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Abstract

The transmission eigenvalue problem is an eigenvalue problem that arises in the scatter-

ing of time-harmonic waves by an inhomogeneous medium of compact support. Based on

a fourth order formulation, the transmission eigenvalue problem is discretized by the Mor-

ley element. For the resulting quadratic eigenvalue problem, a recursive integral method

is used to compute real and complex eigenvalues in prescribed regions in the complex

plane. Numerical examples are presented to demonstrate the effectiveness of the proposed

method.

Mathematics subject classification: 34L16, 65L60.

Key words: Transmission eigenvalue problem, Nonlinear eigenvalue problem, Contour in-

tegrals.

1. Introduction

The transmission eigenvalue (TE) problem has important applications in inverse scattering

theory and has attracted attention of many researchers recently [3,4,7–9,25]. Although stated

in a simple form, the TE problem is nonstandard and not covered by classical theories.

In this paper, we consider the numerical treatment of the TE problem. The first effort was

given in [8], where three finite element methods (FEM) were proposed. Two iteration methods

were proposed with rigorous convergence analysis in [23]. A mixed method was developed

in [13]. An efficient spectral element based numerical method for the 2D TE problem of radially

stratified media was given in [1]. Recently, a mixed FEM with convergence proof was proposed

to solve the TE problem in [5], and another FEM based method, which transforms the TE

problem into a quadratic eigenvalue problem (QEP), was given in [19]. The related source

problem [10, 26] and other multilevel [12] and multigrid [14] type methods have also been

discussed.

Some non-traditional methods, such as the linear sampling method [24] and the inside-out

duality method [18], have been applied to estimate TEs using scattering data. However, these

methods need to solve a tremendous number of direct problems which make them computa-

tionally prohibitive.

Recently, contour integral based methods have been successfully applied to solve eigenvalue

problems. In [21, 22], a contour integral based method was proposed to compute eigenvalues

of a generalized eigenvalue problem, which lie in a specific region in the complex plane. And

in [2], a contour integral based method was used to solve a nonlinear eigenvalue problem (NEP)
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by formulating the NEP as a linear eigenvalue problem (LEP). In [17], a contour integral based

method was used to compute TEs in a special case when the index of refraction is a constant.

In [11], a novel recursive integral method (RIM) was proposed to solve LEPs. Based on the

eigenprojections of compact operators, regions are searched recursively to test whether there

exist eigenvalues lying inside a specific contour in the complex plane. RIM is effective, robust,

and essentially parallelizable. According to [11], even for the case when the matrix is non-

Hermitian and degenerate, and the information of the spectrum structure is unknown, RIM

still works successfully.

This paper focuses on the extension of RIM to solve NEPs and numerically shows its ro-

bustness. We derive the formulation of RIM for a QEP. Both real and complex eigenvalues are

computed effectively. We discretize the TE problem by the nonconforming Morley element. For

the derived QEP, we employ RIM to find both real and complex eigenvalues within a specific

contour in the complex plane. The TE problem is indeed a fourth order problem [4]. Writing it

in a mixed form as in [11] would require higher regularity of eigenfunctions which in turn leads

to a restriction of the domain, see, e.g., Chp. 4 of [25]. It is known that a similar mixed finite

element approach for the biharmonic equation leads to spurious eigenvalues, which could hap-

pen when the domain is non-convex. Hence it is preferable to discretize the weak formulation

directly and the Morley element is a suitable non-conforming element for triangular meshes.

We only provide a theoretical proof for the Morley element when the refractive index n(x) is a

constant [15], while the proof for more general case when n(x) is non-constant is still open.

This paper is organized as follows. In Section 2, we introduce the TE problem, the reduced

fourth order formulation and the corresponding nonconforming FEM discretization. In Section

3, RIM for the QEP is given. In Section 4, numercial examples are presented to validate the

algorithm. Section 5 is the conclusion part.

2. The Transmission Eigenvalue Problem

2.1. Formulation

For the scattering of time-harmonic acoustic waves by a bounded and simply connected

inhomogeneous medium Ω ⊂ R2, the transmission eigenvalue problem is to find k ∈ C and

φ, ϕ ∈ H2(Ω) such that














∆φ+ k2n(x)φ = 0, in Ω,

∆ϕ+ k2ϕ = 0, in Ω,

φ− ϕ = 0, on ∂Ω,
∂φ
∂ν

− ∂ϕ
∂ν

= 0, on ∂Ω,

(2.1)

where ν is the unit outward normal to the boundary ∂Ω. The index of refraction n(x) is either

n(x) > α0 a.e. in Ω for some constant α0 > 1, or 0 < n(x) < α̃0 a.e. in Ω for some constant

α̃0 < 1. Here we consider the first case. The second one follows similarly. Complex number k

for which there exists a nontrivial solution to (2.1) is called a TE [8].

We define

V := H2
0 (Ω) =

{

u ∈ H2(Ω) : u = 0 and
∂u

∂ν
= 0 on ∂Ω

}

,

and denote (u, v) the L2(Ω) inner product. Introducing a new variable u = φ − ϕ ∈ V and

following the same procedure in [13], one finds that u and k satisfy the fourth order problem

(

∆+ k2n(x)
) 1

n(x)− 1
(∆ + k2)u = 0. (2.2)
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(2.2) can be formulated in weak form: Find (k2 6= 0, u) ∈ C × V such that

( 1

n(x)− 1
(∆u + k2u),∆v + k2n(x)v

)

= 0, ∀v ∈ V. (2.3)

Denoting τ = k2, we rewrite (2.3) as

( 1

n(x)− 1
(∆u+ τu),∆v + τn(x)v

)

= 0, ∀v ∈ V. (2.4)

2.2. The Morley element

The Morley element is the simplest nonconforming element for the fourth order problem [20].

Let Th be a shape regular triangular mesh over Ω, which means there exists a constant γ such

that

hK

ρK
≤ γ, ∀K ∈ Th, (2.5)

where hK denotes the diameter of the smallest ball containing K, and ρK is the diameter of

the biggest possible ball contained in K, h := max{hK : K ∈ Th}.

The Morley element is defined as follows

Vh =
{

v ∈ L2(Ω) : v|K ∈ P2(K), v and ∂νv are continuous at vertices and

the midpoints of edges respectively and vanish on the boundary ∂Ω
}

,

where P2(K) denotes the space of polynomials whose degree is less than or equal to two.

We assume 0 < αs ≤ 1
n(x)−1 ≤ αb. Before discretizing the fourth order problem (2.4) by

the Morley element, the following formulations for u, v ∈ H2
0 (Ω) are introduced [6]



















(

1
n(x)−1∆u,∆v

)

=
((

1
n(x)−1 − α

)

∆u,∆v
)

+ (α∇2u,∇2v),
(

n(x)
n(x)−1∆u, v

)

+
(

1
n(x)−1u,∆v

)

=
(

1
n(x)−1∆u, v

)

+
(

1
n(x)−1u,∆v

)

− (∇u,∇v),
(

1
n(x)−1u, n(x)v

)

=
(

n(x)
n(x)−1u, v

)

,

(2.6)

where (∇2u,∇2v) =
∫

Ω

∑2
s,t=1

∂2u
∂xs∂xt

∂2v
∂xs∂xt

dx, i.e., the inner product of the Hessian matrices

of u and v, α is a constant satisfying 0 < α < αs.

Define the bilinear form

a(u, v) =
(( 1

n(x)− 1
− α

)

∆u,∆v
)

+ (α∇2u,∇2v). (2.7)

We have

α‖∇2u‖20,Ω ≤ a(u, u) ≤ αb‖∇
2u‖20,Ω. (2.8)

Denote the norm ‖u‖∗ =
√

a(u, u). Then it is equivalent to ‖u‖2,Ω since u ∈ H2
0 (Ω).

The discrete problem is to find τh ∈ C and uh ∈ Vh such that

ah(uh, vh) + τhbh(uh, vh) + τ2hch(uh, vh) = 0, ∀vh ∈ Vh, (2.9)

where










ah(uh, vh) =
∑

K∈Th
(( 1

n−1 − α)∆uh,∆vh)K + (α∇2uh,∇
2vh)K ,

bh(uh, vh) =
∑

K∈Th
( 1
n−1∆uh, vh)K + ( 1

n−1uh,∆vh)K − (∇uh,∇vh)K ,

ch(uh, vh) = ( n
n−1uh, vh).

(2.10)
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It is easy to show that

α
∑

K∈Th

‖∇2uh‖0,K ≤ ah(uh, uh) ≤ αb

∑

K∈Th

‖∇2uh‖0,K , (2.11)

and that ‖uh‖∗,h =
√

a(uh, uh) is a norm on Vh. If u ∈ H2
0 (Ω), ‖u‖∗,h = ‖u‖∗.

Then we have the following QEP:

(A+ τB + τ2C)x = 0, (2.12)

where A,B and C are the matrices associated with ah(·, ·), bh(·, ·) and ch(·, ·) respectively.

3. A Recursive Contour Integral Method

Equation (2.12) is nonlinear and has complex eigenvalues. In addition, the spectrum is very

complicated. There is no estimation on the number and multiplicity of eigenvalues in a region

in the complex plane. In this section, we introduce the idea of RIM which doesnot require any

priori information of the spectrum and extend it to solve the QEP (2.12).

Let T (τ) := A+ τB + τ2C, (2.12) can be written as

T (τ)x = 0, x 6= 0. (3.1)

Then T is holomorphic in some open domain [2]. We denote σ(T ) the set of all eigenvalues and

ρ(T ) = C\σ(T ) the resolvent set.

We first recall some classical results of linear operator theory (see, e.g., [16]). We assume that

T : X → X is a linear operator on the complex Hilbert space X . Γ is a simply closed curve in

the complex plane which encloses m eigenvalues, counting multiplicity, of T : λj , j = 1, · · · ,m.

The operator

P (T ) =
1

2πi

∫

Γ

(z − T )−1dz, (3.2)

is a projection on the space generated by generalized eigenfunctions uj , j = 1, · · · ,m associated

with λj , j = 1, · · · ,m.

Based on this property, Huang et al. [11] proposed RIM to find eigenvalues lying inside a

specific contour in the complex plane. The idea of RIM is to use P (T )f to determine whether

Γ encloses eigenvalues of T . For a random f ∈ X , if there are eigenvalues inside Γ, P (T )f 6= 0.

Otherwise, P (T )f = 0.

Generally, for the nonlinear operator, the projection operator does not have this good prop-

erty. But for the NEP (3.1) considered here, T is a holomorphic operator. Based on Theorem

2.4 and Theorem 2.9 in [2], the operator

P (T ) =
1

2πi

∫

Γ

T (z)−1dz, (3.3)

is also a projection onto the space of generalized eigenfunctions associated with eigenvalues

inside Γ. In fact, as in [2], for the simple eigenvalue case, let C ⊂ X be a compact subset that

contains λj , j = 1, · · · ,m. Then there is a neighborhood U of C in X

T (z)−1 =

m
∑

j=1

1

z − λj

vjw
H
j +R(z), z ∈ U\{λ1, · · · , λm}, (3.4)
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where vj and wj are related eigenfunctions, and R(z) is a holomorphic function. So we have

P (T ) =
1

2πi

∫

Γ

T (z)−1dz =

num(Γ)
∑

j=1

vjw
H
j , (3.5)

where num(Γ) is the number of eigenvalues inside Γ. These are results for simple eigenvalues.

Similar results can be obtained for more complicated cases [2]. This implies that we can also

choose a random f and compute P (T )f . P (T )f = 0 means no eigenvalues inside Γ. Otherwise

there are eigenvalues.

RIM tries to find all the eigenvalues to a certain precision inside Γ recursively. Let S be

the interior of Γ. If S contains eigenvalues, we partition S into subdomains and repeat this

procedure for each subdomain until each eigenvalue is isolated.

Next, we will present some details about the numerical implementation.

3.1. Integral approximation

To solve equation (3.1), we need to compute the contour integral (3.3), where Γ is a simply

closed curve in the complex plane. Let {zk, pk}, k = 1, · · · , N , be a suitable quadrature rule

for Γ, such as the Guass-Legendre quadrature. The projection operator (3.3) is approximated

using

P (T ) ≈
1

2πi

N
∑

k=1

pkT (zk)
−1, (3.6)

where zk and pk, k = 1, · · · , N , are nodes and weights of the quadrature, respectively.

The projection of a random vector f can be approximated by

P (T )f ≈
1

2πi

N
∑

k=1

pkT (zk)
−1f. (3.7)

We denote
{

ωk = 1
2πipk,

rk = T (zk)
−1f,

k = 1, · · · , N. (3.8)

Note that (3.7) can be written as

P (T )f ≈

N
∑

k=1

ωkrk. (3.9)

In practice, we do not compute T (zk)
−1 explicitly. Instead, we get rk by solving the following

linear system

T (zk)rk = f, k = 1, · · · , N. (3.10)

3.2. Algorithm for NEP

RIM in Huang et al. [11] is adopted for the NEP (3.1). We try to compute all eigenvalues

of (3.1) in the interior of Γ, i.e., S, using the spectral projection of a random vector P (T )f .

If P (T )f = 0, then S contains no eigenvalues. Otherwise, S contains one or more eigenvalues.

Then we partition the region into subregions. For every subregion, we repeat this procedure

recursively until the subregion is small enough to isolate each eigenvalue. The computation

process is shown in Algorithm 3.1.
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Algorithm 3.1. RIM(N,Γ, f, ε) for NEP (3.1).

Input:

The number of quadrature nodes: N (points: zk and weights: pk);

Search region: Γ;

The random vector: f ;

Tolerance: ε.

Output:

The eigenvalue(s) inside Γ.

Approximate the integral by Guass-Legendre formula;

Compute ωk = 1
2πipk, k = 1, · · · , N ;

Solve rk : T (zk)rk = f, k = 1, · · · , N ;

P (T )f ≈
∑N

k=1 ωkrk.

Determine the existence of eigenvalue(s) in Γ;

if Γ contains eigenvalue(s), then

compute the domain size h(Γ).

if h(Γ) > ε, then

partition Γ into subdomains Γj , (j = 1, · · · , L),

RIM(N,Γj, f, ε).

else

output eigenvalue(s) and exit.

end if

end

We use ||P (T )f || to decide if a region contains eigenvalues. If ||P (T )f || = O(1), there

exists at least one eigenvalue in Γ. If P (T )f = o(1), there is no eigenvalue. However, if the

projection of f onto the range of P (T ) is small, ||P (T )f || can be relatively small while there is

an eigenvalue(s). The solution to avoid missing possible eigenvalues is to project P (T )f once

again and set the indicator [11]

σ =

∣

∣

∣

∣

∣

∣

∣

∣

P (T )

(

P (T )f

||P (T )f ||

)∣

∣

∣

∣

∣

∣

∣

∣

. (3.11)

Here σ = 1/10 is used as the threshold value.

If there exist eigenvalues lying outside Γ but very close to it, ||P (T )f || can be relatively large.

In fact, this must happen when RIM zooms into the neighborhood of an eigenvalue. Fortu-

nately, RIM has an interesting self-correction property that fixes such errors on the subsequent

iterations [11].

Here are some details in the numerical implementation: the search region is a rectangle;

Matlab ’\’ is used to solve the linear system; one point quadrature is used for each edge of Γ;

one random vector f is used; and f is projected twice to compute the indicator (3.11).

4. Numerical Examples

In this section, we present some numerical examples. Using the Morley element, we obtain

a QEP as described in section 2. Then we use RIM (Algorithm 3.1) to compute eigenvalues.

Mesh size h ≈ 0.05 and tolerance ε = 1e− 3 are used in all the exmaples.
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4.1. The model of a disk

In this subsection, we consider the case when the region Ω is a disk. In Example 4.1, the

index of refraction is a constant such that the exact TEs are available via special functions [8].

Example 4.1. The region Ω is a disk with radius R = 1
2 and n(x) = 16.

The first search region is S1 = [3, 7]× [−1, 1] which contains only real eigenvalues [8]. The

computational results are

λ1 = 3.958984, λ2 = 6.819922, λ3 = 6.820703,

which are good approximations to the exact TEs [8]

λ1 = 3.952125, λ2 = 6.827403, λ3 = 6.827403.

The second region is S2 = [22, 25] × [4, 7] containing a complex eigenvalue 23.684298 +

5.666293i [8]. The numerical result by RIM is

λ = 23.973511+ 6.514771i.

The exact eigenvalue of the QEP (2.12) is

λ = 23.973791+ 6.514444i,

which is obtained by transforming (2.12) to a generalized matrix eigenvalue problem and solving

it directly.

Explored regions by RIM are plotted in Fig 4.1. The algorithm refines near eigenvalues until

the precision is met. Search region S1 is shown on the left and S2 on the right. For S1, the

picture seems to have only two eigevalues because λ2 and λ3 are very close.

3 3.5 4 4.5 5 5.5 6 6.5 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

22 22.5 23 23.5 24 24.5 25
4

4.5

5

5.5

6

6.5

7

Fig. 4.1. Explored regions by RIM when the model is a disk with radius R = 1

2
and n(x) = 16. Left:

S1, right: S2.

Example 4.2. The radius of disk R is still 1
2 and the index of refraction n(x) = 8 + 4|x|.

Numerical results are shown in Table 4.1. “Nums” are computed eigenvalues using our

proposed method. “QEPs” are the exact eigenvalues of QEP (2.12). The TEs in S3 are

consistent with the results in [13].

Search regions are shown in Fig 4.2. The left picture is for S3 and the right for S4.
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Table 4.1: Numerical results for the disk with n(x) = 8 + 4|x|.

S3 = [7, 13]× [−1, 1]
Nums: 7.263184, 12.206543, 12.206543

QEPs: 7.263081, 12.206233, 12.206827

S4 = [22, 25]× [6, 9]
Nums: 22.437622+ 8.025513i

QEPs: 22.437461+ 8.025297i

7 8 9 10 11 12 13
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

22 22.5 23 23.5 24 24.5 25
6

6.5

7

7.5

8

8.5

9

Fig. 4.2. Explored regions when the inhomogeneous medium is a disk with radius R = 1

2
and n(x) =

8 + 4|x|. Left: S3; right: S4.

4.2. The model of the unit square

Example 4.3. We consider the unit square and the index of refraction n(x) = 16.

Numerical results are given in Table 4.2. The TEs in S5 are consistent with the results

in [13, 14].

Table 4.2: Results for the unit square with n(x) = 16.

S5 = [3, 7]× [−1, 1]
Nums: 3.521973, 5.939941, 5.939941

QEPs: 3.521718, 5.939796, 5.940268

S6 = [20, 25]× [4, 9]
Nums: 20.379944+ 5.739807i

QEPs: 20.380061+ 5.740217i

Example 4.4. The unit square with the non-constant refractive index.

For different regions, numerical results are shown in Table 4.3 and Table 4.4. For the case

of n(x) = 8 + x1 − x2 and region S7, TEs are consistent with the results in [13, 14].

4.3. The model of a L-shaped domain

We consider a L-shaped domain Ω = (−1, 1)× (−1, 1)\[0, 1)× (−1, 0] which has a reentrant

corner.

Example 4.5. We consider the L-shaped domain with n(x) = 16.

For different regions, numerical results are shown in Table 4.5.

We plot search regions in Fig 4.3. The left picture is for S13 and the right for S14.
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Table 4.3: Numerical results of the unit square for different indices of refraction, where S7 = [7, 13]×

[−1, 1], S8 = [22, 30]× [−1, 1], S9 = [7, 13]× [−1, 1].

n1(x) = 8 + x1 − x2 S7
Nums: 7.955566, 12.474121, 12.477051

QEPs: 7.955378, 12.473438, 12.476424

n2(x) = x2
1 + x2

2 + 4 S8
Nums: 23.844238, 24.020020, 29.641114

QEPs: 23.844089, 24.020532, 29.640673

n3(x) = x1x2 + 8 S9
Nums: 7.636230, 12.022949, 12.090332

QEPs: 7.636272, 12.022476, 12.089943

Table 4.4: Numerical results of the unit square for different indices of refraction, where S10 = [18, 20]×

[7, 9], S11 = [16, 18]× [6, 8], S12 = [18, 20]× [7, 9].

n1(x) = 8 + x1 − x2 S10
Nums: 19.414551+ 8.143066i

QEPs: 19.414628+ 8.142981i

n2(x) = x2
1 + x2

2 + 4 S11
Nums: 17.349121+ 7.509277i

QEPs: 17.349516+ 7.509845i

n3(x) = x1x2 + 8 S12
Nums: 19.256348+ 8.010254i

QEPs: 19.256458+ 8.010978i

Table 4.5: Experimental results of the L-shaped domain.

S13 = [3, 5]× [−1, 1]
Nums: 3.171387, 3.562012, 4.465332, 4.514160

QEPs: 3.171263, 3.561767, 4.465585, 4.513660

S14 = [8, 10]× [2, 4]
Nums: 9.370605+ 3.440918i

QEPs: 9.370494+ 3.440953i

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Fig. 4.3. Explored regions for the L-shaped domain with n(x) = 16. Left: S13, right: S14.

5. Conclusion

In this paper, we extend the recursive integral method to nonlinear eigenvalue problems and

numerically show its robustness. By using a fourth order formulation, the transmission eigen-

value problem is discretized by the Morley element. The recursive integral method was applied

to solve the resulting quadratic eigenvalue problem. Using the proposed method, both real and

complex eigenvalues can be obtained in prescribed regions in the complex plane effectively.
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