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Abstract

In this paper, we are concerned with the coupling of finite element methods and bound-

ary integral equation methods solving the classical fluid-solid interaction problem in two

dimensions. The original transmission problem is reduced to an equivalent nonlocal bound-

ary value problem via introducing a Dirichlet-to-Neumann mapping by the direct boundary

integral equation method. We show the existence and uniqueness of the solution for the

corresponding variational equation. Numerical results based on the finite element method

coupled with the standard Galerkin boundary element method, the fast multipole method

and the Nyström method for approximating the DtN mapping are provided to illustrate

the efficiency and accuracy of the numerical schemes.
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1. Introduction

Due to the considerable mathematical and computational challenges such as the oscillating

character of solutions and the unbounded domain to be considered, the transmission problems

involving acoustic waves scattered by a penetrable elastic body immersed in a fluid have been

studied extensively for many years since the pioneering work by Faran [11]. These problems are

of great importance in many fields of application including exploration seismology, oceanog-

raphy, and non-destructive testing, to name a few. In this article, we are interested in the

numerical solutions for the two dimensional fluid-solid interaction problem with bounded elas-

tic structure, and we refer to [28] for the variational approach solving the fluid-solid interaction

problem over periodic (bi-periodic) structures.

Recently, several numerical methods have been studied for the solution of the fluid-solid

interaction problem including the boundary integral equation (BIE) method [31, 39] and its

coupling with the finite element method (FEM) [8, 9, 16, 27, 33]. For the coupling scheme, a

popular way is to use the BIE methods to solve the acoustic problem outside the obstacle while
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FEM is employed for the approximation of the interior elastic wave. It should be pointed out

that any other field equation solver can also be used for solving the interior problem such as the

discontinuous Galerkin method [3]. Another approach, the perfectly matched layer (PML) [2],

to approximate free radiation is to introduce an additional damping layer surrounding the

computational domain such that no reflections occur at its interface with the computational

domain. This approach is easy to implement and is very effective. Another way to deal with

the fact that the scattered acoustic wave propagates in an unbounded region is to introduce

an artificial boundary enclosing the obstacle. Then, after imposing transparent boundary con-

ditions [17] on the artificial boundary, we obtain a reduced nonlocal boundary value problem

in a bounded domain which can be solved by field equation solvers. In particular, we can

derive a Dirichlet-to-Neumann (DtN) mapping on the artificial boundary to obtain an exact

transparent boundary condition, and accordingly this strategy is called DtN method [13]. The

DtN mapping can be computed by boundary integral operators [18, 23, 32] or by Fourier-series

expansions [12, 38]. The boundary integral equation based (BIE-based) DtN mapping can be

defined on any smooth closed curve and this feature may reduce the size of the computational

domain, while the Fourier expansion series based DtN mapping is usually defined on a circle or

on a perturbation of a circle [34]. In this paper, we are interested in the BIE-based DtN-FEM,

and we refer to [38] for the Fourier-series-based DtN-FEM solving the fluid-solid interaction

problems.

In contrast to the methods, where the stress tensor is introduced as a main variable [15,16],

in this paper the displacement will be the unique unknown in the solid for the fluid-solid

interaction problem [4, 27]. Following [32] but using a direct (cf. [26]) instead of an indirect

way, we first introduce a nonlocal boundary value problem equivalent to the original problem by

representing the exact DtN mapping via the boundary integral operators in acoutics, and then

we investigate the existence and uniqueness of the solution for the corresponding variational

equation. To compute the DtN mapping, we adopt the standard Galerkin boundary element

method (SGBEM), the fast multipole method (FMM) [5,26,36] and the Nyström method (NM),

respectively. Actually, if the number of those basis functions of the finite element space which

do not vanish on the artificial boundary is Nθ, then we have to solve the BIE Nθ times with

different Dirichlet boundary values as right-hand side to approximate the DtN mapping directly.

However, following the techniques in [32] we observe that, if the artificial boundary is a circle,

then it is sufficient to solve only one BIE with a fixed Dirichlet boundary value. Based on

the solution of this BIE, we derive an explicit formulation to compute the sesquilinear form

corresponding to the DtN mapping in this case.

The remainder of the paper is organized as follows. We first describe the classical fluid-

solid interaction problem in Section 2, and then reduce the transmission problem to a nonlocal

boundary value problem by defining a BIE-based DtN mapping in Section 3. Existence and

uniqueness of the solution for the corresponding variational equation are discussed in Section

4. In Section 5, we describe the numerical schemes of the FEM and SGBEM, FMM, and NM

for solving the boundary integral equation of the first kind. Finally, several numerical tests in

Section 6 are presented to verify the efficiency and accuracy of the numerical schemes.

2. The Fluid-solid Interaction Problem

Let Ω ⊂ R
2 be an open, bounded, and simply connected domain with a closed and sufficiently

smooth boundary Γ = ∂Ω, and suppose its exterior complement is given by Ωc = R
2 \ Ω ⊂
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Fig. 2.1. Geometry settings for the boundary value problem (2.1)–(2.5).

R
2. The domain Ω is occupied by a linear and isotropic elastic body, and Ωc is filled with a

homogeneous compressible inviscid fluid of constant mass density. Let pinc be a time-harmonic

incident wave. Under the hypothesis of small amplitude oscillations both in the solid and in the

fluid, the mathematical description of a direct fluid-solid interaction problem reads: Given pinc,

determine the elastic displacement u = (u1, u2) ∈
(
C2(Ω) ∩ C1(Ω)

)2
and the acoustic scattered

wave p ∈ C2(Ωc) ∩ C1(Ωc) satisfying

∆∗u+ ρω2u = 0 in Ω, (2.1)

∆p+ k2p = 0 in Ωc, (2.2)

ω2ρfu · n =
∂

∂n
(p+ pinc) on Γ, (2.3)

Tu = −n(p+ pinc) on Γ, (2.4)

and the Sommerfeld radiation condition

lim
r→∞

r
1
2

(
∂p

∂r
− ikp

)
= 0, r = |x|. (2.5)

Here, ω > 0 is the frequency, k = ω/cs > 0 is the acoustic wave number, cs the speed of sound

in the fluid, ρ the density of the solid, ρf the density of the fluid, ∂/∂n the normal derivative on

Γ (here and in the sequel, n is always the outward unit normal to the boundary) and i =
√
−1

the imaginary unit. The operator ∆∗ is defined by

∆∗ = µ∆+ (λ+ µ)∇∇· ,

where λ, µ are the Lamé constants such that µ > 0 and λ+µ > 0, and ∆ is the Laplacian. The

operator ∇· is the divergence, and ∇ denotes the gradient. The standard stress operator T on

the boundary is defined by

Tu = 2µ
∂u

∂n
+ λn∇ · u+ µn×∇× u.

It is known [29] that, for certain geometries and frequencies ω, the problem (2.1)–(2.5) is

not always uniquely solvable due to the occurrence of special traction free oscillations. These

ω are also known as the Jones frequencies which are inherent to the original model. Here, we

call a nontrivial u0 a traction free solution if it satisfies

∆∗u0 + ρω2u0 = 0 in Ω,

Tu0 = 0 on Γ,

u0 · n = 0 on Γ.
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We conclude from [31] that

Theorem 2.1. If the surface Γ and the material parameters (µ, λ, ρ) are such that there are no

traction free solutions, then the boundary value problem (2.1)–(2.5) has at most one solution.

To simplify the presentation throughout the paper, we shall denote by c > 0, α > 0 and

β ≥ 0 generic constants whose precise values are not required and may change line by line.

3. Nonlocal Boundary Value Problem

In this section, we derive a nonlocal boundary value problem which is equivalent with the

transmission problem (2.1)–(2.5) in a bounded domain. To do so, we introduce a sufficiently

smooth artificial boundary ΓD which is large enough to enclose the entire region Ω. Then the

exterior domain Ωc is decomposed into two subdomains denoted by ΩD and Ωc
D, respectively,

where ΩD is the annular region between Γ and ΓD, and Ωc
D = R

2 \ Ω ∪ΩD is the unbounded

exterior region.

Fig. 3.1. Geometry settings for the nonlocal boundary value problem (3.13)–(3.17).

To impose suitable boundary conditions on ΓD which are able to capture the nature of the

scattering field at infinity, we begin with the transmission conditions on the interface ΓD

[p]ΓD = p+2 − p−1 = 0, (3.1)
[
∂p

∂n

]

ΓD

=
∂p2
∂n

+

− ∂p1
∂n

−

= 0, (3.2)

with

p(x) =

{
p1(x), x ∈ ΩD,

p2(x), x ∈ Ωc
D.

Here, we write v− and v+ for the limits or traces for any functions v on ΓD from ΩD and

Ωc
D, respectively. With this partition of the original exterior domain Ωc, the boundary value

problem (2.1)–(2.5) is actually transformed into a transmission problem with an interface ΓD.

In order to eliminate p2 in Ωc
D, we now consider the DtN mapping computed via BIE.

3.1. The DtN mapping

To define the DtN mapping on ΓD, we first consider the following exterior Dirichlet problem:

Given p−1 = p1|ΓD , find p2 ∈ C2(Ωc
D) ∩ C1(Ωc

D) satisfying
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∆p2 + k2p2 = 0 in Ωc
D, (3.3)

p+2 = p−1 on ΓD, (3.4)

lim
r→∞

r
1
2 (
∂p2
∂r

− ikp2) = 0, r = |x|. (3.5)

We state without proof the following well-known uniqueness result [7].

Theorem 3.1. The exterior acoustic scattering problem (3.3)–(3.5) has at most one solution.

Now the value of the DtN mapping applied to a function p−1 on ΓD is the trace function

(∂p2/∂n)|ΓD , where p2 is the solution of (3.3)–(3.5). We shall compute this mapping via

boundary integral operators. Let E(x, y) be the fundamental solution of the Helmholtz equation

in R
2, that is,

E(x, y) =
i

4
H

(1)
0 (k|x − y|), x 6= y, (3.6)

where H
(1)
0 (·) is the first kind Hankel function of order zero. Then the classical solution p2 of

the boundary value problem (3.3)–(3.5) can be represented by Green’s representation formula

as [25]

p2(x) :=

∫

ΓD

∂E(x, y)

∂ny
µ(y)dsy −

∫

ΓD

E(x, y)σ(y)dsy , ∀x ∈ Ωc
D, (3.7)

where

σ(y) =
∂p2
∂ny

+

, µ(y) = p+2

are called the Cauchy data on ΓD for the solution p2. Letting x in (3.7) approach the boundary

ΓD and applying the jump relations, we obtain the BIE which reads:

V σ(x) =

(
−I
2
+K

)
µ(x), ∀x ∈ ΓD. (3.8)

Here I stands for the identity operator, V and K are the basic simple- and double-layer bound-

ary integral operators defined by

V σ(x) =

∫

ΓD

E(x, y)σ(y)dsy , x ∈ ΓD, (3.9)

Kµ(x) =

∫

ΓD

∂E(x, y)

∂ny
µ(y)dsy , x ∈ ΓD, (3.10)

respectively. From the boundary condition (3.4), we obtain the BIE of the first kind for the

unknown σ

V σ(x) =

(
−I
2
+K

)
p−1 (x) on ΓD. (3.11)

The solution of the BIE (3.11) is not unique for arbitrary wave numbers k because there exist

exceptional values k such that −k2 is an eigenvalue of the interior Dirichlet problem for the

Laplacian operator inside ΓD. More precisely, we have the following theorem whose proof can

be found in [6].
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Theorem 3.2. For given µ = p−1 ∈ Cα+1(ΓD), 0 < α < 1, the boundary integral equation

(3.11) is uniquely solvable for σ ∈ Cα(ΓD) provided that k is not an exceptional value.

Prior to representing the DtN mapping in terms of boundary integral operators, we state

without proof some of the important properties [22, 25] for the boundary integral operators V

and K on Sobolev spaces Hs(ΓD), s ∈ R.

Proposition 3.1. For a sufficiently smooth artificial boundary ΓD, we have that

1. the simple-layer boundary integral operator V is an isomorphism from Hs(ΓD) → Hs+1(ΓD)

for all s ∈ R provided that the wave number k is not an exceptional value,

2. the double-layer boundary integral operator K is a continuous mapping from Hs(ΓD) →
Hs+1(ΓD) for all s ∈ R.

From the fact that the solution of the BIE (3.11) yields the DtN mapping for p2 in Ωc
D,

and the transmission conditions for p1 and p2 on ΓD, we know that the solution of the BIE

(3.11) also gives a DtN mapping for the boundary data of p1 in ΩD. Applying the properties

of boundary integral operators V and K, we are now in a position to define an algorithm to

compute the DtN mapping S : Hs(ΓD) → Hs−1(ΓD), 1/2 ≤ s ∈ R, as

∂ϕ

∂n

∣∣∣
ΓD

= Sϕ := V −1

(
−I
2
+K

)
ϕ, ∀ϕ ∈ Hs(ΓD). (3.12)

Then the condition

∂p1
∂n

−

= Sp−1 on ΓD

in terms of the DtN mapping S could define a nonlocal boundary condition for p1 on ΓD.

Theorem 3.3. The DtN mapping S in (3.12) is a bounded linear operator from Hs(ΓD) to

Hs−1(ΓD) for any s ≥ 1/2 provided that the wave number k is not exceptional.

Proof. For all ϕ ∈ Hs(ΓD) and s ≥ 1/2 we conclude from Proposition 3.1 that

∥∥∥∥V
−1

(
−I
2
+K

)
ϕ

∥∥∥∥
Hs−1(ΓD)

≤
∥∥V −1

∥∥
∥∥∥∥−

I

2
+K

∥∥∥∥ ‖ϕ‖Hs(ΓD) ≤ c‖ϕ‖Hs(ΓD),

where c > 0 is a constant independent of ϕ.

Remark 3.1. The representation of the DtN mapping on ΓD by boundary integral operators

is generally by no means a unique process. Alternatively to our approach, one can employ an

indirect method in terms of a potential ansatz [32] to derive the BIE for solving the exterior

acoustic scattering problem (3.3)–(3.5). It is worth mentioning that the restriction imposed on

the wave number k is technical and is not inherited from the original physical problem. This

restriction can be removed using stabilization techniques for the BIE method [10].
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3.2. Nonlocal boundary value problem

Using the DtN mapping S in (3.12), the transmission problem (2.1)–(2.5) can be equiv-

alently replaced by the following nonlocal boundary value problem: Given pinc, find u ∈(
C2(Ω) ∩C1(Ω)

)2
and p ∈ C2(ΩD) ∩C1(ΩD) such that

∆∗u+ ρω2u = 0 in Ω, (3.13)

∆p+ k2p = 0 in ΩD, (3.14)

ω2ρfu · n =
∂

∂n
(p+ pinc) on Γ, (3.15)

Tu = −n(p+ pinc) on Γ, (3.16)

∂p

∂n
= Sp on ΓD, (3.17)

where for simplicity, we suppress the subindex 1 for p1. The following uniqueness result for the

problem (3.13)–(3.17) can be easily established.

Theorem 3.4. If (a). the surface Γ and the material parameters (µ, λ, ρ) are such that there

are no traction free solutions, and (b). the artificial boundary ΓD is such that k is not an

exceptional value, then the nonlocal boundary value problem (3.13)–(3.17) has at most one

solution.

Proof. It is sufficient to prove that the corresponding homogeneous boundary value problem

(3.13)–(3.17) has only the trivial solution. Suppose that (u0, p0) is the solution of the corre-

sponding homogeneous boundary value problem of (3.13)–(3.17). Now let p1 be the solution of

the exterior Dirichlet problem for the Helmholtz equation:

∆p1 + k2p1 = 0 in Ωc
D, (3.18)

p1 = p0 on ΓD, (3.19)

lim
r→∞

r
1
2 (
∂p1
∂r

− ikp1) = 0, r = |x|. (3.20)

Then p1 can be represented as

p1(x) =

∫

ΓD

∂E(x, y)

∂ny
µ1(y)dsy −

∫

ΓD

E(x, y)σ1(y)dsy, ∀x ∈ Ωc
D, (3.21)

where µ1 = p1|ΓD and σ1 = (∂p1/∂n)|ΓD . Letting x approach ΓD and employing the jump

relations, we obtain the boundary integral equation

V σ1(x) =

(
−I
2
+K

)
µ1(x) on ΓD.

Because of the assumption (b) and the boundary condition (3.19), we have

σ1(x) = V −1

(
−I
2
+K

)
p0(x) = Sp0 on ΓD.

Meanwhile, the nonlocal boundary condition (3.17) on ΓD leads to σ0 = Sp0, where σ0 =

(∂p0/∂n)|ΓD . Hence,

σ1 = σ0. (3.22)
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Define the function (u,p) ∈
(
C2(Ω) ∩ C1(Ω̄)

)2 × (C2(ΩD ∪Ωc
D)∩C1(ΩD)) with u the solution

on Ω and p as

p =

{
p0, x ∈ ΩD,

p1, x ∈ Ωc
D.

Then by (3.19) and (3.22), we can see that both p and ∂p/∂n are continuous across the interface

ΓD. Therefore, (u, p) is the solution of the corresponding homogeneous boundary value problem

of (2.1)–(2.5). Then assumption (a) leads to (u0, p0) = (0, 0). This completes the proof. �

4. Weak Formulation

The standard weak formulation of the nonlocal boundary value problem (3.13)–(3.17) reads:

Given
(
pinc, ∂pinc/∂n

)
∈ H1/2(Γ) × H−1/2(Γ), find U = (u, p, pN) ∈ H1 :=

(
H1(Ω)

)2 ×
H1(ΩD)×H−1/2(ΓD) such that ∀ V = (v, q, qN ) ∈ H1,

A(U,V) = a1(u,v) + a2(p, q) + a3(u, q) + a4(p,v) + b((p, pN ), (q, qN )) = ℓ(V), (4.1)

where

a1(u,v) =

∫

Ω

[
λ(∇ · u)(∇ · v) + µ

2

(
∇u+ (∇u)T

)
:
(
∇v + (∇v)T

)
− ρω2u · v

]
dx, (4.2)

a2(p, q) =

∫

ΩD

(
∇p · ∇q̄ − k2pq

)
dx, (4.3)

a3(u, q) = ρfω
2

∫

Γ

u · nqds, a4(p,v) =

∫

Γ

np · vds, (4.4)

b
(
(p, pN ), (q, qN )

)
= −2

∫

ΓD

(
− 1

2
I +K

)
p qNds+ 2

∫

ΓD

V pN qNds−
∫

ΓD

pNqds (4.5)

are sesquilinear forms defined on
(
H1(Ω)

)2×
(
H1(Ω)

)2
,H1(ΩD)×H1(ΩD),

(
H1(Ω)

)2×H1(ΩD),

H1(ΩD) ×
(
H1(Ω)

)2
and H1(ΩD) × H−1/2(ΓD) × H1(ΩD) × H−1/2(ΓD), respectively, and ℓ

defined by

ℓ(V) =

∫

Γ

∂pinc

∂n
qds−

∫

Γ

npinc · vds, (4.6)

is a linear functional on H1 dependent on
(
pinc, ∂pinc/∂n

)
. Here, the norm of U = (u, p, pN )

on the product space Ht = (Ht(Ω))
2 ×Ht(ΩD)×Ht−1/2(ΓD) is defined as

‖U‖Ht =
(
‖u‖2(Ht(Ω))2 + ‖p‖2Ht(ΩD) + ‖pN‖2Ht−1/2(ΓD)

)1/2

.

Remark 4.1. The double dot notation appearing in (4.2) is understood in the following way.

If tensors A and B have rectangular Cartesian components aij and bij , i, j = 1, . . . , N , respec-

tively, then the double contraction of A = (aij) and B = (bij) is

A : B =
N∑

i=1

N∑

j=1

aijbij . (4.7)
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Remark 4.2. Clearly, if U is a weak solution of the variational equation A(U,V) = ℓ(V)

for all V ∈ H1, then we can choose arbitrary qN but v = 0 and q = 0 in V such that the

variational equation yields (− 1
2I + K)p = V pN . In other words, pN is the Neumann data of

the exterior Helmholtz equation with Dirichlet data p. Using this and choosing qN = 0 but

arbitrary v and q in V, classical arguments for the variational equation lead us to a solution

(u, p) of the fluid-solid interaction in the interior with boundary data p and ∂p/∂n = pN over

ΓD. Altogether we get a weak solution of (3.13)-(3.17) over the whole space. Similarly, it is

easy to see that any weak solution (u, p) of (3.13)-(3.17) together with

pN := V −1

(
− 1

2
I +K

)
p

forms a solution of A(U,V) = ℓ(V).

Remark 4.3. For the numerical solution, we proceed as in the previous remark. We choose

finite element spaces Hh(Ω) ⊂ (H1(Ω))2, Hh(ΩD) ⊂ H1(ΩD), and Hh(ΓD) ⊂ H−1/2(ΓD),

and set Hh := Hh(Ω) × Hh(ΩD) × Hh(ΓD). The finite element solution Uh ∈ Hh is the

solution of A(Uh,Vh) = ℓ(Vh) for all Vh ∈ Hh. We obtain the usual stability and convergence

results. In the practical computation, we first choose arbitrary qN,h but vh = 0 and qh = 0

and solve A(Uh, (0, 0, qNh
)) = ℓ((0, 0, qN)) with respect to pN,h. This is of course the solution

of b((ph, pN,h), (0, qN,h)) = 0, i.e., the solution of

〈V pN,h, qN,h〉 =
〈(

− 1

2
Ih +Kh

)
ph, qN,h

〉
.

In other words, pN,h is the SGBEM solution of the equation

V pN =

(
− 1

2
I +K

)
p, i.e., pN,h = Shph := V −1

h

(
− 1

2
Ih +Kh

)
ph

is the value of a discretized Dirichlet-to-Neumann operator applied to ph. Stability and con-

vergence for this first step are well established. Next we substitute this solution pN,h into the

equation A(Uh,Vh) = ℓ(Vh) and choose qN,h = 0 but arbitrary vh ∈ Hh(Ω) and qh ∈ Hh(ΩD).

This way we arrive at a new variational equation with classical terms over the domain but with

a discretized Dirichlet-to-Neumann mapping in the term over ΓD.

Ã
(
(uh, ph), (vh, qh)

)
= ℓ

(
(vh, qh)

)
, ∀vh ∈ Hh(Ω), ∀qh ∈ Hh(ΩD), (4.8)

Ã
(
(uh, ph), (vh, qh)

)
:= a1(uh,vh) + a2(ph, qh) + a3(uh, qh) + a4(ph,vh)−

∫

ΓD

Shphqh.

Since this finite element method is obtained by eliminating the unknowns pN,h (Schur comple-

ment based on a stable subblock of the finite element matrix), stability and convergence for this

method follows from the corresponding results for the variational equation over the full space

Hh (cf. the subsequent Theorems 4.1–4.3 and the classical theory of finite element methods) and

from those for the variational form 〈V pN,h, qN,h〉. No extra estimate for the difference S − Sh,

Dirichlet-to-Neumann mapping minus discretized Dirichlet-to-Neumann mapping, is needed.

In the following, we study the essential features of the variational equation (4.1).

Theorem 4.1. The sesquilinear form A(U,V) in (4.1) satisfies

|A(U,V)| ≤ c‖U‖H1‖V‖H1 , ∀ U,V ∈ H1, (4.9)

where c is the continuity constant independent of U and V.
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Proof. This continuity result is a direct consequence of the Cauchy-Schwarz inequality, the

trace theorem and the boundedness of the DtN mapping S. �

Theorem 4.2. The sesquilinear form A(U,V) in (4.1) satisfies G̊arding’s inequality taking

the form

Re {A(V,V) + (CV,V)H1} ≥ α‖V‖2H1 , ∀ V = (v, q) ∈ H1. (4.10)

where C : H1 → H1 is a compact operator and (·, ·)H1 denotes the inner product on H1. Here,

α > 0 is a constant independent of V.

Proof. We first consider the sesquilinear form a1(v,v). It has been proved e.g. in [38] that

there exist constants α, β > 0 independent of v satisfying Korn’s inequality

Re{a1(v,v)} ≥ α ‖v‖2(H1(Ω))2 − β ‖v‖2(H0(Ω))2 .

Therefore, there is a compact linear operator C1 : (H1(Ω))2 → (H1(Ω))2 defined by

(C1u,v)(H1(Ω))2 = β

∫

Ω

u · vdx (4.11)

such that

Re{a1(v,v) + (C1v,v)(H1(Ω))2} ≥ α ‖v‖2(H1(Ω))2 . (4.12)

Similarly, for the sesquilinear form a2(q, q), since

a2(q, q) =

∫

ΩD

|∇q|2 dx− k2
∫

ΩD

|q|2dx

= ‖q‖2H1(ΩD) − (k2 + 1) ‖q‖2H0(ΩD) ,

we conclude that there is a compact linear operator C2 : H1(ΩD) → H1(ΩD) defined by

(C2p, q)H1(ΩD) = (1 + k2)

∫

ΩD

pqdx

such that

Re{a2(q, q) + (C2q, q)H1(ΩD)} ≥ ‖q‖2H1(ΩD). (4.13)

Next, we consider the sesquilinear form a3(v, q). The Hölder inequality and the arithmetic-

geometric mean inequality imply

|a3(v, q)| =
∣∣∣∣ρfω

2

∫

Γ

v · n qds
∣∣∣∣

≤ ρfω
2 ‖v‖(H0(Γ))2 ‖q‖H0(Γ)

≤ ρfω
2

2

(
‖v‖2(H0(Γ))2 + ‖q‖2H0(Γ)

)
. (4.14)

Then from the compact imbedding H1/2(Γ) →֒ L2(Γ), we conclude that there exists a compact

operator C3 : H1 → H1 such that

Re
{
a3(v, q) + (C3V,V)H1

}
≥ 0. (4.15)
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Similarly, for the sesquilinear form a4(q,v), it follows that there exists a compact linear operator

C4 : H1 → H1 such that

Re
{
a4(q,v) + (C4V,V)H1

}
≥ 0. (4.16)

Finally, we consider the quadratic form b((q, qN ), (q, qN )). From the definition, we can see that

b
(
(q, qN ), (q, qN )

)
= −2 〈Kq, qN 〉ΓD

+ 2 〈V qN , qN 〉ΓD

≥ −〈C5q, qN 〉ΓD
+ c6‖qN‖2H−1/2(ΓD) − 〈C6qN , qN 〉ΓD

, (4.17)

where C5 := 2K : H1/2(ΓD) → H1/2(ΓD) is compact and where the constant c6 and the

compact operator C6 : H−1/2(ΓD) → H1/2(ΓD) are taken from the well-known G̊arding

inequality for the single layer operator V . Combining the last estimate and (4.12)–(4.16), we

get G̊arding’s inequality (4.10). �

As a consequence of Theorems 3.6 and 4.3, Fredholm’s alternative leads us to

Theorem 4.3. If (a). the surface Γ and the material parameters (µ, λ, ρ) are such that there

are no traction free solutions, and (b). the artificial boundary ΓD is such that k is not an

exceptional value, then the variational equation (4.1) admits a unique solution.

5. Numerical Schemes

Let H̃h ⊂ H̃1 :=
(
H1(Ω)

)2 ×H1(ΩD) be a standard finite element space. Then the Galekin

formulation of (4.1) reads: Given pinc and ∂pinc/∂n, find Uh = (uh, ph) ∈ H̃h, uh = (uh1 , u
h
2 )

such that

Ã(Uh,Vh) = ℓ(Vh), ∀ Vh = (vh, qh) ∈ H̃h. (5.1)

In order to use FEM, the computational domains Ω and ΩD are discretized by uniform triangular

elements and we employ piecewise linear basis function {ϕΩ
i }N1

i=1 in Ω and {ϕΩD

i }N2

i=1 in ΩD to

construct the finite element space H̃h. Here N1 and N2 are the total number of nodes in Ω and

ΩD, respectively, and we denote by {xi}N1

i=1 and {yi}N2

i=1 the nodes in Ω and ΩD, respectively.

Then we can derive a linear system

Ah
~Xh = Bh, Ah =

[
A1 A3

A4 A2

]
,

where ~Xh = (uh1 (x1), u
h
2 (x1), . . . , u

h
1(xN1

), uh2 (xN1
), ph(y1), . . . , ph(yN2

))T and the matricesAi, i =

1, . . . , 4 can be obtained according to the sesquilinear forms a1, a2+b, a3 and a4, respectively. In

particular, we need to evaluate the terms SϕΩD

i |ΓD, i = 1, . . . , N2. According to the represen-

tation of the DtN mapping S in (3.8), this amounts to solving the boundary integral equation

of the first kind for σ on ΓD in terms of µ = ϕΩD

i |ΓD in which ϕΩD

i |ΓD does not vanish on ΓD.

In the following, we review three numerical methods for solving the boundary integral equation

(3.8) and derive a simple formula for computing b(ph, qh) if ΓD is a circle.

5.1. SGBEM

The standard weak formulation of boundary integral equation (3.8) takes the form: Given

µ ∈ H1/2(ΓD), find σ ∈ H−1/2(ΓD) such that

B(σ, χ) = f(χ), ∀χ ∈ H−1/2(ΓD), (5.2)
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where B(σ, χ) = 〈χ, V σ〉ΓD is a sesquilinear form onH−1/2(ΓD)×H−1/2(ΓD), f(χ) = 〈χ, (−I/2
+K)µ〉ΓD is a linear functional on H−1/2(ΓD), and 〈·, ·〉ΓD denotes the standard L2 duality

pairing on H−1/2(ΓD)×H1/2(ΓD).

In order to employ SGBEM, one needs to discretize the boundary ΓD into element segments

and replace the solution function space H−1/2(ΓD) with the boundary element space SBh ⊂
H−1/2(ΓD). Suppose that the boundary ΓD is discretized into N segments Γ1,Γ2, . . . ,ΓN by

nodes x1, x2, . . . , xN . Let {ψj}Nj=1 be the basis of piecewise constant basis functions in SBh and

{ϕj}Nj=1 the basis of piecewise linear basis functions. We seek an approximate solution σh in

the form

σh =

N∑

j=1

σjψj , (5.3)

where the σj , j = 1, . . . , N , are the unknown values of σh on the Γj . The given Dirichlet data

µ is interpolated in the form

µ =
N∑

j=1

µjϕj , (5.4)

where µj , j = 1, . . . , N , are the function values of µ at the end points xj of the segments

Γj , j = 1, . . . , N . Then we arrive at a linear system of equations

Vh~σ =

(
−1

2
Ih +Kh

)
~µ, (5.5)

where ~σ = (σ1, . . . , σN )T , ~µ = (µ1, . . . , µN )T and Vh, Ih,Kh are matrices with entries

Vh(i, j) =

∫

ΓD

V ψjψids, (5.6)

Ih(i, j) =

∫

ΓD

ϕjψids, (5.7)

Kh(i, j) =

∫

ΓD

Kϕjψids. (5.8)

It follows that the singular part with kernel behaviour k(x, y) ∼ |x−y|−1 in the entries Kh(i, j)

for i = j or i = j± 1 is exactly zero since (x− y) ·ny = 0. The entries Vh(i, i), i = 1, . . . , N can

be computed analytically by using the series expansion of the Hankel function H
(1)
0 (k|x−y|) [1],

that is,

H
(1)
0 (k|x− y|) =

∞∑

m=0

[(
Cm +Dm ln

k

2

)
k2m|x− y|2m +Dmk

2m|x− y|2m ln |x− y|
]
,

where

Cm =

{
1 + 2ice

π if m = 0
(−1)m

22mm!m!

[
1 + 2ice

π − 2i
π

∑m
l=1

1
l

]
if m ≥ 1,

Dm =
2i(−1)m

π22mm!m!
, m ≥ 0,

and ce is the Euler constant. The remaining entries of the matrix Vh and Kh are calculated by

using a Gauss quadrature rule.

We denote by GS
h the projection for SGBEM defined as

GS
h : σ 7→ σh.
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5.2. FMM based on variational formulation

The Galerkin boundary integral operators in (5.6) and (5.8) have kernels in terms of the

fundamental solution of the Helmholtz equation and its normal derivative, respectively. These

kernels are nonlocal functions which establish the relationship between the source point y and

the field point x in the acoustic fields. The fast multipole method requires to factorize the

Hankel function H
(1)
0 (k|x − y|) in order to realize an acceleration of the computations. As in

Figure 5.1, for a fixed source point y ∈ ΓD and a fixed field point x ∈ ΓD, we assume that

|z1 − z2| > |z2 − x| and |z1 − z2| > |z1 − y|, where z1, z2 ∈ ΓD are two points properly chosen

nearby y and x, respectively.

Fig. 5.1. Factorization of the Hankel function H
(1)
0 (k|x− y|).

An efficient factorization [5] of the Hankel function via Graf’s addition formula [1] and the

diagonalization of the translation operator lead to the representation

H
(1)
0 (k|x− y|)≈ 1

2π

∫ 2π

0

βxz2(α)αz2z1(α)βz1y(α)dα, (5.9)

where

βxz2(α) = e−ik|z2−x| cos(α−φxz2), (5.10)

αz2z1(α) =
P∑

m=−P

H(1)
m (k|z1 − z2|)e−im(φz2z1−α+π

2
), (5.11)

βz1y(α) = e−ik|y−z1| cos(α−φz1y) (5.12)

are considered as functions of α. Here φAB is the angle between the vector
−−→
AB and the positive

x axis. Note that αz2z1 is a truncated series with expansion length P . This truncation is

mandatory due to the fact that the summation diverges as P approaches ∞ since the value

of the Hankel function increases quickly as the order m is larger than its argument k|z1 − z2|.
On one hand, one expects to keep expansion length P as large as possible in order to obtain a

satisfactory numerical accuracy. On the other hand, one anticipates to make the near field as

small as possible where the SGBEM is employed for numerical computations. For interested

readers, a discussion about the quantitative choice of P can be found in [35]. A practical

equation for recommended values of P is

P = kl + c log(kl + π),

where k is the wave number, l stands for the diameter of the source cluster group, and c is a

constant dependent on the precision of the computer arithmetics. For the numerical evaluation
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of the integral in (5.9), we employ the midpoint rule with a fixed number of quadrature points

Q and obtain

H
(1)
0 (k|x− y|)≈ 1

Q

Q∑

q=1

βxz2(αq)αz2z1(αq)βz1y(αq). (5.13)

While applying the FMM to solve the Galerkin formulation of (5.2), there are two kinds

of errors. The first arises from the series truncation of the multipole expansion (5.11) and the

second from the application of the numerical integral formula (5.13). Numerical examples in

the next section show that such errors can be managed. Choosing the numerical parameters

in the FMM appropriately the errors are negligible with respect to the numerical discretization

errors of the FEM and BEM.

We now return to the FMM for the operators in (5.5). We present fast multipole computa-

tional formulas for the matrix-vector products in (5.5). For simplicity, we employ the mid-point

quadrature rule for the evaluation of integrals in (5.6)–(5.8). Applying the factorization formula

(5.13) and (5.6)–(5.8), we obtain the two-level fast multipole formulas for the ith row of the

matrix-vector product in Vh~σ and Kh~µ

(Vh~σ)i = NF+
i

4Q
∆iβ

T
xizl ·

∑

Gl′∈GFF
l

αzlzl′ ·
∑

yj∈Gl′

βzl′yj∆jσj ,

(Kh~µ)i = NF+
i

4Q
∆iβ

T
xizl ·

∑

Gl′∈GFF
l

αzlzl′ ·
∑

yk∈Gl′

(nyk
· ∇yk

βzl′yk
)∆k

∑

j∈N(k)

ϕj |k(xk)µj .

Here, NF indicates the total numerical data generated by the source points located in the near

fields GNF
l of the cluster Gl = GNF

l ∪ GFF
l , where the collocation or field point xi is located,

and needs to be computed via the standard boundary element method, ∆l is the Jacobian of

the element Γl, ϕj |k is the linear basis function ϕj restricted to the element Γk, nx is the unit

normal vector pointing outward at the point x, ∇xf is the gradient of f at the point x, zl′ is

the center of cluster group Gl′ , N(k) is the set of nodes related with the element Γk. Finally,

we denote by GF
h the Galerkin projection approximated by FMM as

GF
h : σ 7→ σh.

5.3. NM

Following the description of section 3.5 in [7], we recommend the NM based on product

quadrature over an equidistant mesh and on trigonometric interpolation. Suppose that the

smooth boundary curve ΓD possesses a regular analytic and 2π-periodic parametric represen-

tation taking the form

x(t) = (x1(t), x2(t)), 0 ≤ t ≤ 2π,

in counterclockwise orientation satisfying |x′(t)|2 > 0 for all t. Then we can transform (3.8)

into the parametric form

∫ 2π

0

M(t, τ)ψ(τ)dτ = −g(t)−
∫ 2π

0

L(t, τ)g(τ)dτ,
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where ψ(t) := σ(x(t)), g(t) := µ(x(t)) and the kernels are defined by

M(t, τ) :=
i

2
H

(1)
0 (k|x(t)− x(τ)|)|x′(τ)|,

L(t, τ) :=
ik

2

{
x′2(τ)[x1(τ)− x1(t)]− x′1(τ)[x2(τ) − x1(t)]

}H(1)
1 (k|x(t) − x(τ)|)
|x(t)− x(τ)|

for t 6= τ . Due to the logarithmic sigularities at t = τ of the kernels L and M , the kernels can

be split into

M(t, τ) :=M1(t, τ) ln

(
4 sin2

t− τ

2

)
+M2(t, τ),

L(t, τ) := L1(t, τ) ln

(
4 sin2

t− τ

2

)
+ L2(t, τ),

where

M1(t, τ) := − 1

2π
J0(k|x(t) − x(τ)|)|x′(τ)|,

M1(t, t) :=

(
i

2
− ce
π

− 1

π
ln

(
k

2
|x′(t)|

))
|x′(t)|,

L1(t, τ) :=
k

2π

(
x′2(τ)[x1(τ) − x1(t)]− x′1(τ)[x2(τ)− x1(t)]

)J1(k|x(t)− x(τ)|)
|x(t) − x(τ)| , t 6= τ,

L2(t, t) = L(t, t) =
x′1(t)x

′′
2 (t)− x2(t)x

′′
1 (t)

2π|x′(t)|2 .

Here, ce is the Euler constant. Thus, via trigonometric quadrature rule and trapezoidal rule

the solution of (3.8) reduces to solving a finite dimentional linear system. In particular, for any

solution of (3.8) the values σN
i = ψ(tNi ), i = 0, 1, . . . , N−1 at the quadrature points tNi = 2iπ/N

satisfy the linear system

N−1∑

j=0

{
RN

|i−j|M1(t
N
i , t

N
j ) +

2π

N
M2(t

N
i , t

N
j )

}
σN
i

= −g(tNi )−
N−1∑

j=0

{
RN

|i−j|L1(t
N
i , t

N
j ) +

2π

N
L2(t

N
i , t

N
j )

}
g(tNj ) (5.14)

for i = 0, 1, . . . , N − 1 where

RN
j := −4π

N

N/2−1∑

m=1

1

m
cos

2mjπ

N
− 4(−1)jπ

N2
, j = 0, 1, . . . , N − 1.

For the analysis of the NM and its application to other types of boundary integral equations

in acoustic, we refer to [30]. Combining this with the FEM in numerical computations, which

leads to the NM-FEM coupling procedure, we first compute the NM solution σN
i+1/2 at the

points tNi+1/2 = 2(i+1/2)π/N and then define the solution σh := σN
i+1/2 over Ii = [tNi , t

N
i+1) by

constant interpolation. In this case, we denote the projection for NM as

GN
h : σ 7→ σh.
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5.4. Computation of b(ϕΩD

j , ϕΩD

i ) while ΓD is a circle

Now set ΓD = ΓR := {x ∈ R
2 : |x| = R}. In the discrete formulation, this amounts to

computing the integrals

∫

ΓR

(
ShϕΩD

j

)
ϕΩD

i ds, i, j = 1, . . . , N2. (5.15)

In particular, we have to solve the boundary integral equations to determine

ShϕΩD

j = Gh ◦ V −1

(
−1

2
I +K

)
ϕΩD

j , j = 1, . . . , N2,

and then to compute the integral (5.15) using any appropriate quadrature rule.

As for our numerical computation, the finite element space consists of piecewise linear

functions and most of them will vanish on the boundary ΓR, thus reducing the complexity of

the above mentioned part of the procedure. Even though, the computational task is formidable

in the general case. Therefore, the fast and accurate evaluation of the boundary integral

equation (5.15) is of great significance for the feasibility and improvement of the coupling

method. In [32], the authors proposed a numerical procedure for the choice of the curve ΓR and

the corresponding finite element space Sh. More precisely, the restrictions of basis functions of

Sh to ΓR are piecewise linear functions of the arclength along ΓR, which form the boundary

element space Sh ⊂ H1/2(ΓR).

Suppose that the first Nθ piecewise linear basis functions in {ϕΩD

i }N2

i=1 do not vanish on

ΓR. In contrast to [32], the outer boundary ΓR is not divided by equispaced nodes due to the

unstructed partition for the computational domain. Suppose that ΓD is now divided by Nθ

nodes x1, x2, . . . , xNθ
and the jth point xj , j = 1, . . . , Nθ possesses the polar coordinates (R, θj).

Let ∆θj be the angle between the line segments 0, xj and 0, xj+1. Those ϕΩD

j ’s which do not

vanish on ΓR can be denoted, using the same symbols, by

ϕΩD

j (θ) =





θ−θj−1

∆θj−1
, θj−1 ≤ θ ≤ θj ,

θj+1−θ
∆θj

, θj ≤ θ ≤ θj+1,

0, others.

We define

ψ̃j(θ) =





1 + θ
∆θj−1

, −∆θj−1 ≤ θ ≤ 0,

1− θ
∆θj

, 0 ≤ θ ≤ ∆θj ,

0, −π ≤ θ ≤ −∆θj−1,∆θj ≤ θ ≤ π,

and extend this to a 2π-periodic function ψ̃j(θ) such that ϕΩD

j (θ) = ψ̃j(θ−θj). We first expand

the function ψ̃j(θ) into a Fourier series

ψ̃j(θ) =
a0
2

+
∞∑

k=1

(ak cos kθ + bk sin kθ),
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where for k ≥ 1,

a0 =
∆θj−1 +∆θj

2π
,

ak =
1

πk2

(
1− cos k∆θj−1

∆θj−1
+

1− cos k∆θj
∆θj

)
,

bk =
1

πk2

(
sin k∆θj−1

∆θj−1
− sin k∆θj

∆θj

)
.

Note that, by solving elementary boundary value problems for the circle, one obtains for n =

0, 1, 2, . . .,

S
(
cos(n(θ + α))

)
=
kH

(1)
n

′
(kR)

H
(1)
n (kR)

cos(n(θ + α)),

where H
(1)
n (kR) is the Hankel function of the first kind of order n. Then after some algebraic

rearrangements, we arrive at the explicit approximate formula for the integral (5.15) of the form
∫

ΓR

(ShϕΩD

j )ϕΩD

i ds

≈ kRH
(1)
0

′
(kR)(∆θi−1 +∆θi)(∆θj−1 +∆θj)

8πH
(1)
0 (kR)

+
R

π

(
1

∆θi−1
+

1

∆θi

)(
1

∆θj−1
+

1

∆θj

)
Sh(ρ)(θi − θj)

−R
π

(
1

∆θi−1
+

1

∆θi

)[
Sh(ρ)(θi − θj +∆θj−1)

∆θj−1
+
Sh(ρ)(θi − θj −∆θj)

∆θj

]

−R
π

(
1

∆θj−1
+

1

∆θj

)[
Sh(ρ)(θi − θj +∆θi−1)

∆θi−1
+
Sh(ρ)(θi − θj −∆θi)

∆θi

]

+
R

π

[
Sh(ρ)(θi − θj −∆θi−1 +∆θj−1)

∆θj−1∆θi−1
+
Sh(ρ)(θi − θj +∆θi +∆θj−1)

∆θj−1∆θi

]

+
R

π

[
Sh(ρ)(θi − θj −∆θi−1 −∆θj)

∆θj∆θi−1
+
Sh(ρ)(θi − θj +∆θi −∆θj)

∆θj∆θi

]
,

where

ρ(θ) =
π4

90
− π2θ2

12
+
πθ3

12
− θ4

48
. (5.16)

Consequently, to evaluate all the integrals (5.15), one simply needs to compute the values of

Shρ on ΓR for the single function ρ(θ) in (5.16). This leads us to solve the boundary integral

equation with the numerical solution

Sh(ρ) = Gh ◦ V −1

(
− 1

2
I +K

)
ρ, (5.17)

for Gh = GS
h (or GF

h , G
N
h ). We denote by N the number of nodes on ΓR for solving (5.17).

6. Numerical Experiments

In this section, we present the results of several numerical tests by employing BIE-based

DtN-FEM. In particular, we call this method SGBEM-FEM, FMM-FEM and NM-FEM if we
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use SGBEM, FMM and NM, respectively, to solve the boundary integral equation (3.8). To

evaluate the accuracy of the numerical solution, we consider a model problem with pinc = eikx1

and Ω = {x ∈ R
2 : |x| < R0}. The exact solution of (2.1)–(2.5) is given in [38]. The linear

systems generated for each method are solved by GMRES without the use of preconditioners

and the iteration is terminated as the relative residual is below 10−5.

Example 6.1. In order to test the codes of SGBEM, FMM and NM, we first separately consider

the numerical treatment of (3.8) with µ = −eikx1 . We choose R = 2 and the wave number

k = 1. In Table 6.1, we can see that the FMM provides the same order of accuracy as SGBEM

(see 1st and 2nd column) and the approximation error of NM decreases exponentially (see

3rd column). Considering the complexity with respect to the degrees of freedom N over the

boundary curve ΓD only, the two-level FMM is more advantageous over the SGBEM and NM as

N increases. The actual complexities for SGBEM, NM and two-level FMM are O(N2), O(N2)

and O(N3/2), respectively. Note that the NM for the separated example is the best method

since, for a fixed prescribed accuracy, it requires the smallest number of degrees of freedom N .

Unfortunately, employing the NM for the coupling leads to right-hand sides including piecewise

linear trial functions of the FEM part such that the analyticity assumption for the exponential

convergence of the NM are not satisfied anymore. Therefore, complexity should be counted as

a function of N . Choosing the number of degrees of freedom N in the size of the dimension

of the FEM space restricted to ΓD, the L2-error of GN
h σ becomes asymptotically the same as

SGBEM as N increases.

Table 6.1: Numerical errors of three numerical methods for the boundary integral equation (3.8).

N SGBEM (L2-error) FMM (L2-error) NM (l∞-error)

4 1.85E0 1.91E0 5.35E-1

8 1.00E0 1.00E0 4.43E-2

16 5.11E-1 5.26E-1 6.23E-5

32 2.56E-1 2.65E-1 5.89E-13

64 1.28E-1 1.32E-1 1.61E-14

Next, we consider the fluid-solid interaction problem. We choose Γ and ΓD to be circles with

radius R0 and R, respectively. We are going to apply the coupling procedures SGBEM-FEM,

FMM-FEM and NM-FEM for solving the fluid-solid interaction problem (2.1)–(2.5). In the

following, we take the parameters ω = 1, µ = 1, λ = 1, ρ = 1, ρf = 1, R0 = 1 and R = 2.

Note that the formulation presented in section 5.4 for computing b(ϕΩD

j , ϕΩD

i ) can be used. On

the other hand, one can first use SGBEM, FMM and NM to compute all the σj
h = ShϕΩD

j on

the boundary elements of Γi, i = 1, 2, · · · , N , for which ϕΩD

j does not vanish on ΓD, and then

take the arithmetic average of ShϕΩD

j to give its value on the boundary elements of the finite

element mesh. The integral
∫
ΓR
σj
hϕ

ΩD

i ds is calculated by Gauss quadrature rule to approximate

b(ϕΩD

j , ϕΩD

i ). We call this procedure P-II and the one described at the end of Subsection 5.4

P-I.

Example 6.2. In this example, we first choose N = 4Nθ. This implies that the boundary ΓR

is discretized into 4Nθ boundary elements for the computation formula (5.17). Fig. 6.1 and

6.2 show the the log-log plot of errors measured in H̃0 and H̃1-norms with respect to 1/hF ,

respectively, considering k = 1, 2 and 4 for P-I, where hF is the finite element meshsize. Slopes
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of -2 in Fig. 6.1(a,b,c) and -1 in Fig. 6.2(a,b,c) verify the convergence order of O(h2F ) and

O(hF ) which indicate the optimal convergence rate

‖U−Uh‖H̃t = O(h2−t
F ), t = 0, 1. (6.1)

To investigate the interaction between the finite element meshsize hF and the boundary element

meshsize hB and to obtain the optimal order of accuracy, we choose k = 2, N = Nθ, 2Nθ, 4Nθ.

It can be seen from Fig. 6.3 and 6.4 that if the number N is not sufficiently large, the nu-

merical errors for large finite element meshsize can still be reduced and the performance of the

convergence order is larger than the standard.
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Fig. 6.1. Log-log plots for numerical errors (vertical) of U for P-I in H0-norm vs. 1/hF (horizontal)

when N = 4Nθ . (a): SGBEM-FEM; (b): FMM-FEM ; (c): NM-FEM.
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Fig. 6.2. Log-log plots for numerical errors (vertical) of U for P-I in H1-norm vs. 1/h (horizontal)

when N = 4Nθ . (a): SGBEM-FEM; (b): FMM-FEM ; (c): NM-FEM.

Example 6.3. We consider P-II in this example and present the log-log plot of errors measured

in H̃0 and H̃1-norms with respect to 1/hF considering k = 1, 2 and 4 in Fig. 6.5 and 6.6. The

numerical results also illustrated the optimal convergence rate (6.1).

Example 6.4. Note that the artificial boundary ΓD can be chosen flexibly. For a general

shape of the elastic body, one can choose an appropriate ΓD close to Γ to reduce the size

of the computation domain. In this case, P-I is not available. So, in the last example, we
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Fig. 6.3. Log-log plots for numerical errors (vertical) of U for P-I in H0-norm vs. 1/h (horizontal)

when k = 2. (a): SGBEM-FEM; (b): FMM-FEM ; (c): NM-FEM.
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Fig. 6.4. Log-log plots for numerical errors (vertical) of U for P-I in H1-norm vs. 1/h (horizontal)

when k = 2. (a): SGM-FEM; (b): FMM-FEM ; (c): NM-FEM.
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Fig. 6.5. Log-log plots for numerical errors (vertical) of U for P-II in H0-norm vs. 1/h (horizontal)

when N = 4Nθ . (a): SGBEM-FEM; (b): FMM-FEM ; (c): NM-FEM.

consider a water-brass interaction problem (in mm level). The frequency and speed of sound

are ω = π × 106 Hz and c0 = 1480 m/s, and the density of water is ρf = 1000 kg/m3. The

density of brass is ρ = 8100 kg/m3. The velocities for shear waves and pressure waves are

cs = 2270 m/s and cp = 4840 m/s, respectively. Assume that Γ now is curved-triangle-shaped
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Fig. 6.6. Log-log plots for numerical errors (vertical) of U for P-II in H1-norm vs. 1/h (horizontal)

when N = 4Nθ . (a): SGBEM-FEM; (b): FMM-FEM ; (c): NM-FEM.

(a) |u1| (b)|u2| (c)|p|
Fig. 6.7. Numerical solution of a water-brass interaction problem.

characterized by {(θ, r(θ)) : θ ∈ [0, 2π)} where

r(θ) := 2 + 0.5 cos3θ mm, θ ∈ [0, 2π),

and we choose ΓD as a bigger curved-triangle-shaped and smooth curve close to Γ. We set

N = 4Nθ and present the numerical solutions based on NM-FEM in Fig. 6.7. As shown there,

our coupling procedures apply even to more general problems. Note that, in most cases of

practical engineering, the fluid-solid interaction couples fields with large differences in their

magnitudes.
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