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Abstract. We study correlations of hydrodynamic fluctuations in shear flow analyt-
ically and also by dissipative particle dynamics (DPD) simulations. The hydrody-
namic equations are linearized around the macroscopic velocity field and then solved
by a perturbation method in Fourier-transformed space. The autocorrelation func-
tions (ACFs) from the analytical method are compared with results obtained from DPD
simulations under the same shear-flow conditions. Up to a moderate shear rate, var-
ious ACFs from the two approaches agree with each other well. At large shear rates,
discrepancies between the two methods are observed, hence revealing strong addi-
tional coupling between different fluctuating variables, which is not considered in the
analytical approach. In addition, the results at low and moderate shear rates can serve
as benchmarks for developing multiscale algorithms for coupling of heterogeneous
solvers, such as a hybrid simulation of molecular dynamics and fluctuating hydrody-
namics solver, where thermal fluctuations are indispensable.
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1 Introduction

The complex behavior of many particles plays a significant role in atomic fluids [1, 2],
chemical and biological processes [3, 4], granular materials [5], and astrophysics [6]. On
the one hand, given interparticle potentials, a kinetic-theory type of description from first
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principles can be formulated, which, however, may be too complex to apply. On the other
hand, if physical quantities vary rather slowly in space and time, a local thermodynamic
equilibrium may be valid. Therefore, the system can be represented by continuous hy-
drodynamic fields described by the Navier-Stokes-Fourier (NSF) equations, which take
into account the conservation of mass, momentum and energy. Although such partial
differential equations (PDEs) are concise and practically powerful, the thermodynamic
derivatives and transport coefficients must be obtained from a more fundamental theory
to complete the phenomenological description. Through the seminal efforts of Einstein,
Onsager, Callen, Welton, Green, Kubo and many others [1, 7], a general linear response
theory has been established. Furthermore, the transport coefficients are connected to
the corresponding correlation functions (CFs) of the microscopic fluctuating variables.
These connections are all embraced in the fundamental Green-Kubo relations. At equi-
librium or small deviations from equilibrium, a systematic connection between the CFs
and the hydrodynamics equations has been established for the long wave-length and
small-frequency hydrodynamic limit [1, 8, 9]. In this hydrodynamic limit, the effects of
the solvent fluctuations on suspended Brownian particles have also been studied exten-
sively [10]. A further extension for small wave-length of the fluid has been made, which
connects the microscopic dynamics to the generalized hydrodynamic equations [9]. An-
other breakthrough is the development of the fundamental fluctuation relations at tran-
sient or stationary nonequilibrium state far from equilibrium, which was initiated by
Evans et al. [11] and has later engaged many others [12–14]. Many of these works on
statistical mechanics are closely related to the large deviation theory in probability the-
ory [15].

At a stationary nonequilibrium state, it seems relatively simpler to start with the phe-
nomenological hydrodynamic equations and work reversely to obtain various CFs of
the fluctuating variables [16–25]. This strategy has been applied by Lutsko&Dufty [26]
and has been receiving continuous attention [27–29]. In the present work, we consider
an isothermal shear flow at steady state as a typical setting for the nonequilibrium be-
havior of many particles. Following the pioneering derivations of Lutsko&Dufty [26],
the equations of fluctuating hydrodynamics are linearized around the steady state by
assuming small fluctuations, before they are transformed into the Fourier space. There-
after, an equivalent generalized eigenvalue problem is solved perturbatively to provide
the temporal evolution of the hydrodynamic fluctuations. Finally, various autocorrela-
tion functions (ACFs) can be constructed in the Fourier space and transformed into the
real space if needed. Some analytical ACFs have been recently compared with inelastic
hard-sphere simulations and multi-particle collision dynamics at low shear rates [27–29].
As the first objective of this work, we aim to verify the analytical ACFs at low/moderate
shear rates and search for deviations from the theory at large shear rates via numerical
simulations. We expect that our computations will reveal a transition from decoupling
to the coupling of different fluctuating variables and may shed light on the possible ex-
tension of the theory at large shear rates. To this end, we employ a mesoscopic method
called dissipative particle dynamics (DPD) to quantify such deviations.
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The DPD method describes the behavior of many particles at mesoscale and was in-
vented to bridge the gap between the microscopic dynamics and the macroscopic PDEs [30].
In a DPD system, three pairwise-additive forces FC

ij , FD
ij and FR

ij are prescribed between

neighboring particles i and j and they correspond to the underlying conservative, dis-
sipative and random process, respectively [31, 32]. By postulating a steady state solu-
tion of the corresponding Fokker-Planck equations , FD

ij and FR
ij are found to correlate

with each other so that the fluctuation-dissipation theorem is satisfied and the canonical
ensemble is warranted [31]. Given molecular dynamics (MD) trajectories, the pairwise
forces in DPD may be constructed via a coarse-graining procedure following the Mori-
Zwanzig formalism [33–35]. Without data from a reference MD simulation, the param-
eters of the pairwise forces are usually tuned to achieve static and dynamic properties
of a target fluid empirically [36, 37]. Although the kinetic theory for the DPD particles
can qualitatively predict the transport coefficients [32, 38], a quantitative knowledge is
only available via a posteriori processing of the simulation results [32, 36, 39–43]. DPD
typically has a softer potential between particles than that of MD, therefore it allows for
a larger time step. In the hydrodynamic limit with large spatial-temporal scales, it may
be considered as a Lagrangian discrete counterpart of the fluctuating hydrodynamics de-
scribed by the Landau-Lifshitz-Navier-Stokes equations [42, 44]. At small wave-length
and high frequency, it may be considered as the representation of the generalized hy-
drodynamics [43, 45], especially when the pairwise forces of DPD are obtained via the
coarse-graining and non-Markovian effects are noneligible [46–48]. In addition to sim-
ulations of simple fluid at mesoscale, DPD also finds wide applications in simulating
complex fluids such as colloidal suspension, polymer solution and red blood cells under
flow [4, 32, 36, 49, 50]. As the second goal of this work, for the first time we evaluate vari-
ous ACFs generated by DPD simulations under shear flow by comparing with analytical
solutions. This would provide a solid evidence as to when DPD may be an effective
solver of the fluctuating hydrodynamics at nonequilibrium.

Recently, multiscale coupling of heterogeneous solvers (e.g., molecular dynamics and
Navier-Stokes solver) has been attracting a lot of attention [51–57]. Both the accurate
dynamics of a fine model and the computational efficiency of a coarse model my be
exploited in such a hybrid simulation. In the course of the coupling, from a contin-
uum perspective the thermal fluctuations are treated very often as unwanted noises to
be filtered out. However, the fluctuations are unique hallmarks to micro-/meso-scopic
physics within a finite volume of material and their space-time correlations encode the
full dynamic information of the system [1]. Therefore, as the third goal of this work, we
advocate that the various ACFs should be taken as benchmarks for a hybrid simulation
whenever it is possible. For example, one transversal ACF was previously compared
among different coupling algorithms for a shear flow, which led to uncovering certain
artifacts of the specific coupling [58].

We shall proceed as follows. In Section 2 we shall revisit the linearized fluctuating
hydrodynamics and construct the temporal ACFs of the fluctuating variables in k-space.
In Section 3 we will describe the DPD method with Lees-Edwards boundary conditions,
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and further elaborate on some technical details on the implementation of DPD simula-
tions. In Section 4, we compare the theory with simulations for two set of transversal
autocorrelation functions (TACFs) and longitudinal autocorrelation functions (LACFs)
for various wave vectors for a range of shear rates. Finally, we summarize our findings
in Section 5 with discussions. Extra details on the theoretical derivations are given in
Appendices A and B.

2 Theory revisited

In this section, we follow the pioneering work of Lutsko&Dufty [26, 59] to derive analyt-
ically the ACFs of fluctuating variables in shear flow. Some of the calculations have also
recently been performed [27–29]. Firstly, we describe the equations of fluctuating hydro-
dynamics in Section 2.1. Subsequently, in Appendix A we linearize the equations around
the macroscopic or averaged state by keeping only the first-order fluctuating variables.
Thereafter, in Appendix B we perform a spatial Fourier transform of the linearized equa-
tions. By applying a perturbation theory, we find the approximate solutions by solving a
generalized eigenvalue problem. Finally, we summarize various ACFs of the fluctuating
variables in Section 2.2.

2.1 Fluctuating hydrodynamics

Due to the conservation of mass and momentum, the equations of continuity and dy-
namics for an isothermal fluid read as,

(
∂

∂t
+v·∇

)
ρ=−ρ∇·v, (2.1)

ρ

(
∂

∂t
+v·∇

)
v=∇·Π, (2.2)

where ρ is the mass density, v is the velocity and Π is the stress tensor. By defining
the particle derivative as d

dt = ( ∂
∂t +v·∇), we have the hydrodynamic equations in the

Lagrangian form as

dρ

dt
=−ρ∇·v, (2.3)

ρ
dv

dt
=∇·Π. (2.4)

The Lagrangian form of the hydrodynamic equations may be particularly useful to inter-
pret the DPD method described in Section 3.

The stress tensor Πµσ may be considered as a linear combination of three components

Πµσ=ΠC
µσ+ΠD

µσ+ΠR
µσ. (2.5)
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Each of the components is according to the reversible, irreversible, and stochastic process,
respectively. Assuming that the pressure is isotropic and the viscous stress depends only
on the first derivatives of velocity, ΠC and ΠD read as [44]

ΠC
µσ=−pδµσ, (2.6)

ΠD
µσ=η

(
∂vµ

∂xσ
+

∂vσ

∂xµ
− 2

3
δµσ

∂vǫ

∂vǫ

)
+ζδµσ

∂vǫ

∂xǫ
, (2.7)

where η and ζ are constant coefficients of the shear and bulk viscosity. Summation con-
vention for Greek indices is adopted and δµσ is the Kronecker δ. Furthermore, the pres-
sure p= p(ρ) is determined by an equation of state at equilibrium. This completes the
description for the compressible Navier-Stokes equations

ρ

(
∂

∂t
+v·∇

)
v=−∇p+η∇2v+

(η

3
+ζ

)
∇(∇·v) . (2.8)

For fluids at mesoscale, there are fluctuations in the state variables governed by the
framework of thermodynamics, therefore local spontaneous stress does occur. By assum-
ing an underlying Gaussian-Makovian process for the unresolved degrees of freedom,
the conditions for the random stress tensor satisfying the fluctuation-dissipation theo-
rem read as [44]

<ΠR
µσ>=0, (2.9)

<ΠR
µσ(x,t)ΠR

ǫι(x
′,t′)>=2kBT∆µσǫlδ(x−x′)δ(t−t′), (2.10)

∆µσǫι =η
(
δµǫδσι+δµιδσǫ

)
+

(
ζ− 2

3
η

)
δµσδǫι. (2.11)

Here δ(x−x′) or δ(t−t′) is the Dirac δ function. This completes the description for the
Landau-Lifshitz-Navier-Stokes equations, which sometimes are also referred to as the
Navier-Stokes-Langevin equations [26].

2.2 Autocorrelation functions under shear flow

For a uniform shear flow, the macroscopic stationary state of the velocity field v0 reads as

v0µ(x,t)= γ̇µσxσ, (2.12)

γ̇µσ= γ̇δµxδσy. (2.13)

This corresponds to a flow along the x direction, with velocity gradient γ̇ in the y direc-
tion, and vorticity along the z direction. By assuming small deviations from the averaged
fields, the fluctuating hydrodynamic equations of Eqs. (2.1) and (2.2) may be linearized
as shown in Appendix A, where second-order terms in fluctuations are dropped off. Af-
terwards, a system of linear equations may be spatial-Fourier transformed to obtain the
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hydrodynamic equations (B.9) in k-space. The general solution to Eq. (B.9) is determined
from a generalized eigenvalue problem of Eq. (B.25). The latter is solved via a perturba-
tion theory by expanding the size of wave vector k= |k| as a small parameter to second
order in the continuum limit [26, 59]. Technical details of the derivations are elaborated
in Appendices A and B.

Here, we need to emphasize one important assumption of the perturbation method.
The shear rate is assumed to be moderate so that γ̇ . νk2 ≪ cTk. Hence, the term of γ̇
is treated as in the order of k2 during the perturbation. With the kinematic viscosity ν
fixed, we may expect the perturbation method to fail for a very large γ̇ or very small k.
For our simulations in a cubic box with length L in Section 4, the size of wave vector is
|k|= |2π(nx,ny,nz)/L|, where ni is an integer and n2

x+n2
y+n2

z ≥1. If a proper box length
L is selected, there is a minimal infrared cut off as |k|=2π/L. Therefore, the shear rate γ̇
is the only free parameter in the DPD simulations that we perform to validate the theory.

Given the derivations in Appendix B, the longitudinal and two transversal ACFs are
readily constructed as follows [26, 28, 29]

CL(k,τ)=
< δ̂u1(k,t+τ)δ̂u1(−k,t)>

< δ̂u1(k,t)δ̂u1(−k,t)>
=

(
k(τ)

k0

)1/2

e−ΓTα(k,τ)cos(cT β(k,τ)), (2.14)

CT1
(k,τ)=

< δ̂u2(k,t+τ)δ̂u2(−k,t)>

< δ̂u2(k,t)δ̂u2(−k,t)>
=

(
k0

k(τ)

)
e−να(k,τ), (2.15)

CT2
(k,τ)=

< δ̂u3(k,t+τ)δ̂u3(−k,t)>

< δ̂u3(k,t)δ̂u3(−k,t)>
= e−να(k,τ), (2.16)

where kinematic viscosity ν= η/ρ0, sound speed and attenuation coefficient are cT and

ΓT = (2η/3+ζ/2)/ρ0 . Here δ̂u1(k,t) is the longitudinal component along wave vec-

tor, while δ̂u2(k,t) and δ̂u2(k,t) are two transversal components, as defined in Eq. (B.7).
Therefore, CL(k,τ) is the normalized longitudinal autocorrelation function (LACF), while
CT1

(k,τ) and CT2
(k,τ) are the normalized first and second transversal autocorrelation

functions (TACFs), respectively. As a matter of fact, the normalized ACFs are just the
corresponding propagator of Eq. (B.53). Moreover, α and β are defined as

α(k,t)= k2
0t−γ̇kxkyt2+

1

3
γ̇2k2

xt3, (2.17)

β(k,t)=
1

2γ̇kx

{
kyk0−ky(t)k(t)−k2

⊥ ln

[
ky(t)+k(t)

ky+k0

]}
, (2.18)

where the wave vector is time dependent as k(t)= (kx,ky−γ̇tkx,kz) to account for the ad-
vection. It is simple to see that when γ̇=0, k(t)≡k(0)=k0 =(kx,ky,kz) and α(k,t)= k2t.
Therefore, Eqs. (2.15) and (2.16) are identical and degenerate to the solutions for equilib-
rium [1, 9, 42].

To have a better sense of how the shear flow alters the dissipation and frequency of
sound propagation, we plot the functions α(k,t) and β(k,t) for three representative wave
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Figure 1: Exponent of dissipation in Eq. (2.17) for different wave vectors in shear flow: a typical wave length
L=10 is taken.
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Figure 2: Frequency of sound propagation in Eq. (2.18) for different wave vectors in shear flow: a typical wave
length L=10 is taken.

vectors in Fig. 1 and Fig. 2, respectively. For each wave vector k, we also represent the
equilibrium behavior γ̇ = 0 with solid line as a reference accordingly. For example, in
Fig. 1(b) with both kx > 0 and ky > 0, the terms with t2 and t3 compete with each other
as time progresses, which is indicated by Eq. (2.17). As a consequence, the dissipation
rate of γ̇ > 0 is slower than that of γ̇ = 0 at short time while the reverse is true at long
time. The same phenomena in Figs. 1(a) and (c) are relatively simpler, hence, indicating
a monotonic increase of dissipation rate with shear rate γ̇.

Similarly, from Eq. (2.18) we may understand how the shear flow affects the frequency
of sound propagation. For example, in Fig. 2(b) with kx > 0 and ky > 0, the constant
slope of β(k,t) at γ̇ = 0 indicates a constant frequency at equilibrium, whereas γ̇ > 0
corresponds to frequency decrease at short time and frequency increase at long time. The
same phenomena in Figs. 2(a) and (c) are less complicated, that is, the shear rate always
enhances the sound frequency. From Eq. (2.18) and Fig. 2, we may expect Doppler effects
for the LACFs.
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3 Dissipative particle dynamics

The method of dissipative particle dynamics (DPD) was invented two decades ago to
simulate rheological properties of complex fluids at mesoscale [30]. In this section, we
shall briefly revisit the classical DPD method and its implementation of boundary condi-
tions in shear flow.

3.1 Pairwise forces

For convenience, as reference we define some simple notations

rij = ri−rj,

vij =vi−vj, (3.1)

eij = rij/rij, rij = |rij|,

where ri, vi are position and velocity of particle i; rij, vij are relative position and velocity
of particles i and j; rij is the distance between the two and eij is the unit vector pointing j
to i. The three pairwise forces are described as follows [31, 32],

FC
ij = aWC(rij)eij, (3.2)

FD
ij =−γWD(rij)(eij ·vij)eij, (3.3)

FR
ij =σWR(rij)θijeijδt−1/2, (3.4)

where coefficients a, γ, and σ reflect the strength of individual forces; WC, WD, and WR

are weighting functions that monotonically decay with the relative distance rij; θij = θji is
a Gaussian white noise with

< θij(t)>=0, (3.5)

< θij(t)θkl(t
′)>=

(
δikδjl+δilδjk

)
δ(t−t′). (3.6)

The DPD version of the fluctuation-dissipation theorem reads as

WD(rij)=
[
WR(rij)

]2
, (3.7)

2kBTγ=σ2, (3.8)

which warrants the canonical ensemble [31].
Given the underlying force fields of molecular dynamics (MD), the actual forms of

the three pairwise forces may be constructed via the Mori-Zwanzig projection [33, 35].
Without referring to any particular MD system, a typical empirical form of the weighting
kernel is suggested as [32, 36]

WC,R(rij)=

{
(1−rij/rc)k, rij < rc,

0, rij ≥ rc.
(3.9)
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Following [58], we take a= 25.0, σ= 3.0, γ= 4.5, rc = 1 and kBT = 1.0; k= 1 for WC and
k=0.25 for WR to have a strong viscosity [41]; particle mass m=1, number density n=3.0
and mass density ρ=mn= 3.0. For this particular set of input parameters, the dynamic
viscosity, bulk viscosity and isothermal sound speed of the fluid are η=1.62, ζ=2.3 and
cT =4.05 in DPD units [42]. The compressibility of DPD matches that of water [32]. The
velocity Verlet time integrator is employed [32] and δt=0.005 is small enough for stability.

3.2 Boundary conditions

At nonequilibrium, the equal-time correlations of fluctuations are typically long-
ranged [27] and we do not wish to introduce any extra complexities due to the boundary
effects from the wall [60]. Therefore, we focus on the bulk behavior of the fluid in a peri-
odic system, which also corresponds to the condition of the theory in Section 2. Suppose
there is a simple shear flow defined as in Eq. (2.12), that is, the flow is in the x direction,
the velocity gradient γ̇ is along the y direction, and the vorticity is along the z direction.
The usual periodic boundary conditions apply in the x and z directions while periodic
boxes along the y direction shift ±Lyγ̇t, above and below the principal box, respectively.
Therefore, if a particle crosses y = Ly/2 to outside, it enters the principal box again at
y=−Ly/2 with x shifted −Lyγ̇t, and vx shifted by −Lyγ̇; if the particle crosses y=−Ly/2
to outside, it enters the principal box again at y=Ly/2 with x shifted Lyγ̇t, and vx shifted
by Lyγ̇. Furthermore, the x and z positions are always wrapped back into the princi-
pal box due to the periodic boundaries. This is the so-called Lees-Edwards boundary
condition [12], which degenerates to the usual periodic box when γ̇=0.

In practice, we utilize an implementation of the deforming triclinic box for the peri-
odic shear flow in the LAMMPS package [61]. In nonequilibrium MD, it is the so-called
SLLOD dynamics for the canonical ensemble [12]. The technical difference is that DPD
has a built-in pairwise thermostat while MD relies on other classical thermostats, such as
the Nosé-Hoover thermostat.

4 Results

To compare the results of simulations with that of the theory, we perform DPD simula-
tions in a box of [0,Lx]×[−Ly/2,Ly/2]×[0,Lz] so that the mean velocity vx = γ̇y is con-
sistent with the definition of the analytical solutions. The domain is a cube with size
Lx = Ly = Lz=10. Input parameters of DPD are given in Section 33.1. In the simulations,
we define the fluctuating velocity under stationary shear flow as

δvµ(x,t)=vµ(x,t)−γ̇δµxδσyxσ. (4.1)

The ACFs in k-space are calculated as

< δ̂uσ(−k,t)δ̂uσ(k,t+τ)>=
1

Ns

Ns

∑
s=1

< δ̂uσ(−k,t)< δ̂uσ(k,t+τ), (4.2)
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where direction σ = 1, 2, and 3, and Ns is the number of independent simulation runs.
The Fourier transform in space is defined as

δ̃v(k,t)=
1

Np

Np

∑
j=1

δv(xj,t)e
ik(t)·xj(t), (4.3)

δ̂uσ(k,t)= δ̃v(k,t)·eσ, (4.4)

where j is particle index and Np is the number of particles in each simulation. Note
that fluctuating velocities are projected on unit vectors in the wave vector coordinate via
Eq. (4.4) after transformed in Eq. (4.3).

At equilibrium, there is no time origin, therefore time averaging may be performed
before ensemble averaging in Eq. (4.2) so that good statistics are obtained. At nonequi-
librium, due to the time dependence of k(t), basis vectors eσ for wave vector coordinate
is also time dependent (see Appendix B), and hence it is generally much more expensive
to reduce the statistical errors of ACFs. Previously we have demonstrated that when the
wave k0 = (0,0,kz 6= 0) is along the vorticity direction [58], the two TACFs under shear
flow degenerate to be isotropic just as that of equilibrium. Therefore, in the following
results, we shall consider kz =0 and focus on the wave vectors within the shear plane.

4.1 Transversal autocorrelation functions: k0=(2π/Lx ,0,0)

If a wave vector along x direction as k0=(2π/Lx,0,0) is selected, the dissipation of TACFs
according to Eq. (2.17) is

α(k,τ)= k2
0τ+

1

3
γ̇2k2

xτ3. (4.5)

Therefore, it is expected that the dissipation resembles the equilibrium behavior ∼ τ at
short time while it is dominated by the advection behavior ∼τ3 at long time. The distinc-
tion of two time regimes can be observed for both TACFs as shown in Fig. 3. Equilibrium
results with γ̇=0 are also shown as reference; with increasing shear rate γ̇, the dissipation
rate is enhanced. We note that the two TACFs have different intercepts with the x axis, as
the extra term k0/k(τ) for CT1

(k,τ) in Eq. (2.15) causes a further stronger decay.
For γ̇ = 1.0, the condition of γ̇. νk2 ≈ 0.213 is violated and we can clearly see that

CT1
(k,τ) of the simulations deviates from the theory of Eq. (2.15). For γ̇= 0.5, although

the condition of γ̇.νk2 is not strictly satisfied, γ̇ can still be treated as in the order of k2

in the perturbation method. Therefore, the TACFs for γ̇≤0.5 from the simulations agree
with those from the theory very well.

4.2 Transversal autocorrelation functions: k0=(2π/Lx ,±2π/Ly,0)

If a wave vector is selected within the shear plane with both nonzero x and y components,
the dissipation rate according to Eq. (2.17) is

α(k,τ)= k2
0τ−γ̇kxkyτ2+

1

3
γ̇2k2

xτ3. (4.6)
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Figure 3: Transversal autocorrelation functions (TACFs) for k0=(2π/Lx,0,0). Left: CT1
(k,t). Right: CT2

(k,t).
γ̇= 1.0, 0.5, 0.2, 0.1 and 0 (at equilibrium). Lines are from theory and symbols are from DPD simulations.
Linear scale is along the x axis and logarithmic scale is along the y axis.
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equilibrium, only the theory is plotted in solid lines as reference. Linear scale is along the x axis and logarithmic
scale is along the y axis.

If ky > 0, for example, k0 = (2π/Lx,2π/Ly,0), then the negative τ2 term competes with
positive τ and τ3 terms. Therefore, compared to the case of equilibrium, dissipation may
decrease or increase at different time regimes. This is well depicted for both CT1

(k,t) and
CT2

(k,t) in Fig. 4. It is noteworthy that the discrepancy between CT1
(k,t) of simulations

and that of theory at γ̇=1 is again apparent.

If a wave vector k0 = (2π/Lx,−2π/Ly,0) is selected, the three terms with different
powers of τ in Eq. (4.6) are all positive. Therefore, only enhancement of dissipation is
expected compared to the case of equilibrium, which is confirmed in Fig. 5. A slight
discrepancy is noted for CT1

(k,τ) between the simulations and the theory at γ̇=1.
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.

4.3 Longitudinal autocorrelation functions: k0=(2π/Lx ,0,0) and
k0=(2π/Lx ,±2π/Ly,0)

In this section, we evaluate the LACFs from both the DPD simulations and the theory.
As indicated in Eq. (2.14), the LACF has both damping and oscillating elements. The
damping is primarily determined by the dissipation rate described by α(k,τ) function
given in Eq. (2.17) and much of its behavior has been seen in Sections 4.1 and 4.2. Here
we shall focus on the frequency of sound propagation, which is determined by the β(k,τ)
function and it is repeated here

β(k,τ)=
1

2γ̇kx

{
kyk0−ky(τ)k(τ)−k2

⊥ In

[
ky(τ)+k(τ)

ky+k0

]}
. (4.7)

When the wave vector is k0 =(2π/Lx,0,0) along x direction, the sound frequency is ex-
pected to increase monotonically with shear rate γ̇, as already indicated in Fig. 2(a). We
further show the LACFs of both DPD simulations and the theory for this wave vector in
Fig. 6(a). We clearly observe an overall agreement between the results of DPD simulation
and the theory, and the sound frequency indeed increases monotonically with γ̇. A small
discrepancy between the simulation and the theory is observed for γ̇=1.

When the wave vector is k0=(2π/Lx,2π/Ly,0), it is already suggested in Fig. 2(b) that
the sound frequency may increase or decrease at different time regimes. This is explicitly
confirmed by the LACFs of both DPD simulations and the theory as shown in Fig. 6(b).
We may observe that simulations agree with the theory at all shear rates considered.

When the wave vector is k0 = (2π/Lx,−2π/Ly,0), it is known from Fig. 2(c) that
sound frequency increases with γ̇. Again this can be observed in the LACFs in Fig. 6(c),
where the results of the simulations agree with the theory at all shear rates considered.



X. Bian, M. Deng and G. E. Karniadakis / Commun. Comput. Phys., 23 (2018), pp. 93-117 105

-1

-0.5

 0

 0.5

 1

 0  3  6  9

C
L(

k,
τ)

τ

•γ=0•γ=0.1•γ=0.2•γ=0.5

•γ=1

(a) k0=(2π/Lx,0,0)

-0.5

 0

 0.5

 1

 0  2  4  6

C
L(

k,
τ)

τ

•γ=0

•γ=0.1

•γ=0.2

•γ=0.5

•γ=1

(b) k0=(2π/Lx,2π/Ly,0)

-0.5

 0

 0.5

 1

 0  1  2  3  4  5

C
L(

k,
τ)

τ

•γ=0

•γ=0.1
•γ=0.2

•γ=0.5

•γ=1

(c) k0 =(2π/Lx,−2π/Ly,0)

Figure 6: Longitudinal autocorrelation functions (LACFs) CL(k,t). γ̇= 1.0, 0.5, 0.2, and 0.1. Lines are from
theory and symbols are from DPD simulations. For γ̇=0 at equilibrium, the theoretical line is also plotted as
a reference.
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4.4 Small length scales at γ̇=1

Here we revisit various ACFs at γ̇=1, where some discrepancies between the simulations
and the theory have been observed for the largest length scale or smallest wave number
considered. For those cases, the condition γ̇. νk2 is not met. Instead, here we focus on
wave vectors k0=(2nwπ/Lx,0,0) and k0=(2nwπ/Lx,±2nwπ/Ly,0), but with nw=2 or 3.
Therefore, the condition γ̇.νk2 becomes valid again for the smaller length scales and we
expect that the perturbation method in deriving the analytical solutions is accurate. This
can be confirmed by the TACFs CT1

(k,t) for different wave vectors with nw =2 and 3, as
shown in Fig. 7. The same results of nw=1 as in Figs. 3(a), 4(a) and 5(a) are plotted again
in Fig. 7 for comparison.

Similarly for the LACFs at nw = 2 and 3, results of the simulations agree well with
those of the theory, since the condition γ̇ . νk2 is valid, as shown in Fig. 8. The same
results of nw =1 as in Fig. 6 are shown again in Fig. 8 for comparison.

It is noteworthy that at an even smaller scale (nw > 3), another type of discrepancy
between the simulations and the theory emerges. This is due to the fact that the classical
fluctuating hydrodynamics may not describe well the collective behavior of the DPD sim-
ulations at this small scales [43, 45]. In this case, solutions of the generalized fluctuating
hydrodynamics may be required [9], which is beyond the scope of the current work.

5 Discussion and summary

We studied the autocorrelations (ACFs) of hydrodynamic fluctuations in k-space for an
isothermal fluid under shear flow, which is driven by the Lees-Edwards periodic bound-
ary condition. We compared results of the ACFs from the dissipative particle dynamics
(DPD) simulations with the theoretical approximations. DPD is a particle-based meso-
scopic method with three pairwise forces between neighboring particles. After specify-
ing the conservative, dissipative and random forces, DPD is an effective simulator for
the compressible fluctuating hydrodynamics. Under the assumption of a local thermo-
dynamic equilibrium, the dissipative and random forces act as an intrinsic thermostat
and they satisfy the fluctuation-dissipation theorem. In principle, the DPD method is
valid for an arbitrarily large shear rate γ̇, so are its ACFs of fluctuations, as long as local
thermodynamic equilibrium is valid.

In order to derive the analytical solutions for the various ACFs, a perturbation
method is adopted to expand the eigenvalue and eigenvector as a power series of k,
where the parameter k is the inverse of wave-length and it is very small in the hydrody-
namic limit. In such regime, νk2≪cTk holds so that the rate of hydrodynamic dissipation
is much smaller than the rate of sound propagation. Here ν and cT are the kinematic
viscosity and isothermal sound speed, respectively. In the perturbation method, it is as-
sumed that γ̇.νk2. Therefore, terms of γ̇ are treated as in the order of k2. With such an
assumption, the generalized eigenvalue problem was solved approximately and there-
after the longitudinal and the two transversal ACFs were constructed as in Eqs. (2.14),
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(2.15), and (2.16).

When the condition of γ̇ . νk2 is met, that is, Reynolds number Re = γ̇L2/ν . 4π2,
various ACFs of the analytical solutions are accurate and agree very well with those
of DPD simulations. We observed that the two transversal ACFs in shear flow are no
longer identical as in equilibrium and the dissipation rate is time dependent as well.
Furthermore, depending on the individual wave vector k, enhancement or attenuation
of sound frequency may take place and we observed the Doppler effects. Given the
increasing efforts on hybrid modeling of fluid flow, where usually a stochastic micro-
scopic/mesoscopic solver is concurrently coupled with a continuum (Landau-Lifshitz-
)Navier-Stokes solver [53, 58], the agreement between analytical and computational ap-
proaches on the results is meaningful: the temporal correlations of fluctuating variables
provide a fundamental benchmark for any proposed coupling algorithm.

When νk2
< γ̇< cTk, some discrepancies between the ACFs of the analytical solutions

and those of the DPD simulations are observed. In this regime, besides the coupling
between the advection and fluctuating variables, extra couplings between different fluc-
tuating variables at equal time are expected to be significant. In our DPD simulations
these extra couplings affect significantly both CT1

and CL, but have a negligible effect
on CT2

. In this regime of shear rates, the perturbation theory is inaccurate and should
be modified to treat the terms of γ̇ as in the order of k instead of k2. Furthermore, the
contributions from the stochastic stress on the temporal correlations are also expected to
emerge. However, such modifications on the theory are nontrivial to accomplish and are
subjects of our future research. Nevertheless, the DPD simulations are in principle valid
and provide a few guidelines on how to improve the theory. In this regime, compari-
son with results from other numerical methods such as the finite volume method with
thermal fluctuations [62, 63] would also be helpful to confirm the results presented.

When the shear rate becomes even larger such as γ̇>cTk, we obtain a nonequilibrium
state far from equilibrium and additional couplings between different k are expected (re-
sults are not shown). The local thermodynamic equilibrium is produced and enforced
by the frequent collisions between particles and the frequency is measured by the sound
speed cT divided by the length scale, that is cTk. Therefore, under such strong shear flow
the local thermodynamic equilibrium can no longer be restored in the length scale of 1/k.
It would also be interesting to evaluate the probability of violating the Second law in such
a DPD system.
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Appendices

A Linearization around uniform shear flow

The fluctuations on the state variables are defined as

z(x,t)= [δρ(x,t),δv(x,t)], (A.1)

with

δρ=ρ−ρ0 =ρ−<ρ>, (A.2)

δv=v−v0=v−<v>, (A.3)

where the macroscopic state variables are the averaged quantities denoted by “< >”.
Therefore, the fluctuating hydrodynamic equations can be linearized as

(
∂

∂t
+γ̇µσxσ

∂

∂xµ

)
δρ+ρ0∇·δv=0, (A.4)

(
∂

∂t
+γ̇µσxσ

∂

∂xµ

)
δvµ+γ̇µσδvσ+

c2
T

ρ0

∂

∂xµ
δρ

−ν∇2δvµ−
(

κ+
ν

3

) ∂

∂xµ
∇·δv=

1

ρ0

∂

∂xµ
ΠR

µσ, (A.5)

where second-order terms in fluctuations are neglected. Kinematic viscosities are defined
as ν = η/ρ0 and κ = ζ/ρ0. Furthermore, the equation of state is assumed to have the
property of δp= c2

Tδρ, where cT is the isothermal sound speed.

B Hydrodynamic matrix

It proves to be convenient to solve such a linearized hydrodynamic equations of
Eqs. (A.4) and (A.5) in Fourier space [1,8,9]. Hence, we define the fluctuations in k-space
as the spatial Fourier transform of the fluctuations

z̃(k,t)=
∫

z(x,t)eik·xdx. (B.1)
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Suppose that the wave vector is defined as k= kxex+kyey+kzez =(kx,ky,kz), where ex,
ey and ez are three basis vectors in the fixed Cartesian coordinate. The formulation of the
problem is very succinct, if the transformed velocity is decomposed into one component
parallel to k and the other two components perpendicular to k [26, 27]. Therefore, we
define another three orthonormal vectors e1, e2 and e3 in such way that e1 is along k and
e2,3 are perpendicular to k,

e1 =k/k, (B.2)

e2 =
[
ey−(e1 ·ey)e

1
]

/k⊥, (B.3)

e3 =e1×e2. (B.4)

Here ey is taken as reference to define the first transversal direction e2 so that e2 is in the
same plane with e1 and ey, and e2 is perpendicular to e1; moreover, e3 is perpendicular to

both e1 and e2. Also k=|k|, k⊥=(k2−k2
y)

1/2/k. Note that superscript 1, 2, or 3 refers to the
pairwise orthonormal basis vectors in the wave vector coordinate or oblique coordinate,
which are expressed in the fixed Cartesian coordinate.

We further define a vector of fluctuating variables in k-space as

ẑ(k,t)=
[

δ̂ρ(k,t), δ̂u1(k,t), δ̂u2(k,t), δ̂u3(k,t)
]

, (B.5)

where each element is related to the Fourier-transformed variable as

δ̂ρ(k,t)= cT δ̃ρ(k,t)/ρ0, (B.6)

δ̂uµ(k,t)= δ̃v(k,t)·eµ. (B.7)

The fluctuating velocity δ̃v(k,t) in k-space is the spatial Fourier transform of the fluctuat-
ing velocity δv(x,t) in real space. The latter is the peculiar or fluctuating velocity around
the macroscopic velocity field defined as

δvµ(x,t)=vµ(x,t)−γ̇δµxδσyxσ. (B.8)

It is also simple to see that δ̂u(k,t) is obtained by projecting δ̃v(k,t) onto the basis direc-

tions of the wave vector. Hence, δ̂u1(k,t) is called the longitudinal fluctuating compo-

nent, while δ̂u2(k,t) and δ̂u3(k,t) are the first and second transversal fluctuating compo-
nents, respectively. Finally, the hydrodynamic equations in k-space are summarized in a
compact form as

(
∂

∂t
−γ̇µσkµ

∂

∂kσ

)
ẑǫ(k,t)+Lǫι(k,γ̇,t)ẑι(k,t)= R̂ǫ(k,t), (B.9)

where the matrix L is defined as

L=−ikA+k2B+γ̇C, (B.10)
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with

A=




0 cT 0 0
cT 0 0 0
0 0 0 0
0 0 0 0


, (B.11)

B=




0 0 0 0
0 νL 0 0
0 0 ν 0
0 0 0 ν


, (B.12)

C=




0 0 0 0
0 Φ11 Φ12 Φ13

0 Φ21 Φ22 Φ23

0 Φ31 Φ32 Φ33


. (B.13)

The longitudinal viscosity is defined as νL =4ν/3+κ=(4η/3+ζ)/ρ0 . Φµσ is defined by

γ̇Φµσ=e
µ
ǫ (k)γ̇ǫιe

σ
ι (k)−γ̇ǫιkǫe

µ
χ(k)

∂

∂kι
eσ

χ(k). (B.14)

Given the definitions of the basis vectors from Eqs. (B.2), (B.3), and (B.4) in oblique coor-
dinate, the elements of C read

Φ11=−Φ22 = kxky/k2, (B.15)

Φ12=−kx/k⊥, (B.16)

Φ31=−kykz/kk⊥ , (B.17)

Φ32=−kz/k, (B.18)

Φij =0, all others. (B.19)

The linear mode coupling is represented by the derivatives with respect to k.
Finally, the stochastic terms are

R̂ǫ(k,t)= R̃ǫ(k,t)−< R̃ǫ(k,t)>, (B.20)

R̃1(k,t)=0, (B.21)

R̃2(k,t)=e1
µ(k)ikσΠ̃R

µσ(k,t)/ρ0, (B.22)

R̃3(k,t)=e2
µ(k)ikσΠ̃R

µσ(k,t)/ρ0, (B.23)

R̃4(k,t)=e3
µ(k)ikσΠ̃R

µσ(k,t)/ρ0. (B.24)

The general solution to the linearized hydrodynamic equation (Eq. (B.9)) can be de-
termined from the nonlinear eigenvalue problem,

(
−γ̇µσkµ

∂

∂kσ
+L

)
ξ(µ)=λµξ(µ). (B.25)
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The left eigenvectors χ(µ) are defined as
(

χ(µ),ξ(σ)
)
= χ̄

(µ)
ǫ ξ

(σ)
ǫ =δµσ, (B.26)

where χ̄
(µ)
ǫ means conjugate of χ

(µ)
ǫ , and δµσ is the Kronecker δ

The eigenvalues λµ and eigenvectors ξ(µ) can be obtained via the perturbation theory
by the expansion of k to second and first order, respectively

λµ = kλµ,1+k2λµ,2+··· , (B.27)

ξ(µ)= ξ
(µ)
0 +kξ

(µ)
1 +··· . (B.28)

Inserting Eqs. (B.27) and (B.28) into Eq. (B.9) and making use of the explicit form of L
in Eq. (B.10), we have the first-order perturbation theory involving A and second-order
perturbation theory involving A, B, and C all together. Assuming γ̇ . νk2 ≪ cTk and
treating γ̇ as in the order of k2, the two equations from the perturbation read [26, 59]

(
−iA−λµ,1I

)
ξ
(µ)
0 =0, (B.29)

(
−iA−λµ,1I

)
ξ
(µ)
1 =

(
λµ,2I−B−γ̇k−2C+k2γ̇µσkµ

∂

∂kσ

)
ξ
(µ)
0 . (B.30)

From Eq. (B.29), we find the first set of eigenvalues as follows

λ1,1=−icT, (B.31)

λ2,1=+icT, (B.32)

λ3,1=λ4,1=0. (B.33)

From Eq. (B.30), we find the second set of eigenvalues as follows

λ1,2==ΓT+
1

2
γ̇k−2Φ11 =ΓT+

1

2
γ̇kxky/k4, (B.34)

λ2,2=λ1,1 (B.35)

λ3,2=ν+γ̇k−2Φ22 =ν−γ̇kxky/k4, (B.36)

λ4,2=ν, (B.37)

where sound attenuation coefficient ΓT =νL/2=(2η/3+ζ/2)/ρ0 .
Inserting the expressions for λµ,1 and λµ,2 back into Eq. (B.27), finally the eigenvalues

are summarized as

λ1=−icTk+ΓTk2+
1

2
γ̇kxky/k2, (B.38)

λ2=+icTk+ΓTk2+
1

2
γ̇kxky/k2, (B.39)

λ3=νk2−γ̇kxky/k2, (B.40)

λ4=νk2. (B.41)
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Furthermore, the corresponding right eigenvectors are

ξ(1)=
1√
2
(1,1,0,0)T , (B.42)

ξ(2)=
1√
2
(0,0,0,1)T , (B.43)

ξ(3)=(0,0,1,M)T , (B.44)

ξ(4)=(0,0,0,1)T , (B.45)

where

M(k)=
kkz

kxk⊥
arctan

( ky

k⊥

)
, (B.46)

k⊥= k2−k2
y. (B.47)

The corresponding left eigenvectors satisfying Eq. (B.26) are

χ(1)=
1√
2
(1,1,0,0)T , (B.48)

χ(2)=
1√
2
(0,0,0,1)T , (B.49)

χ(3)=(0,0,1,0)T , (B.50)

χ(4)=(0,0,−M,1)T . (B.51)

Given the eigenvalues and eigenvectors λµ, ξµ and χµ, the time evolution of fluctuat-
ing variables is obtained as

ẑǫ(k(t),t)=
4

∑
ι=1

Gǫι(k(t),t)ẑι(k,0)+
∫ t

0

4

∑
ι=1

Gǫι(k(t−u),t−u)R̂ι(k,u)du, (B.52)

with a propagator defined as

Gǫι(k(t),t)=
4

∑
µ=1

ξ
(µ)
ǫ (k(t))χ

(µ)
ι (k)e−

∫ t
0 dτλµ(k(τ)). (B.53)

To account for the advection, the wave vector is time dependent k(t)= (kx,ky−γ̇tkx,kz).
Since the random terms do not contribute in this shear rate regime [26, 29], the correla-
tions of the fluctuating variables are readily expressed as

Cǫι(k,−k,t)=< ẑǫ(k(t),t)ẑι(−k,0)>=
4

∑
µ=1

Gǫµ(k(t),t)< ẑµ(k,0)ẑι(−k,0)> . (B.54)

Given the values of λµ, ξµ and χµ,, we find that Gǫι=0 for ǫ 6= ι and Gǫι 6=0 for ǫ= ι.



X. Bian, M. Deng and G. E. Karniadakis / Commun. Comput. Phys., 23 (2018), pp. 93-117 115

References

[1] J. P. Hansen and I. R. McDonald. Theory of simple liquids. Elsevier, 4 edition, 2013.
[2] G. E. Karniadakis, A. Beskok, and N. Aluru. Microflows and nanoflows: fundamentals and

simulation. Springer, New York, 2005.
[3] J. Mewis and N. J. Wagner. Colloidal suspension rheology. Cambridge University Press, Cam-

bridge, 2012.
[4] X. Li, Z. Peng, H. Lei, M. Dao, and G. E. Karniadakis. Probing red blood cell mechanics,

rheology and dynamics with a two-component multi-scale model. Phil. Trans. R. Soc. A,
372(2021), 2014.

[5] H. M. Jaeger, S. R. Nagel, and R. P. Behringer. Granular solids, liquids, and gases. Rev. Mod.
Phys., 68:1259–1273, Oct 1996.

[6] V. Springel. Smoothed particle hydrodynamics in astrophysics. Annu. Rev. Astron. Astrophys.,
48:391–430, 2010.

[7] R. Kubo. The fluctuation-dissipation theorem. Rep. Prog. Phys., 29(1):255, 1966.
[8] L. P. Kadanoff and P. C. Martin. Hydrodynamic equations and correlation functions. Ann.

Phys., 24:419 – 469, 1963.
[9] J. P. Boon and S. Yip. Molecular hydrodynamics. Dover Publications, Inc., New York, 1991.

[10] X. Bian, C. Kim, and G. E. Karniadakis. 111 years of Brownian motion. Soft Matter, 12:6331–
6346, 2016.

[11] D. J. Evans, E. G. D. Cohen, and G. P. Morriss. Probability of second law violations in
shearing steady states. Phys. Rev. Lett., 71:2401–2404, 1993.

[12] D. J. Evans and G. Morriss. Statistical mechanics of nonequilibrium liquids. Cambridge Univer-
sity Press, second edition, 2008.

[13] U. Seifert. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep.
Prog. Phys., 75(12):126001, 2012.

[14] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim. Macroscopic fluctuation
theory. Rev. Mod. Phys., 87:593–636, Jun 2015.

[15] U. M. B. Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani. Fluctuation-dissipation: response
theory in statistical physics. Phy. Rep., 461(4-6):111–195, 2008.

[16] J. Machta, I. Oppenheim, and I. Procaccia. Statistical mechanics of stationary states. v. fluc-
tuations in systems with shear flow. Phys. Rev. A, 22:2809–2817, Dec 1980.

[17] A. M. S. Tremblay, M. Arai, and E. D. Siggia. Fluctuations about simple nonequilibrium
steady states. Phys. Rev. A, 23:1451–1480, Mar 1981.

[18] A. L. Garcia, M. Malek Mansour, G. C. Lie, M. Mareschal, and E. Clementi. Hydrodynamic
fluctuations in a dilute gas under shear. Phys. Rev. A, 36:4348–4355, Nov 1987.

[19] M. Malek Mansour, John W. Turner, and Alejandro L. Garcia. Correlation functions for sim-
ple fluids in a finite system under nonequilibrium constraints. Journal of Statistical Physics,
48(5):1157–1186, 1987.

[20] B. F. Farrell and P. J. Ioannou. Stochastic forcing of the linearized navierstokes equations.
Physics of Fluids A: Fluid Dynamics, 5(11):2600–2609, 1993.

[21] H. Wada. Shear-induced quench of long-range correlations in a liquid mixture. Phys. Rev. E,
69:031202, Mar 2004.

[22] J. M. Ortiz de Zárate and J. V. Sengers. Transverse-velocity fluctuations in a liquid under
steady shear. Phys. Rev. E, 77:026306, Feb 2008.
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