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Abstract. We present version 1.2.0 of DASHMM, a general library implementing hi-
erarchical multipole methods using the asynchronous multi-tasking HPX-5 runtime
system. Compared with the previous release [10], this new version: (1) enables exe-
cution in both shared and distributed memory architectures; (2) extends DASHMM’s
infrastructure to support advanced multipole methods [18]; and (3) provides built-in
implementations of both the Yukawa [15] potential and Helmholtz [16] potential in the
low frequency regime. These additions have not impacted the user interface, which
remains simple and extensible.
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Operating system: Linux

Compilers: GCC 4.8.4 or newer; icc (tested with 15.0.1)

RAM:

External routines/libraries: HPX-5 4.0.0 or later

Running time:

Restrictions:

1 Introduction

Hierarchical Multipole Methods (HMMs) are a key component of many science appli-
cations in a wide range of fields. However, conventional parallel programming prac-
tice leaves many of these applications strong-scaling constrained. Asynchronous Many-
Tasking (AMT) runtime systems offer some promise as a means to overcome the scaling
constraints of HMMs. Many such programming models and runtime systems are difficult
to incorporate into existing code, leading to the need to rewrite potentially large appli-
cations, a cost which is often not feasible for many groups. What is needed is a system
that can provide both ready-made and user-created HMMs, in a form that is easy to use,
and which obviates the need to write application code that targets advanced, and often
experimental, AMT systems. The Dynamic Adaptive System for Hierarchical Multipole
Methods (DASHMM) is a scientific software library that provides easy-to-use, extensible,
scalable and efficient parallel implementations of HMMs on both shared and distributed
memory architectures.

This paper presents a major update to DASHMM version 0.5.0 [10]. The centerpiece
of this update is the ability of the library to operate on distributed memory architectures.
The implementation deviates from typical bulk-synchronous executions, which mostly
rely on locally essential trees [24–26], in favor of adaptive runtime techniques. DASHMM
also differs from previous adaptive runtime implementations of HMMs [2,3,13,22], which
were limited to shared memory architectures. DASHMM maintains the simple interface
of the earlier version that requires no particular knowledge of the advanced experimental
runtime system that provides DASHMM’s parallelism. Further, this parallelism requires
no explicit specification by the user about where the data is to be placed across the system.

In addition, this update includes a new built-in method, and two new built-in ker-
nels. DASHMM now includes an advanced FMM [7,18], which this paper refers to as the
FMM97 method, that uses exponential expansions and the merge-and-shift technique.
This method can be applied to the previously supplied Laplace kernel, as well as the
two new built-in kernels, Yukawa and low-frequency Helmholtz. The Yukawa kernel is
widely used in Brownian dynamics [21], and in the computation of non-bonded interac-
tions [4]. The Helmholtz kernel is has wide applications in computational electromagnet-
ics [8], the scattering of radiation [14] and electromagnetic compatibility/interference, the
design of antennas, radar [5], optical and imaging systems, frequency-selective surfaces
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and metamaterials [19]. With the addition of these kernels, and the FMM97 advanced
method, DASHMM’s set of built-in methods and kernels covers a wide range of applica-
tion classes.

The organization of this paper is as follows. In Section 2, the details of the expansions
for the three kernels provided with DASHMM are supplied. Conceptual extensions to
DASHMM required to support the FMM97 method are given in Section 3. Details about
the distributed operation of DASHMM are presented in Section 4. The results of a strong
scaling study is given in Section 5. Finally, Section 6 concludes the paper.

2 Mathematical foundations

The previous release of DASHMM [10] implemented the classical Fast Multipole Method
(FMM) [6, 17]. In three dimensions, each box b in this method needs to perform up to
189 multipole-to-local translations, which seriously impacts the performance. A major
improvement was made to address this issue in 1997 [18]. The idea is to introduce a third
expansion, the exponential expansion, such that the translation is a component-wise (or
diagonal) operation. Additionally, it becomes much easier to explore the overlapping
regions of adjacent boxes where multipole-to-local translations are required. This is re-
ferred as the merge-and-shift technique in the literature and can reduce the average num-
ber of translations from 189 down to 40. The FMM97 method was first applied to the
Laplace potential [18], and then extended to the Yukawa potential [15], and Helmholtz
potential in the low-frequency regime [16]. This section gathers the related mathematical
foundations in one place, and supplements the missing formulations in existing publica-
tions.

In this section, the multipole and local expansions for the Laplace (1
r ), Yukawa ( πe−λr

2λr ),

and Helmholtz ( eiλr

r ) potentials are of the form
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where {Mm
n } represent multipole moments, and {Lm

n } represent local expansion coeffi-
cients. The spherical harmonics are given by
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in and kn are the modified spherical Bessel functions, hn is the spherical Hankel function
of the first kind, and jn is the spherical Bessel function of the first kind.
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In the following discussion, the origin of the coordinates is at the center of the box
for which the multipole expansion is being translated. The formulas presented directly
apply to boxes that lie along the +z-axis. Boxes along the −z-axis can be easily handled
using reflection through the origin. For boxes along x/y-axis, the coordinates need to be
first rotated such that the old x/y-axis is the +z-axis in the rotated frame.

2.1 Laplace

The spherical harmonics Ym
n (θ,φ) connects to the partial derivatives as follows
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n(θ,φ)
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Apply formula [23, p. 1256]
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Some algebraic work gives
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Substitute these results into (2.1), the multipole expansion can be rearranged as
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The outer integral is handled by generalized Gaussian quadrature [28]. For accuracy
requirement ǫ, the number of quadrature points is denoted S(ǫ), and the quadrature
nodes and weights are given by {uk,wk}, k=1,··· ,S(ǫ). For each uk, the inner integral is
handled by the trapezoid rule using M(k) quadrature points. The multipole expansion
can then be expressed as
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Eq. (2.5) translates the multipole expansion into the exponential expansion (2.4). Notice
that (2.5) can be interpreted as evaluating a Fourier series expansion at αk,j where the
inner sum over n is the Fourier coefficient.

To convert (2.4) into a local expansion where the original expansion is valid, one ap-
plies the formula [20, p. 123]
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}

on each term of the Taylor expansion of e−uzei(xcosα+ysinα) and, after some algebraic work,
finds

Lm
n =

i|m|
√

(n−m)!(n+m)!

S(ǫ)

∑
k=1

(−uk)
n

M(k)

∑
j=1

W(k, j)e−imαk,j . (2.6)

2.2 Yukawa

The work for Yukawa potential relies on the integral representation [23]
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Substituting the result into (2.2) and discretizing the integral in the same fashion as Sec-
tion 2.1, one arrives at
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and S(ǫ), M(k), {uk,wk}, αk,j are defined similarly as in Section 2.1.
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To convert the exponential expansion into a local expansion in the region where the
original multipole expansion is valid, one could interpret each exponent

(uk+λ)z−i
√

u2
k+2ukλ(xcosα+ysinα)

as the dot product of vector (x,y,z) and (x′,y′,z′) whose spherical coordinates are given
by (x,y,z) = (r,θ,φ) and (x′,y′,z′) = (r′,θ′,φ′). This gives r′ = λ. Applying the Addition
Theorem [1, Eq. 10.2.37], one has

e−(uk+λ)zei
√

u2
k+2ukλ(xcosα+ysinα)

=
∞

∑
n=0

n

∑
m=−n

(2n+1)
(n−|m|)!
(n+|m|)! (−1)nP

|m|
n

(uk+λ

λ

)

e−imαj i|m|in(λr)P
|m|
n (cosθ)eimφ,

which after some more algebraic work gives

Lm
n =(2n+1)

(n−|m|)!
(n+|m|)! (−1)ni|m|

S(ǫ)

∑
k=1

P
|m|
n

(uk+λ

λ

)
M(k)

∑
j=1

W(k, j)e−imαj . (2.10)

2.3 Helmholtz

The Helmholtz potential starts with the integral representation [16]
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For the propagating part, change variable by u=λsinθ, and the integral becomes
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Discretizing the inner integral using the trapezoid rule and the outer integral using Gauss-
Legendre quadrature on the interval [0,π/2], one has
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where
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For the evanescent part, change variables by σ2 =u2−λ2, the integral becomes
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Discretizing the inner integral using the trapezoidal rule and the outer integral using
generalized Gaussian quadrature, one has
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Notations such as S·(ǫ) and M·(k) have the same meaning as those in the previous sec-
tions.

The exponential expansions can be converted back into a local expansion using tech-
niques similar to that in Section 2.2 and the Addition Theorem [1, 10.1.47]. Each term of
the local expansion Lm

n accumulates contributions from the propagating wave Lm
n,P and

the evanescent wave Lm
n,E, where
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3 Extensions supporting FMM97

The addition of support for the FMM97 method required two extensions to the existing
DASHMM infrastructure.

First, DASHMM now sorts expansions into normal and intermediate types. A nor-
mal expansion includes the common multipole or local expansion, while an intermediate
expansion is used to reduce the M→L operation costs. The exponential expansions in
Section 2 is an exemplar of an intermediate expansion. The intermediate expansion in-
troduces three additional operators to DASHMM: (1) M→I that translates a multipole
expansion into an intermediate expansion; (2) I→I that shifts the center of intermedi-
ate expansion; and (3) I→L that translates the intermediate expansion back into a local
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Source Target
S

M

I I

L

T

Figure 1: Diagram of translation operators in DASHMM. Basic multipole methods use multipole (M) and local
(L) expansions, and eight operators (shown in solid lines) that connect them to the sources (S) and targets (T).
Advanced multipole methods use intermediate expansions (I) and three additional operators (shown in dashed
lines). The M→L operator is decomposed into a chain of M→I, I→I, and I→L operations in advanced multipole
methods.

expansion. Unlike the M→L operator that occurs only between boxes of the same hier-
archy level in classical FMM, I→I can happen across different levels, as demonstrated in
the merge-and-shift techniques adopted in the FMM97 method. Fig. 1 shows the set of
possible operators supported by DASHMM both before (solid arrows) and after (dashed
arrows) this addition.

Second, the inclusion of intermediate expansion types in DASHMM lead to the need
to make a distinction between the mathematical concept of an expansion, and the concept
as used in DASHMM. The mathematical concept is demonstrated in Section 2, and is the
expansion of some potential in a certain manner, such as with spherical harmonics. The
concept of an expansion in DASHMM is wider: each expansion in DASHMM can con-
tain multiple mathematical expansions. The prototypical case for this is for the FMM97
method. Each box in the source tree will have six versions of the exponential expansion,
one each for (+z, -z, +y, -y, +x, -x). These six mathematical expansions represent different
versions, or views, of the same information; they are combined into a single DASHMM
expansion. Thus, an expansion in DASHMM is a collection of Views, each of which is the
information for a single mathematical expansion. The set of Views are related in some
way, typically as equivalent representations of the same underlying information.

By extending the notion of expansion in DASHMM in this way, it adds the flexibility
to not only handle advanced HMMs, such as FMM97, but also allows for a user to per-
form more than one HMM at the same time. In this use, each Viewwould be an expansion
for a different kernel, or a different interaction.

4 Distributed implementation

DASHMM 1.2.0 provides a parallel implementation of HMMs on distributed memory
architectures using the HPX-5 runtime system. This section covers the details of this dis-
tributed evaluation. The following summarizes some common HPX terms used in this
section. The HPX-5 runtime system provides a global shared memory space abstrac-
tion. A parcel is a form of active message that contains a description of the action to
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be performed, argument data, and continuation information and is sent to the global
address on which the action is to be perform. Program data and control dependencies
are represented in memory by local control objects (LCOs). An LCO is an event-driven,
lightweight, globally addressable synchronization object that co-locates data and control
information. For more details on HPX-5 concepts, and how they relate to DASHMM,
see [10].

4.1 Overview

Any given DASHMM evaluation occurs in a set of four distinct phases. First, the source
and target data are distributed and a dual tree is constructed. Second, a specified HMM
is used to traverse the dual tree and generate an explicit version of the directed acyclic
graph (DAG) representing the computation. Third, this explicit DAG is instantiated
into an implicit DAG formed of runtime objects that manage the parallel computation.
Fourth, the execution represented by the runtime objects is carried out. The following
subsections cover each stage in detail.

4.2 Dual Tree construction

DASHMM allows the sources of the interaction and the target locations to be distinct, and
so DASHMM uses a Dual Tree. A dual tree is a pair of hierarchical space partitions, one
for the source locations, and one for the target locations. This flexibility was chosen so
that DASHMM can be applied in the widest possible context. The reasons for this choice
are discussed in [29].

In DASHMM, the source and target positions are provided by the user. The library
makes no assumptions about the initial distribution of these data across localities. De-
pending on how the user has supplied the data, DASHMM must be ready for the data to
have an arbitrary distribution, including all on a single locality, or equally spread across
all localities.

The construction of the dual tree begins with a determination of the domain of the
problem, which is the smallest cubical volume that completely encompasses all the source
and target locations. This reduction is first accomplished on each locality, and those re-
sults are then reduced across localities. The resulting volume gives the volume of the
root of both the source and target trees. That the root of each tree has the same volume
is not required of a Dual Tree, but it does simplify certain implementation details. In
particular, instead of using floating point representations of the volumes of the various
boxes in either tree, an index composed of integral values can give the volume of any box
provided the overall domain is known. This avoids any potential issues with comparing
finite precision floating point numbers.

After the overall domain is determined, the source and target data are distributed
across the localities in the system. This distribution aims to place an equal number of
sources and targets on each locality. Note that the source and targets are not distributed



J. DeBuhr, B. Zhang and T. Sterling / Commun. Comput. Phys., 23 (2018), pp. 296-314 305

locality 1 locality 2 locality 3
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

Uniform level

p12, p14 p5 p6 p8

p10, p19 p2 p7, p15 p20

p9 p13 p17 p3, p18

p4 p16 p1 p11

Assign

locality 1 locality 2 locality 3
p12 p14 p5 p10 p19 p2 p6 p8 p7 p15 p20 p9 p13 p4 p16 p1 p11 p17 p18 p3

Exchange-and-refine

Figure 2: The tree is constructed from point data {pi}, spread over the available localities. First, the points are
mapped into a uniform refinement level. In the figure, this level is 2; the root box has been subdivided twice.
Second, the set of boxes at the uniform level are partitioned among the localities using a Morton curve. In this
example locality one is assigned 5 boxes at the uniform level, locality two is assigned 6, and locality three is
assigned 5. Third, each locality sends points that it currently owns that have been assigned to other localities
to those localities. Finally, once all the points for a given uniform level box have arrived, the tree below is
constructed.

individually, but rather the collected source and target sets are distributed uniformly. To
divide the data, the locations are mapped into a fixed level of the tree, called the uniform
refinement level. Effectively, the top of the source and target trees are refined uniformly
to a given level, partitioning the source and target data in the process. Then, the boxes
at the uniform refinement level are divided among the available localities. The uniform
refinement level is chosen to allow multiple boxes per locality on average. DASHMM
selects:

ℓ=⌈log8nl⌉+1, (4.1)

where ℓ is the uniform refinement level, and nl is the number of localities available. See
Fig. 2 for an example of this process for a two dimensional problem.

Once the occupations in each uniform level box is computed on each locality, these
values are reduced across localities to have the total number of source and target locations
in each box of the uniform level. To perform the distribution of the boxes, they are placed
on a space filling curve, which is then segmented in a way that each segment contains
roughly the same amount of data. DASHMM currently uses a Morton curve for this
distribution. Once the owning locality of each uniform level box is known, the localities
send any source or target data needed to its assigned owner.

Once a given locality has received all the source and target data for a given uniform
level box, it can partition that branch of the dual tree. After each branch for a given
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locality is completed, the result is a tree that contains all possible boxes up to the uniform
refinement level, and the descendant branches of a subset of the boxes at the uniform
refinement level. Each locality produces a similar structure, leading to a copy of the top
of the dual tree on each locality and a single instance of any branch over all the available
localities.

To aid in the construction of the DAG representing the work of the selected HMM,
each locality then shares its branches with all other localities by sending a compressed
representation of the branch’s structure. This compressed representation is expanded
into a full instance of the branch on each locality. Eventually, each locality has a full copy
of the entire tree, though it only owns a subset of the branches of the tree. The slight
excess in memory use pays for a much simpler discovery and distribution of the explicit
DAG (see below).

DASHMM makes use of HPX-5 during this phase of tree construction in two ways.
The first is that any reductions are performed using LCOs. Second, the various tasks
that are performed in this procedure are instantiated as HPX-5 parcels, which can easily
allow for asynchronous execution of these tasks. For instance, on a given locality, the
construction of a given branch needs to depend only on all of the data for that branch
arriving. So instead of requiring all of the source and target data communication to be
complete across the system, a locality can launch the action that will partition a branch as
soon as the data is fully available. This allows DASHMM, for instance, to hide messaging
latency behind other work.

4.3 Explicit DAG

Once the dual tree is constructed, DASHMM then builds an explicit DAG, which repre-
sents the work of the selected HMM for the given source and target data. We add the
qualifier ‘explicit’ to indicate that this representation is in a set of objects managed by
the library. This is by contrast to the implicit DAG (see below) which is composed of
objects managed by the HPX-5 runtime system. This stage of the evaluation is essentially
a traversal of the dual tree [12, 27].

For a method to be usable by DASHMM, it must provide five operations that are
called by the library. The exact details of these operations are not the concern of DASHMM,
but are instead the concern of the implementer of the specific method. That being said,
DASHMM is distributed with a set of common methods that can be used immediately.
Four of the operations represent the various classes of transformations that are made to
the source data along the path to the target points. The fifth operations allows an ad-
vanced method to react to the situation of the dual tree at runtime to avoid continued
traversal of the dual tree in situations where an early termination might be to the bene-
fit of performance, or some other characteristic. The following covers each operation in
turn, giving not only their typical effect, but also the manner in which the operation is
called.

The first operation that must be provided is generate. This operation is called at the
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leaves of the source tree, and is responsible for creating the first summaries of the source
data. Often all that generate will do is add an S→M edge to the DAG.

In aggregate, the summaries computed at a box’s children are combined into a sum-
mary that applies for the box itself. This operation is called for each internal box of the
source tree. Typically aggregate creates a set of M→M links from expansions for this box’s
children to the expansion for this box.

The inherit operation passes information from a box of the target tree to its children.
This will occur for any box of the target tree, and typically involves the addition of L→L
edges to the DAG.

In process, the links between the source and target trees are created. It is in this oper-
ation that the bulk of the differences between the various methods lie. This operation is
called for each box of the target tree, but unlike the previous operations, this operation is
also given a list of source tree boxes that are under consideration for interacting with this
target box. The result of this operation is to either add an edge to the DAG connecting
a box in the consider list and the box on which the operation is called, or to modify in
some way the consider list, which is then passed into the process operation for this box’s
children. Typical edges added to the DAG during process are S→T, M→L, M→T, S→L,
to name a few.

Finally, the refinement test operation is used to allow a method to have an early exit of
the traversal. In some advanced methods, it can be advantageous to consider an internal
box of the target tree as if it were really a leaf. This operation is called for each box of the
target tree.

To actually perform the work of applying these operations, DASHMM makes use of
HPX-5’s task based description of execution. These tasks occur in two passes, one up the
source tree, and one down the target tree. Each task in the source tree is the same, but
is applied to different data, and each task in the target tree is the same, but is applied to
different data. To start each pass of the traversal, the appropriate task is spawned at the
root of each tree. To be sure of the existence of any source tree related DAG boxes, the
traversal of the source tree is completed first, followed by the traversal of the target tree.
In both cases, there is sufficient parallelism that waiting for the completion of the first
pass does not significantly impact the utilization of the computational resources.

The task in the source tree first checks to see if the box to which it is applied is a leaf.
If so, the generate operation is called. Otherwise, the same task is spawned one each for
each child of the current box. When those tasks are complete, the aggregate operation is
called on the current box. In this way, a tree of tasks are spawned that ultimately reach
the leaves of the source tree. At the leaves, multipole moments are generated, which are
then aggregated as the tasks waiting at the internal boxes are able to be completed.

The task in the target tree first performs the refinement test. Then, the inherit operation
is performed to translate any information from the current box’s parent (if it exists) to the
current box. Then, in process, links are formed between the source and target trees. In this
process the list of boxes that are being considered may have been modified. Finally, if the
box is to be refined further, an identical task is spawned for each child of the current box,
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passing in the new list of source tree boxes to consider.

Each available locality in the system has a complete copy of the structure of the dual
tree, even if that locality owns only a fraction of the source and target data (see above).
This means that each locality can generate this explicit DAG without coordination with
the other localities. This removes any barriers to progress during this phase of the evalua-
tion. The cost of this is that the DAG is replicated in memory at each locality. This design
decision was made primarily so that DASHMM’s development could focus on the exe-
cution of the DAG in parallel using asynchronous many-tasking. This approach, as can
be seen in Section 5 has been successful. That being said, this is one place that will begin
to impose scaling constraints as the time it takes to generate the DAG become larger than
the time to execute a given localities portion of that DAG. This will be remedied in future
versions of DASHMM.

4.4 Implicit DAG

Once the explicit DAG is constructed, the work represented by the DAG can be dis-
tributed and instantiated as runtime objects in preparation for the execution of the work.
The main data being operated upon during an evaluation is the set of expansions at the
various source and target boxes. These expansions often have multiple contributions,
and because DASHMM makes use of asynchronous many-tasking, these contributions
come at times that are unknown and potentially overlapping. To manage this contention,
DASHMM uses LCOs to represent each expansion that must be computed. The implicit
DAG is composed of the set of Expansion LCO objects. These not only provide access to
the expansion data, but manage the concurrent modification of that data, and the contin-
uation of execution once an expansion is calculated completely.

In HPX-5, all actions target a particular address in the global address space. By ju-
diciously choosing on which localities to place the objects in a particular HPX-5 appli-
cation, one controls the distribution of the work executed by the system. In the case of
DASHMM, the placement of the expansion LCOs will determine the distribution of the
work during execution. To this end, DASHMM uses a distribution policy to select which
locality should own the nodes of the DAG. This policy operates on the explicit DAG, and
can be different for different methods. It is simple to change to another policy that is
provided with DASHMM, and relatively simple to create a new policy that might allow
DASHMM to benefit from expert knowledge for a particular use-case.

In the same way that the explicit DAG is constructed on each locality, the distribu-
tion of DAG nodes is computed on each locality. The output of this distribution is an
assignment of each DAG node to one of the available localities. This does two things.
First, each locality then can know which expansions it needs to instantiate. Second, each
locality can know to which localities a given expansion must be sent to execute the DAG.

Once the distribution of the DAG nodes is computed, each locality then instantiates
the objects that are owned by that locality. Because the LCOs representing the expansions
also manage the continuation of the execution after the expansion is fully computed,
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shortly after their creation, DASHMM will provide a summarized form of the edges that
start at the given expansion. With the expansion and out edge data prepared, the execu-
tion can begin.

4.5 DAG execution

The execution of a particular DAG comes down to the operation of the individual ex-
pansion LCO objects. Each node of the implicit DAG, which are represented with an
expansion LCO, operates in the same fashion, only the specific data, and the specific
out edges are different from node to node. Broadly speaking, one can divide the DAG
nodes into three groups: nodes that have no input edges, nodes that have no output
edges, and everything else. The are the initial, terminal, and internal DAG nodes, re-
spectively. When execution begins, it begins in the initial DAG nodes. When they have
completed their work, they activate some internal nodes, which in turn activate further
nodes. Eventually, the execution comes to a terminal DAG node, representing one of the
desired output quantities of the calculation. This section describes how these implicit
DAG nodes operate, leading to the asynchronous, unfolding execution.

The expansion LCO participates in two kinds of actions on the underlying expansion
data. The first, which will occur once for each edge ending at the DAG node, is the
addition of a contribution computed elsewhere to the data of the expansion. The second,
occurring only once after all the input edges to the DAG node have been satisfied, is
responsible for performing the work of the edges that start at the DAG node. This latter
action is also denoted the continuation action of the expansion LCO.

The effect of the contribution action on the LCO is easy to describe. The incoming ex-
pansion data is added to the expansion data represented by the LCO. The exact details of
this summation is up to the kernel being implemented, but this is often just a summation
of each term in the input to the equivalent term in the LCO’s data.

The continuation action, which is triggered once all inputs are processed, is more in-
volved. The purpose of the continuation action is to serve the edges that start at the
current implicit DAG node. Along each edge, the data at the current DAG node is trans-
formed, and then the contribution action is called on the target of the edge. Given that
the target of an edge might be on a different locality, each edge could lead to a network
message. To avoid this, DASHMM sorts the out edges by target locality, and deals with
those edges together, sending a single message per locality, instead of one message per
edge. Further, to keep the size of these messages small, it is the expansion data stored
at the current LCO that is sent, and not the translated versions of that expansion. Once
the expansion, and the list of targets and operations arrive at the remote locality, an ac-
tion is performed that performs the received operations and makes the contributions to
the LCOs that are the targets of the edges. These contributions, made many times from
many different starting LCOs, will ultimately provide all of the inputs to other expansion
LCOs, which then perform their own continuation action, leading to further evaluation,
ultimately yielding the value of the potential at every target location.
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To initiate this process, the initial nodes of the explicit DAG have their out edges
served. This process is very similar to the continuation action for the expansion LCO, but
instead of expansion data, the initial DAG nodes represent source data (such as position
and charge). In the same way that multiple edges from an intermediate DAG node to the
same locality are combined, multiple edges from an initial DAG node to a given locality
are combined. In most cases, the edges from an initial DAG node that cross the network
are all S→T edges. DASHMM places the expansion LCO for the target of a S→M edge at
the same locality as the initial DAG node that is the source of the edge.

DASHMM use of asynchronous execution leads to the challenge of detecting when
the evaluation is complete. To assist in this process, a second type of LCO was defined,
the target LCO. This LCO has the task of tracking the number of inputs that have occurred
for a given cluster of target locations. For each leaf of the target tree, there is one target
LCO. These target LCOs are the representations in the implicit DAG of the terminal nodes
of the explicit DAG. These LCOs act primarily as an event counter. Once each input
edge has been served, the LCO triggers. To translate this into an overall detection of
the completion of the evaluation, the triggering of each target LCO is connected through
a continuation to another HPX-provided LCO (the and LCO). There is one such LCO
for each available locality. When these are triggered, it represents that the work on that
locality is finished. To detect that the entire system is finished, these one-per-locality and
LCOs are connected via continuation to a single and LCO with one input per locality.
This final and LCO signals that each locality is complete.

The three sets of activities, initiation, evaluation and setting up termination detec-
tion, can occur simultaneously (there are no dependencies between these actions). So
DASHMM performs these three actions simultaneously. The initiation process expands
out into a number of actions, each of which is responsible for initiating a subset of the
initial DAG nodes. The termination detection setup leads to an action on each locality
that connects the various LCOs into the web of continuations that will ultimately signal
completion of the computation. And throughout, those expansion LCOs that become
ready will be performing their actions. The result is a dynamically unfolding set of tasks
that can occur, which get scheduled by the HPX-5 runtime system.

5 Results

To demonstrate the performance of DASHMM in distributed memory settings, a num-
ber of evaluations of multipole methods were conducted on a range of core counts to
demonstrate the strong scaling of the library.

The runs reported in this section were performed on the Haswell compute nodes of
Cori, a Cray XC40 supercomputer of NERSC. Each compute node has two 16-core Intel
Xeon E5-2698 v3 CPUs at 2.3 GHz clock rate and 128 GB DDR4 RAM. The compute nodes
are connected through the Cray Aries interconnect with Dragonfly topology.

The codes used in the test were compiled using the Intel compiler 17.0.2, with -O3
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Table 1: The number of sources and targets for six strong scaling runs of the FMM97 method built into
DASHMM.

Kernel Distribution N [106]

Laplace
Cube 100

Sphere 90

Yukawa
Cube 100

Sphere 60

Helmholtz
Cube 90

Sphere 30

level of optimization. For HPX-5, the test used version 4.0.0 and was configured with
Intel’s TBB memory allocator and the Photon network. The test program used to collect
these timings is distributed with DASHMM in the demo/basic subdirectory. For the test
code, DASHMMEXTRATIMINGwas defined to produce the timing information that is reported
here.

The source and target ensembles used in these tests contained the same number or
members in each run, but the specific locations for the sources and targets were distinct.
There were two distributions of sources and targets employed in these tests: in the first,
the points were distributed in a unit cube; in the second, the points were distributed on
the surface of a unit sphere. In each case, the charges of the source points were drawn
randomly from the range [1,2] and were given a random sign.

Each test was performed for the FMM97 method for three different kernels, Laplace,
Yukawa, and Helmholtz, requiring three digits of accuracy. For each combination of ker-
nel and method, the number of points was selected by finding the largest problem that
would fit in a single compute node of Cori. See Table 1 for a breakdown of problem size
for each run. The length of the expansion for scaling-variant Yukawa and Helmholtz ker-
nels depends on the depth in the tree. Therefore, the problem sizes are smaller than those
for the scaling-invariant Laplace kernel. The problem size for the Helmholtz kernel is the
smallest because the length of its intermediate expansion is the longest, approximately
three times as long as that for the Laplace kernel.

At each scale, for each combination of kernel and distribution, the test code was exe-
cuted five times, and the time for the execution phase (Section 4.5) of the calculation was
recorded. The left panel of Fig. 3 shows the average of these five iterations, with curves
coded by color (blue for Laplace, orange for Yukawa, and red for Helmholtz) and by
marker (squares for cube data, and circles for sphere data). The speedup relative to one
locality (for Cori each node has 32 physical cores) is shown in the right panel of Fig. 3.

DASHMM achieves good scaling as the resources grow by a factor of 256. A signifi-
cant portion of the loss of scaling at higher locality counts is an ability of HPX-5 to accept
priority hints for the tasks submitted to the system [9]. The scaling for the cube data is
better for each kernel than that of sphere data because there are far fewer partition levels
and far more tasks within each level for the cube data. The scaling for the Helmholtz ker-
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Figure 3: The execution time (left) and scaling relative to one locality (right) for the six strong scaling runs.
In blue are the results for the Laplace kernel, in orange are the results for the Yukawa kernel, and in red are
the results for the Helmholtz kernel. The two source and target distribution types are indicated by the marker,
with square markers for cube data, and circular markers for sphere data. The horizontal axis gives the number
of localities used, each of which has 32 cores (n= 32nl). The largest scale run for each case used 8192 cores
on 256 nodes. The data, files and production scripts for this figure are available under CC-BY [11].

nel is also uniformly better than either Laplace or Yukawa. The primary reason for this is
that the expansion length for the Helmholtz kernel can be quite long, leading to a much
larger grain size, even though there are fewer sources and targets for the Helmholtz case.

6 Conclusion

DASHMM is a library that provides a general framework for evaluating HMMs in par-
allel using an asynchronous many tasking runtime system. It provides an easy-to-use,
extensible, efficient and scalable parallel evaluation with very little work on the part of
application developers.

The central feature of this update is that DASHMM is now capable of working in
distributed memory architectures. The resulting scaling is good, and potential improve-
ments have been identified that can increase the scalability of the library [9]. The user of
DASHMM can be oblivious to the details of the parallel execution, allowing very rapid
incorporation of parallel HMMs into existing codes.

DASHMM now includes also an advanced version of FMM, called FMM97 in this
paper, which used the intermediate expansion and the merge-and-shift technique. In
the process of adding this capability to DASHMM, the library was also made capable of
handling a wide variety of advanced methods, such as evaluating multiple interactions
simultaneously. This update to DASHMM further adds two additional built-in kernels,
Yukawa and low-frequency Helmholtz. After these additions, DASHMM has built-in
capabilities that can serve a large number of application use cases.

The work of producing and testing this version of DASHMM has identified a num-
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ber of improvements that can be made to the library. Future work on the DASHMM
library will focus on priority scheduling to further improve strong scaling performance,
improvements to distribution policies, and adding support for heterogeneous memory
architecture, to name a few.
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