approximations for qn+1 and pn+1 are qn+1 = qn, pn+1 = pn or

qn+1 = qn + hpn, pn+1 = pn. However, they are not accurate enough. Moreover, it is noted by

Lemma 4.1 that the denominators in the evaluation of the integral are of the form qin+1 − qin.

We cannot choose the starting approximation qn+1 = qn or qn+1 = qn + hpn if pn = 0, since in

this case, the implicit iteration will diverge immediately. Therefore, it is very subtle and takes

much effort to give a proper starting approximation for the AVF method.

The scheme EAVF, however, gives us an idea to choose the starting approximations for qn+1

and pn+1. Since the EAVF method integrates unperturbed systems exactly, we can choose

qn+1 = φ0(K)qn + hφ1(K)pn, pn+1 = −hMφ1(K)qn + φ0(K)pn

as the starting approximations which is accurate enough. Moreover, we don’t need extra cal-

culation because they are exactly the part of the formulae of the scheme EAVF.

In order to compare the efficiency and convergence rate of the two schemes, we choose the

same starting approximations for both schemes, i.e.,

qn+1 = φ0(K)qn + hφ1(K)pn, pn+1 = −hMφ1(K)qn + φ0(K)pn.
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4.2. Conservative wave equations

Problem 1. Consider the sine-Gordon equation

∂2u

∂t2
=

∂2u

∂x2
− sinu, t > 0.

We only consider the so-called breather-solution [35]

u(x, t) = 4 tan−1

(√
1− ω2

ω

cosωt

cosh(x
√
1− ω2)

)

. (4.1)

The initial conditions are given by

u(x, 0) = 4 tan−1

(√
1− ω2

ω

1

cosh(x
√
1− ω2)

)

,

ut(x, 0) =
∂

∂t

{

4 tan−1

(√
1− ω2

ω

cosωt

cosh(x
√
1− ω2)

)}

t=0

with ω = 0.9. On an infinite domain, this is a bump shaped solution which oscillates up and

down with period 2π/ω. To exclude boundary effects, we use periodic boundary conditions

with L = 20, i.e., we consider the sine-Gordon equation in the interval [−20, 20].

The sine-Gordon equation is of the type (2.1) with

G[u] =
∫ L

−L

1

2

(

∂u

∂x

)2

+ (1− cosu)dx. (4.2)

Denote xj = −L+ j∆x with ∆x =
2L

N
and let

Ḡ(U)∆x =





N−1
∑

j=0

1

2(∆x)2
(uj+1 − uj)

2 + (1− cos(uj))



∆x

be the approximation of G[u]. The resulting system of ODEs is given by

d2U

dt2
+MU = f(U), (4.3)

where U = (u1, . . . , uN )T , f(U) = −∇V (U) with V (U) = 1− cos(u1) + . . .+ 1− cos(uN ) and

M =
1

∆x2

















2 −1 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 −1 2

















.

f(U) = − sin(U) = −
(

sinu1, . . . , sinuN

)T
.

Here, we use uj to refer the value of u at xj with a fixed time level.

The system is integrated in the interval [0, 20] with N = 400 and h = 0.01. First, for the

fixed-point iteration at each step, we set the error tolerance as 10−15. We plot the logarithm
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Fig. 4.1.: The sine-Gordon equation with finite differences semi-discretization: (a) the logarithm

of energy error, and (b) the logarithm of global error vs time for AVF and EAVF methods.
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(b) Efficiency: h = 0.01, maximum iteration

number = 1000

Fig. 4.2.: The sine-Gordon equation with finite differences semi-discretization: (a) Numerical

solution by EAVF method, and (b) efficiency: the total iteration number against the dimension

of spatial discretization.

of the energy errors and the logarithm of the global errors against time t, respectively. The

results are shown in Fig. 4.1. The errors of energy and the global errors are comparable for the

two schemes. The numerical solution by the EAVF method is shown in Fig. 4.2(a).

In order to illustrate the efficiency of the two schemes, we set the maximum iteration number

as 1000 and the error tolerance as 10−15. We apply the two methods to the system in the interval

[0, 2] with the stepsize h = 0.01. We plot the total iteration number against the dimension of

spatial discretization N . The results are shown in Fig. 4.2(b).

Problem 2. We again consider the sine-Gordon equation in Problem 1. Instead of using finite

differences for discretization of the spatial derivative in (4.2), we use a spectral discretization

with Fourier basis. The derivative ux can be approximated by discrete Fourier transform (DFT),
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Fig. 4.3.: The sine-Gordon equation with spectral semi-discretization: (a) the logarithm of

energy error, and (b) the logarithm of global error vs time for AVF and EAVF methods.
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Fig. 4.4.: The sine-Gordon equation with spectral semi-discretization: (a) Numerical solution

by EAVF method, and (b) efficiency: the total iteration number against the dimension of spatial

discretization.

as F−1
N DNFNU , where FN with entries [FN ]j,k = e−jki2π/N is the matrix of DFT coefficients,

and we have [F−1
N ]j,k = 1

N ejki2π/N . DN is a diagonal matrix whose diagonal entries are ([4])

diag(DN ) =















πi

L

[

0, 1, 2, . . . ,
N − 1

2
,−N − 1

2
, . . . ,−2,−1

]

, for N is odd,

πi

L

[

0, 1, 2, . . . ,
N

2
− 1, 0,−N

2
+ 1, . . . ,−2,−1

]

, for N is even.

We follow the notation in Problem 1. (4.2) can be approximated by

Ḡ(U)∆x =





N−1
∑

j=0

1

2
[F−1

N DNFNU ]2j + (1− cos(uj))



∆x.
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The resulting system of ODEs is given by

d2U

dt2
+MU = f(U), (4.4)

where U and f(U) are the same as in Problem 1. M now becomes

M =
(

F−1
N DNFN

)T (F−1
N DNFN

)

. (4.5)

The system is integrated in the interval [0, 20] with N = 401 and h = 0.01. First, we set

the error tolerance as 10−15 for the fixed-point iteration. We plot the logarithm of the energy

errors and the logarithm of the global errors against time t, respectively. The results are shown

in Fig. 4.3. The numerical solution by the EAVF method is shown in Fig. 4.4(a).

We then set the maximum iteration number as 1000 and the error tolerance as 10−15. We

apply the two methods to the system in the interval [0, 2] with the stepsize h = 0.01. We plot

the total iteration number against the dimension of spatial discretization N . The results are

shown in Fig. 4.4(b).

As we can observe from the results, the errors of energy and the global errors are comparable

for the two schemes. The total number of iteration of the AVF method grows very fast with

the increase of N . However, the total number of iteration of the EAVF method remains almost

the same as N grows, which is much less than that of the AVF method. It should be noted

that when N is large, the iteration of the AVF method does not converge at some steps within

maximum iteration number.

Problem 3. Consider nonlinear 2D wave equation

∂2u

∂t2
= ∆u− ∂V (u)

∂u
, (x, y) ∈ [−1, 1]× [−1, 1], t > 0

with V (u) = u4/4. We consider periodic boundary conditions. And the initial conditions are

given as

u(x, y, 0) = sech(10x)sech(10y).

The equation is of the type (2.1) with

G[u] =
∫ 1

−1

∫ 1

−1

1

2

(

(

∂u

∂x

)2

+

(

∂u

∂y

)2
)

+ V (u)dx. (4.6)

Following [4], we use spectral elements method to semi-discretize the wave equation. For

completeness of the paper, we restate the setup given in [4]. G[u] is discretized in space with

a tensor product Lagrange quadrature formula based on p+ 1 Gauss-Lobatto-Legendre (GLL)

quadrature nodes in each space direction. We obtain

Ḡ(U) =
1

2

p
∑

j1=0

p
∑

j2=0

wj1wj2

(

(

p
∑

k=0

dj1,kuk,j2

)2

+
(

p
∑

m=0

dj2,muj1,m

)2

+
1

2
u4
j1,j2

)

,

where dj1,k =
dlk(x)

dx
, and lk(x) is the kth Lagrange basis function based on the GLL quadrature

nodes x0, . . . , xp and with w0, . . . , wp the corresponding quadrature weights. The numerical

approximation is

up(x, y, t) =

p
∑

k=0

p
∑

m=0

uk,m(t)lk(x)lm(y)
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with the property up(xj1 , yj2 , t) = uj1,j2(t). Notice that the quadratic terms with respect to

uj1,j2 , j1, j2 = 0, . . . , p in Ḡ(U) result in the linear terms in the semi-discretized system of ODEs,

which will be attributed to MU . Moreover, it can be verified that the matrix M is symmetric

and semi-positive.

The system is integrated in the interval [0, 100] with p = 5 and h = 0.05. The error tolerance

of fixed-point iteration is set as 10−15. We show the energy errors in Fig. 4.5. Some snapshots

of the numerical solution by EAVF method are shown in Fig. 4.6.
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Fig. 4.5.: 2D wave equation with spectral elements semi-discretization: the logarithm of energy

error vs time for AVF and EAVF methods.

4.3. Dissipative wave equations

In this subsection, we consider the dissipative wave equations given in subsection 4.2.

Problem 4. Consider the dissipative sine-Gordon equation

∂2u

∂t2
+ α

∂u

∂t
=

∂2u

∂x2
− sinu, t > 0.

with α = 0.1.

With the same setting as in Problems 1 and 2, we plot the energy curves and the efficiency

curves for finite differences and spectral semi-discretization. If the number is very large, we do

not plot the points in the figure. The results are shown in Fig. 4.7 and Fig. 4.8. It is shown

that the two schemes preserve the decay of energy. And EAVF method is more efficient than

AVF method regarding the iteration.

Problem 5. Consider nonlinear 2D dissipative wave equation

∂2u

∂t2
+ α

∂u

∂t
= ∆u− ∂V (u)

∂u
, (x, y) ∈ [−1, 1]× [−1, 1], t > 0

with α = 0.1.
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Fig. 4.6.: Snapshots of the solution of the 2D wave equation at different times. EAVF method

with the time stepsize h = 0.05. Space discretization with six Gauss Lobatto nodes in each

spatial direction. Numerical solution interpolated on a equidistant grid of 26 nodes in each

spatial direction.
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Fig. 4.7.: Dissipative sine-Gordon equation with finite differences semi-discretization: (a) En-

ergy vs time, and (b) the total iteration number against the dimension of spatial discretization

for AVF and EAVF methods.

The system is integrated in the interval [0, 100] with p = 5 and h = 0.05. We plot the

energy and some snapshots of the numerical solution by EAVF method in Fig. 4.9 and Fig.

4.10, respectively.
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Fig. 4.8.: Dissipative sine-Gordon equation with spectral semi-discretization: (a) Energy vs

time, and (b) the total iteration number against the dimension of spatial discretization for AVF

and EAVF methods.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8
x 10

−3

 time

 E
n

e
rg

y

 

 
 EAVF
 AVF

Energy: h = 0.05, p = 5

Fig. 4.9.: 2D dissipative wave equation with spectral elements semi-discretization: Energy vs

time for AVF and EAVF methods.

Comparing Fig. 4.10 with Fig. 4.6, it is clear that the shapes of the solutions of conservative

and dissipative 2D wave equation are similar at the same time step. Due to the damping term,

the magnitude of the solution diminishes as time goes which is consistent with the fact that the

energy decays in the dissipative case.

5. Conclusions

In this paper, we proposed and analyzed a new approach to designing conservative (dis-

sipative) schemes for nonlinear conservative (dissipative) wave PDEs. Motivated by the idea
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Fig. 4.10.: Snapshots of the solution of the 2D dissipative wave equation at different times.

EAVF method with time stepsize h = 0.05. Space discretization with six Gauss Lobatto nodes

in each space direction. Numerical solution interpolated on a equidistant grid of 26 nodes in

each space direction.

in [4], but with some modifications, i.e., we consider directly the original form of wave equations

rather than transforming it into a system of first-order PDEs and discretize the functional G[u]
instead of the energy functional H[u]. Using this approach, we obtain a system of second-order

ODEs in time. With this framework, the extended AVF method instead of traditional AVF

method is applied to the system of second-order ODEs. This procedure presents a linearly-

fitted conservative (dissipative) scheme for nonlinear conservative (dissipative) wave equations.

The implicit iteration in the new scheme with extended AVF method converges much faster

than that of the one with traditional AVF method. In other words, the new scheme is much

more efficient in practical applications. The numerical results by comparison between the two

schemes illustrate this point clearly.
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