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1. Introduction

The generalised saddle point problem considered here has the form

�

A B

−BT C

��

x

y

�

=

�

b

−q

�

, (1.1)

where A ∈ Rm×m is a symmetric positive definite matrix, C ∈ Rn×n is a symmetric positive

semidefinite matrix, B ∈ Rm×n is a matrix of full column rank where m ≥ n and the super-

script T denotes its transpose, and b ∈ Rm and q ∈ Rn are given vectors. Linear systems of

the form (1.1) arise in a variety of scientific and engineering applications, including mixed

or hybrid finite element approximations of second-order elliptic problems [5, 42], compu-

tational fluid dynamics [19,21,22,25], least squares problems [2], inversion of geophysical

data [32], stationary semiconductor device [45, 47], elasticity problems and Stokes equa-

tions [5].

In recent years, many iterative methods have been introduced to solve the problem

(1.1), including Uzawa-type schemes [14, 20, 23, 25, 33, 34, 51, 53], iterative projection

methods [3], block and approximate Schur complement preconditioners [17,19,22,35,40,

42,43], iterative null space methods [1,26,48], splitting methods [4,7,9–13,18,29,30,36,

38,39,41,46,50], indefinite preconditioning [31,37], and preconditioning methods based
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on approximate factorisation of the coefficient matrix [6,8,28,44]. A classical approach to

solve (1.1) is the successive overrelaxation (SOR) iteration method [49], which can involve

relatively low computation per iterative step. However, the SOR method requires a good or

optimal iteration parameter to achieve comparable rates of convergence. To address this,

Bai et al. [15] proposed a generalised SOR method, where another parameter is introduced

for solving the problem (1.1) when C = 0. Bai & Wang [16] then developed parameterised

inexact Uzawa methods to solve large sparse generalised saddle point problems via the

generalised SOR method, where another symmetric positive definite matrix is introduced.

Based on the SOR-like methods, Feng & Shao [24] proposed a generalised SOR-like method

by introducing uncertain parameters, and Guo et al. [27] considered a new splitting of the

coefficient matrix in a modified SOR-like method for solving the system (1.1) with C = 0.

Zhang & Lu [52] established a generalised symmetric SOR method based on the well-known

symmetric SOR iteration method for the saddle point problem.

However, all of the SOR-like methods mentioned above need to solve a linear alge-

braic system each step, which is difficult and time-consuming. In this article, we propose

a new generalised successive overrelaxation method for the generalised saddle point prob-

lem (1.1) based on splitting the matrix A. Thus instead of solving the linear system with the

large coefficient matrix A, we only need to solve a system with a triangular matrix in each

step. Moreover, we shall show the convergence of our method under suitable restrictions

on the iteration parameters.

Throughout , we use the following notation: Rm×n and Cm×n are the set of m× n real

and complex matrices; Rm = Rm×1 and Cm = Cm×1. i =
p−1 is the imaginary unit; and for

H ∈ Rn×n, we write H−1, rank(H),N {H},R{H}, Λ(H) and ρ(H) to denote the inverse, the

rank, the null space, the image space, the spectrum and the spectral radius of the matrix

H, respectively. For x ∈ Cn, x∗ and ‖x‖ respectively denote the conjugate transpose and

the norm of the vector x , and Il denotes the identity matrix of order l.

The organisation of this paper is as follows. In Section 2, we present our new gener-

alised successive overrelaxation method for solving generalised saddle point problems. We

discuss its convergence in Section 3, present the results of numerical experiments in Section

4 to show the effectiveness of our method, and then briefly summarise our conclusions in

Section 5.

2. The Generalised SOR Method

In this section, we consider a new generalised successive overrelaxation method for

solving the generalised saddle point problems (1.1). Firstly, we split the matrix A into the

following form:

A= D− L − LT , (2.1)

where D = diag{a11, a22, · · · , amm} is the diagonal matrix incorporating the diagonal entries

of A, and −L is the strictly lower triangular part of the matrix A. Thus the coefficient matrix
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A in (1.1) has the following expansion:

A =:

�

A B

−BT C

�

= D −L −U ,

where

D =
�

D 0

0 Q

�

, L =
�

L 0

BT 0

�

, U =
�

LT −B

0 Q− C

�

,

and Q ∈ Rn×n is a given symmetric positive definite matrix. Combining this splitting of A
with the Gauss-Seidel method, we can derive an iterative scheme:

�

x k+1

yk+1

�

= (D −L )−1U
�

x k

yk

�

+ (D −L )−1

�

b

−q

�

.

On substituting the expressions of D, L and U into the above equality, we have

�

x k+1 = x k + (D − L)−1(b− Ax k − B yk) ,

yk+1 = yk +Q−1(BT x k+1− C yk − q) .
(2.2)

Alternatively, by applying the successive overrelaxation (SOR) method [49] to the same

splitting, we can obtain another iterative formula:

�

x k+1

yk+1

�

= (D −ωL )−1[(1−ω)D +ωU ]
�

x k

yk

�

+ω(D −ωL )−1

�

b

−q

�

.

Clearly, the above equality can be reduced to

�

x k+1 = x k +ω(D −ωL)−1(b− Ax k − B yk) ,

yk+1 = yk +ωQ−1(BT x k+1− C yk − q) ,
(2.3)

where ω is a nonzero real number. Inspired by the ideas in Refs. [15, 16], we provide a

new generalised SOR iteration method by introducing another new relaxation parameter.

Let ω and τ be two nonzero real numbers, and Ω be a diagonal matrix in the following

form:

Ω=

�

ωIm 0

0 τIn

�

.

Then we consider the following generalised SOR iteration scheme for solving the gener-

alised saddle point problem (1.1):

�

x k+1

yk+1

�

= (D −ΩL )−1[(I −Ω)D +ΩU ]
�

x k

yk

�

+ (D −ΩL )−1
Ω

�

b

−q

�

. (2.4)

From the definitions of D, L , U and Ω, we have

D −ΩL =
�

D−ωL 0

−τBT Q

�

(2.5)



26 N. Huang and C.-F. Ma

and

(I −Ω)D +ΩU =
�

(1−ω)D +ωLT −ωB

0 Q−τC

�

=

�

D −ωL −ωA −ωB

0 Q−τC

�

. (2.6)

This shows that

(D −ΩL )−1 =

�

(D −ωL)−1 0

τQ−1BT (D −ωL)−1 Q−1

�

,

whence

H (ω,τ) =: (D −ΩL )−1[(I −Ω)D +ΩU ]

=

�

I −ω(D−ωL)−1A −ω(D−ωL)−1B

τQ−1BT [I −ω(D −ωL)−1A] I −τQ−1C −ωτQ−1BT (D −ωL)−1B

�

, (2.7)

and

M (ω,τ) =: (D −ΩL )−1
Ω=

�

ω(D −ωL)−1 0

ωτQ−1BT (D −ωL)−1 τQ−1

�

. (2.8)

Substituting (2.7) and (2.8) into (2.4), it follows that

�

x k+1 = x k +ω(D −ωL)−1(b− Ax k − B yk),

yk+1 = yk +τQ−1(BT x k+1− C yk − q).

Clearly, if ω = τ the above iteration scheme reduces to the SOR method (2.3); and if

ω = τ = 1 the above iteration scheme reduces to the GS method (2.2). In summary, we

can derive the following new generalised successive overrelaxation method for solving the

generalised saddle point problem.

The NSOR method.

Let Q ∈ Rn×n be s symmetric positive definite matrix. Given initial vectors x0 ∈ Rm and y0 ∈
Rn, and two nonzero relaxation factors ω, τ, for k = 0, 1, 2, · · · compute (until satisfactory

numerical convergence)

�

x k+1 = x k +ω(D −ωL)−1(b− Ax k − B yk) ,

yk+1 = yk +τQ−1(BT x k+1− C yk − q) .
(2.9)

It is notable that our NSOR method (2.9) can be reformulated as

zk+1 =H (ω,τ)zk +M (ω,τ) f ,

where H (ω,τ) andM (ω,τ) are defined in (2.7) and (2.8), and

zk =

�

x k

yk

�

, f =

�

b

−q

�

.
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Furthermore, on letting

N (ω,τ) =:M (ω,τ)−1 −A =





1

ω
(D −ωL)− A −B

0
1

τ
Q− C





we see that

A =M (ω,τ)−1 −N (ω,τ) (2.10)

defines a splitting ofA , implying that our NSOR method (2.9) can also be induced by this

matrix splitting (2.10). In addition, we know that

H (ω,τ) =M (ω,τ)N (ω,τ)

is the iteration matrix of the NSOR method. Alternatively, the matrix M (ω,τ)−1 can be

used to precondition the system (1.1).

In order to establish the convergence theorem of the NSOR method (2.9), we need

to clarify the concepts of positive definite and positive semidefinite. Thus for a general

(nonsymmetric) matrix X ∈ Rn×n, we say that X is positive definite or positive semidefinite

if its symmetric part X + X T is positive definite or positive semidefinite, respectively. We

have the following two lemmas.

Lemma 2.1. Let A ∈ Rm×m be a symmetric positive definite matrix and B ∈ Rm×n a matrix

of full column rank, with m ≥ n. If 0 < ω < 2, then D −ωL is positive definite and BT (D −
ωL)−1B is nonsingular.

Proof. It is easy to see that

D−ωL + (D −ωL)T = 2D−ωL −ωLT = 2D−ω(D− A) = (2−ω)D+ωA

is symmetric positive definite, which implies that D−ωL is positive definite. For the second

result, on noticing that B is full column rank and

BT (D−ωL)−1B + BT (D−ωL)−T B = BT (D−ωL)−1[(D−ωL)T + D−ωL](D−ωL)−T B,

we have that BT (D−ωL)−1B+BT (D−ωL)−T B is symmetric positive definite. Thus BT (D−
ωL)−1B is positive definite, and indeed nonsingular.

From Lemma 2.1, the matrix D−ωL is nonsingular if 0<ω < 2, then the NSOR method

(2.9) is well defined — and henceforth we assume that 0<ω< 2.

Lemma 2.2 (cf. Ref. [53]). Both roots of the complex quadratic equation λ2 − µλ+ η = 0

are less than one in modulus if and only if |η| < 1 and |µ− µ̄η|+ |η|2 < 1.
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3. Convergence Analysis

We now examine the convergence of the NSOR method (2.9) under suitable restrictions

on the two iteration parameters. The following theorem characterises some properties of

the eigenpairs of the matrix H (ω,τ), where we introduce the notation:

α=
x∗Lx

x∗Dx
, β =

x∗Ax

x∗Dx
, γ=

x∗BQ−1BT x

x∗Dx
. (3.1)

Theorem 3.1. Let A∈ Rm×m and Q ∈ Rn×n be symmetric positive definite matrices, C ∈ Rn×n

be symmetric positive semidefinite, and B ∈ Rm×n have full column rank, with m > n. Assume

that λ and z = (x T , yT )T ∈ Cm+n with x ∈ Cm and y ∈ Cn are the eigenvalue and eigenvector

of the iteration matrixH (ω,τ) respectively, and α, β and γ as defined in (3.1). Then for any

nonzero parameters ω and τ:

(a) if C = 0, then λ satisfies the quadratic equation

(1−ωα)λ2 + (2ωα+ωβ +τωγ− 2)λ+ 1−ωα−ωβ = 0 ; (3.2)

(b) if C = δQ with δ 6= 0 a real constant, then either λ = 1−δτ or λ satisfies the quadratic

equation

(1−ωα)λ2 + [(2−τδ)ωα+ωβ +τωγ+τδ− 2]λ+ (1−τδ)(1−ωα−ωβ) = 0 . (3.3)

Proof. Combining the relation ofH (ω,τ)z = λz with (2.7), it follows that

[(I −Ω)D +ΩU ]z = λ(D −ΩL )z ,

which together with (2.5) and (2.6) leads to

�

(1−λ)(D −ωL)x −ωAx =ωB y ,

(λ− 1)Q y +τC y = λτBT x .
(3.4)

We assert that λ 6= 1 and x 6= 0. Otherwise, if λ = 1 then (3.4) reduces to −Ax = B y and

C y = BT x such that x = −A−1B y and C y = −BT A−1B y, which implies that

(C + BT A−1B)y = 0 .

Noticing that A is symmetric positive definite, C is symmetric positive semidefinite and B

is full column rank, we can see that C + BT A−1B is a symmetric positive definite matrix.

Together with the above equality, this implies that y = 0. Thus we have x = −A−1B y = 0,

which yields z = 0, a contradiction to the assumption that z is an eigenvector. On the other

hand, if x = 0 then the first equality in (3.4) reduces to B y = 0 such that y = 0, and again

we have a contradiction.

Let us first consider the case that C = 0. Obviously (3.4) reduces to

�

(1−λ)(D −ωL)x −ωAx =ωB y ,

(λ− 1)Q y = λτBT x .
(3.5)
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From the second equation in (3.5), we obtain

y =
λτ

λ− 1
Q−1BT x ,

and substituting this relationship into the first equality in (3.5) yields

(1−λ)(D −ωL)x −ωAx =
λτω

λ− 1
BQ−1BT x ,

which can be simplified as

(λ− 1)2(D−ωL)x + (λ− 1)ωAx +λτωBQ−1BT x = 0 .

Since x 6= 0 and D is a positive definite matrix, we have x∗Dx 6= 0. Multiplying the above

equality from the left with x∗/(x∗Dx) gives

(λ− 1)2
�

1−ω x∗Lx

x∗Dx

�

+ (λ− 1)ω
x∗Ax

x∗Dx
+λτω

x∗BQ−1BT x

x∗Dx
= 0 ,

and hence from (3.1), we have

(λ− 1)2(1−ωα) + (λ− 1)ωβ +λτωγ= 0 .

On rearranging this equation, we immediately get the first result.

Next, we consider the case that C = δQ with δ 6= 0. Obviously (3.4) becomes

�

(1−λ)(D −ωL)x −ωAx =ωB y ,

(λ− 1+τδ)Q y = λτBT x .
(3.6)

Firstly, we shall show that 1− τδ is an eigenvalue of H (ω,τ). Let λ = 1 − τδ, so (3.6)

reduces to �

τδ(D−ωL)x −ωAx =ωB y ,

(1−τδ)BT x = 0 .
(3.7)

On multiplying the first equality in (3.7) from the left with BT , we have

τδBT (D −ωL)x −ωBT Ax =ωBT B y ,

which given the nonsingularity of BT B yields

y =
1

ω
(BT B)−1BT [τδ(D−ωL)−ωA]x .

Combining this with (3.7), if we can find a nonzero vector (x T , yT )T satisfying









x ∈ N {BT },
τδ(D−ωL)x −ωAx ∈ R{B},
y =

1

ω
(BT B)−1BT [τδ(D −ωL)−ωA]x
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then 1−τδ would be an eigenvalue ofH (ω,τ).

On the other hand, if λ 6= 1−τδ it follows from the second equality in (3.6) that

y =
λτ

λ− 1+τδ
Q−1BT x ;

and substituting this into the first equality in (3.6) leads to

(1−λ)(D −ωL)x −ωAx =
λωτ

λ− 1+τδ
BQ−1BT x ,

which can be simplified as

(λ− 1)(λ− 1+τδ)(D −ωL)x + (λ− 1+τδ)ωAx +λωτBQ−1BT x = 0 .

On multiplying this equation from the left by x∗/(x∗Dx), we have that

(λ− 1)(λ− 1+τδ)(1−ωα) + (λ− 1+τδ)ωβ +λωτγ= 0 ,

which can be reformulated as (3.3) to complete the proof.

Corollary 3.1. Under the same settings and conditions as in Theorem 3.1, if ω= τ 6= 0 then:

(a) when C = 0, λ satisfies the quadratic equation

(1−ωα)λ2 + (2ωα+ωβ +ω2γ− 2)λ+ 1−ωα−ωβ = 0 ;

(b) when C = δQ with δ 6= 0 a real constant, either λ= 1−δω or λ satisfies the quadratic

equation

(1−ωα)λ2 +
�

(2−ωδ)ωα+ωβ +ω2γ+ωδ− 2
�

λ+ (1−ωδ)(1−ωα−ωβ) = 0 .

Corollary 3.2. Under the same settings and conditions as in Theorem 3.1, if ω= τ = 1 then:

(a) when C = 0, λ satisfies the quadratic equation

(1−α)λ2 + (2α+ β + γ− 2)λ+ 1−α− β = 0 ;

(b) when C = δQ with δ 6= 0 a real constant, either λ = 1−δ or λ satisfies the quadratic

equation

(1−α)λ2 + [(2−δ)α+ β + γ+δ− 2]λ+ (1−δ)(1−α− β) = 0 .

From the above analysis, we now establish sufficiency conditions to guarantee |λ| < 1

where λ ∈ Λ(H (ω,τ)), presented in the following theorem.

Theorem 3.2. Let A∈ Rm×m and Q ∈ Rn×n be symmetric positive definite matrices, C ∈ Rn×n

be symmetric positive semidefinite, and let B ∈ Rm×n have full column rank, with m > n.

Assume that λ and z = (x T , yT )T ∈ Cm+n with x ∈ Cm and y ∈ Cn are the respective

eigenvalue and eigenvector of the iteration matrix H (ω,τ), and α = αr + iαi, β and γ as
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defined in (3.1).

(a) When C = 0, |λ|< 1 provided that ω satisfies 0<ω< 2 and τ satisfies the condition

0< τ <
2β2(2−ω)
ωγ(β2 + 4α2

i
)

with x /∈ N {BT } .

(b) When C = δQ with δ 6= 0, |λ| < 1 provided that τδ = 1, and

0<ω <
2

1+τγ
.

Proof. It follows from the proof of Theorem 3.1 that x 6= 0. Since A and Q are both

symmetric positive definite and B has full column rank, we have β > 0 and γ ≥ 0. Noticing

that 0<ω< 2, from Lemma 2.1 we know that D −ωL is positive definite. Then

x∗(D −ωL)x = x∗Dx(1−ωα) 6= 0 , hence 1−ωα 6= 0 .

We first consider the case when C = 0. If x ∈ N {BT }, then it follows from (3.5) and λ 6= 1

that (1−λ)(D −ωL)x −ωAx = 0, which combining with (2.1) leads to

(D−ωL)−1[(1−ω)D +ωLT ]x = λx .

As A is symmetric positive definite and 0<ω < 2, from [49], we can know that |λ|< 1.

If x /∈ N {BT }, then γ > 0. From Theorem 3.1, we see that λ satisfies the quadratic

equation (3.2), which can be rewritten as

λ2 +
2ωα+ωβ +τωγ− 2

1−ωα λ+
1−ωα−ωβ

1−ωα = 0 .

Together with Lemma 2.2, this yields |λ|< 1 if and only if

�

�

�

1−ωα−ωβ
1−ωα
�

�

� < 1, (3.8)

�

�

�

2ωα+ωβ +τωγ− 2

1−ωα − (2ωᾱ+ωβ +τωγ− 2)(1−ωα−ωβ)
(1−ωᾱ)(1−ωα)

�

�

�

+

�

�

�

1−ωα−ωβ
1−ωα
�

�

�

2

< 1 . (3.9)

Inequality (3.8) is equivalent to

|1−ωα−ωβ |2 < |1−ωα|2 ,

and on substituting α = αr + iαi we have

(1−ωαr −ωβ)2 +ω2α2
i < (1−ωαr)

2 +ω2α2
i ,

whence for β > 0

ω[(β + 2αr)ω− 2] < 0 . (3.10)
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We can directly check that

β + 2αr =β +α+ ᾱ

=
x∗Ax

x∗Dx
+

x∗Lx

x∗Dx
+

x∗LT x

x∗Dx

=
x∗(A+ L + LT )x

x∗Dx
=

x∗Dx

x∗Dx
= 1 ,

and combining this with (3.10) we get 0<ω < 2. On the other hand, it is easy to see that

(3.9) is equivalent to

|(1−ωᾱ)(2ωα+ωβ +τωγ− 2)− (2ωᾱ+ωβ +τωγ− 2)(1−ωα−ωβ)|
+ |1−ωα−ωβ |2 < |1−ωα|2 ;

and from straightforward computation we obtain

|2αrω
2β +ω2β2 +τω2γβ − 2ωβ + 2iαiω

2τγ|+ |1−ωαr −ωβ − iωαi|2
<|1−ωαr − iωαi|2 ,

or equivalently

q

(2αrω2β +ω2β2 +τω2γβ − 2ωβ)2 + 4α2
i
ω4τ2γ2 + (1−ωαr −ωβ)2 +ω2α2

i

<(1−ωαr)
2 +ω2α2

i .

Noticing that γ > 0, β + 2αr = 1, from some simple computation we get

τ[(ωγβ2 + 4α2
i
ωγ)τ− 2β2(2−ω)] < 0 ,

showing that

0< τ <
2β2(2−ω)
ωγ(β2 + 4α2

i
)

,

and we know that if 0<ω < 2 and τ satisfy this inequality then |λ|< 1.

Next, we consider the case that C = δQ. If x ∈ N {BT } and λ 6= 1−δτ, from (3.6) we have

(1−λ)(D −ωL)x −ωAx = 0. By the same way, we can prove that |λ|< 1. If x /∈ N {BT },
then γ > 0. From Theorem 3.1, either λ= 1−δτ or λ satisfies the quadratic equation

λ2 +
(2−τδ)ωα+ωβ +τωγ+τδ− 2

1−ωα λ+
(1−τδ)(1−ωα−ωβ)

1−ωα = 0 ,

which from Lemma 2.2 yields |λ|< 1 if and only if

|1−δτ|< 1 , (3.11)
�

�

�

(1−τδ)(1−ωα−ωβ)
1−ωα

�

�

� < 1 , (3.12)
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�

�

�

(2−τδ)ωα+ωβ +τωγ+τδ− 2

1−ωα
− (2−τδ)ωᾱ+ωβ +τωγ+τδ− 2

1−ωᾱ · (1−τδ)(1−ωα−ωβ)
1−ωα

�

�

�

+

�

�

�

(1− τδ)(1−ωα−ωβ)
1−ωα

�

�

�

2

< 1 . (3.13)

Inequalities (3.11) and (3.12) hold if τδ = 1, and in that case (3.13) can be simplified to

|ωα+ωβ +τωγ− 1| < |1−ωα| .

Using α= αr + iαi, we have (ωαr +ωβ +τωγ−1)2 < (1−ωαr)
2 , which is equivalent to

ω(β +τγ)[(β + 2αr +τγ)ω− 2]< 0 ,

and with β +2αr = 1 we obtain ω(β +τγ)[(1+τγ)ω−2]< 0. It is easy to see that τ > 0,

then the inequality immediately follows

0<ω <
2

1+τγ
.

Then combining these results with 0<ω < 2, we complete the proof.

Let us now derive some sufficient conditions for guaranteeing the convergence of the

NSOR method (2.9). To this end, we introduce some notation:

ℓ2max = max
‖x‖=1

�

�

�

1

2i
(

x∗Lx

x∗Dx
− x∗LT x

x∗Dx
)

�

�

�

2

, βmin = min
‖x‖=1

x∗Ax

x∗Dx
,

βmax = max
‖x‖=1

x∗Ax

x∗Dx
, γmin = min

‖x‖=1,x /∈N {BT }
x∗BQ−1BT x

x∗Dx
, γmax = max

‖x‖=1

x∗BQ−1BT x

x∗Dx
.

As A is symmetric positive definite and D is symmetric positive definite, we have βmin > 0,

βmax > 0, γmin > 0 and γmax > 0.

Theorem 3.3. Let A∈ Rm×m and Q ∈ Rn×n be symmetric positive definite matrices, C ∈ Rn×n

symmetric positive semidefinite, and B ∈ Rm×n have full column rank, with m > n. Then the

NSOR method (2.9) is convergent provided that:

(a) when C = 0, ω satisfies 0<ω < 2 and τ satisfies the condition

0< τ <
2β2

min
(2−ω)

ωγmax(β2
max + 4ℓ2max)

;

(b) when C = δQ with δ 6= 0, τ satisfies τδ = 1 and ω satisfies the condition

0<ω <
2

1+τγmax

.



34 N. Huang and C.-F. Ma

Proof. The NSOR method is convergent if and only if the spectral radius of the iteration

matrix H (ω,τ) is less than 1 — i.e. |λ| < 1 holds for any λ ∈ Λ(H (ω,τ)). Let λ and

z = (x T , yT )T ∈ Cm+n be the eigenvalue and eigenvector of H (ω,τ), respectively. From

the proof in Theorem 3.1, it follows that x 6= 0, so without loss of generality we can assume

‖x‖= 1. For any x /∈ N {BT }, α= αr + iαi, β and γ defined in (3.1), we have

0≤ α2
i
≤ ℓ2

max
, βmin ≤ β ≤ βmax, γmin ≤ γ≤ γmax ,

so given Theorem 3.2 and the arbitrariness of λ the proof is complete.

4. Numerical Experiments

In this section, we present the results of some numerical experiments to test the nu-

merical feasibility and effectiveness of our new method. All experiments were run on a PC

with Intel(R) Core(TM) i3 CPU M 370 @2.40GHz and RAM 2GBz, implemented in MAT-

LAB R2013b. We report the number of required iterations (denoted by “Iter"), the required

CPU time (denoted by “CPU"), and the relative error denoted and defined by

ERR :=

p‖x k − x̃‖2 + ‖yk − ỹ‖2
p‖ x̃‖2 + ‖ ỹ‖2

,

with ((x k)T , (yk)T )T the final approximate solution and (( x̃)T , ( ỹ)T )T the exact solution of

the generalised saddle point problem (1.1).

In our implementation, we chose the right-hand-side vector (bT ,−qT )T ∈ Rm+n such

that the exact solution of the generalised saddle point problem (1.1) is (( x̃)T , ( ỹ)T )T =

(1,1, · · · , 1)T ∈ Rm+n, and Q = In. The iteration was halted when ERR ≤ 10−5, and as

the initial vector we chose x0 = 0, y0 = 0. We compared our NSOR method (2.9), with

the successive overrelaxation iteration scheme (SOR) (2.3) and the parameterised inexact

Uzawa method (denoted by “PIU") (see [16]).

Example 4.1. (cf. Ref. [10]) Consider the generalised saddle point problem (1.1), where

A∈ Rq×q , C ∈ R(n−q)×(n−q) , with 2q > n ,

and the matrices A= (ak j) , C = (ck j) and B = (bk j) defined as follows:

ak j =







k+ 1 , f or j = k ,

1 , f or |k− j| = 1 ,

0 , otherwise ,

k, j = 1,2, · · · ,q ,

ck j =







k + 1 , f or j = k ,

1 , f or |k− j| = 1 ,

0 , otherwise ,

k, j = 1,2, · · · , n− q ,

bk j =

�

j , f or k = j + 2q− n ,

0 , otherwise ,
k = 1,2, · · · ,q, j = 1,2, · · · , n− q .
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Table 1: The optimal parameters for Example 4.1.

n 100 400 800 1200 1600

SOR ωopt 0.1610 0.0470 0.0242 0.0162 0.0123

ωopt 0.6690 0.4271 0.0699 0.0750 0.0212
NSOR

τopt 0.1459 0.0449 0.0240 0.0162 0.0123

ωopt 0.3100 0.4700 0.0891 0.0661 0.0191
PIU

τopt 0.1491 0.0440 0.0240 0.0161 0.0101

Table 2: Numerial results for Example 4.1.

SOR NSOR PIU
n

Iter. CPU Err. Iter. CPU Err. Iter. CPU Err.

100 94 0.0075 9.4212e-06 41 0.0030 9.2753e-06 40 0.0125 9.0362e-06

400 279 0.4176 9.9894e-06 130 0.1947 9.9664e-06 133 0.4914 9.7102e-06

800 512 3.1035 9.9792e-06 241 1.4125 9.9999e-06 242 5.3921 9.9673e-06

1200 745 9.6605 9.9906e-06 347 4.6147 9.8388e-06 347 22.5600 9.9920e-06

1600 967 21.7502 9.9786e-06 604 13.7452 9.9573e-06 606 90.4704 9.8650e-06

Table 3: The optimal parameters for Example 4.2.

p 8 12 16 20

SOR ωopt 0.612 0.601 0.598 0.595

ωopt 0.5991 0.6200 0.6330 0.6570
NSOR

τopt 0.6749 0.5040 0.4188 0.3000

ωopt 0.8220 0.8247 0.8201 0.8346
PIU

τopt 0.3610 0.3683 0.3301 0.3411

In this example, we set q = 0.9n. Our numerical results are presented in Tables 1 and 2,

and Figs. 1 and 2, for various dimensions n.

Example 4.2. (see [15])Consider the generalised saddle point problem (1.1), where

A=

�

I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

�

∈ R2p2×2p2

,

B =

�

I ⊗ F

F ⊗ I

�

∈ R2p2×p2

, C = 0 ∈ Rp2×p2

,

and

T =
1

h2
· tridiag(−1,2,−1) ∈ Rp×p , F =

1

h
· tridiag(−1,1,0) ∈ Rp×p ,

with ⊗ being the Kronecker product symbol and h= 1/(p+ 1) the discretisation mesh sise.

The numerical results of Example 4.2 are presented in Tables 3 and 4, and Figs. 3 and 4,

for various p.
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Figure 1: Curves of ρ(H(ω)) vs. ω for the SOR iteration matrix for Example 4.1.

From Tables 2 and 4, it is seen that the NSOR method (2.9) is efficient for solving

generalised saddle point problem (1.1); and from Figs. 1-4 that the new parameter τ plays

an important role in the NSOR method (2.9). In addition, Figs 2 and 4 show that the

minimum point of ρ(H(ω,τ)) is not the point where ω = τ. Moreover, τ should approach

0 when ω is close to 1 in order to guarantee that ρ(H(ω,τ)) < 1, and vice versa. This
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Figure 2: Curves of ρ(H(ω,τ)) vs. (ω,τ) for the NSOR iteration matrix with n = 100 for Example 4.1.

Table 4: Numerial results for Example 4.2.

SOR NSOR PIU
p

Iter. CPU Err. Iter. CPU Err. Iter. CPU Err.

8 666 0.0945 9.9564e-06 515 0.0617 9.9220e-06 132 0.0608 8.9490e-06

12 936 0.9003 9.4252e-06 875 0.8272 9.9093e-06 241 0.5356 9.8938e-06

16 1334 4.5647 9.5094e-06 1262 4.3504 9.9783e-06 350 3.5734 9.5898e-06

18 1773 14.9044 9.9084e-06 1668 13.8956 9.9425e-06 455 14.3540 9.8886e-06

implies that the new parameter τ provides a larger convergence range, so it is easier to

choose the value of ω.

5. Conclusion

A new method for solving the generalised saddle point problem (1.1) has been pro-

posed. We have shown it converges under suitable restrictions on the iteration parameters,

although a convergence analysis for optimal parameters has yet to be done.
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Figure 3: Curves of ρ(H(ω)) vs. ω for the SOR iteration matrix for Example 4.2.

Figure 4: Curves of ρ(H(ω,τ)) vs. (ω,τ) for the NSOR iteration matrix with p = 8 for Example 4.2.
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