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Abstract. A reduced-order model for distributed feedback control of the Benjamin-

Bona-Mahony-Burgers (BBMB) equation is discussed. To retain more information in

our model, we first calculate the functional gain in the full-order case, and then invoke

the proper orthogonal decomposition (POD) method to design a low-order controller

and thereby reduce the order of the model. Numerical experiments demonstrate that a

solution of the reduced-order model performs well in comparison with a solution for the

full-order description.
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1. Introduction

Standard discretisation schemes (finite element, finite difference, spectral element, fi-

nite volume, etc.) may require quite high degree for accurate simulation of fluid flows, and

can be expensive with respect to both storage and computing time. Reduced-order mod-

els for the simulation of nonlinear complex systems and optimal or feedback control has

therefore received more attention recently. This approach involves projecting the dynam-

ical system onto subspaces consisting of basis elements that reflect characteristics of the

expected solution, in contrast to the traditional numerical methods — e.g. the elements of

the subspaces in the finite element method are uncorrelated to the physical properties of

the system described.

The proper orthogonal decomposition (POD) method has also received considerable

attention in recent years, as a tool to analyse complex physical systems. This method begins

with a set of snapshots generated by either evaluating the computed solution in transient
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problems at several instants of time or by evaluating the computed solution for several

values of the parameters appearing in the problem description, or a combination of both.

In this article, the snapshots are obtained by a finite element method, from which the POD

basis is constructed — viz. the left singular vectors corresponding to the most dominant

singular values of the matrix where the columns are the snapshot vectors. This basis is then

used to determine an approximate solution for different values of the system parameters,

usually by a projection procedure. POD-based model reduction has been applied with some

success to several problems [2,6,7,9,12,13,15,18,19,22–25,27–30,32,33].

We propose and test a reduced-order model for a distributed feedback control prob-

lem involving the Benjamin-Bona-Mahony-Burgers (BBMB) equation, which describes the

propagation of small amplitude long waves in nonlinear dispersive media [5]— viz.







yt − yx x t −αyx x + β yx + y yx = f (x , t) in Ω× [0, T ] ,

y(0, t) = y(L, t) = 0 on [0, T ] ,

y(x , 0) = y0(x) in Ω ,

(1.1)

where Ω = [0, L], α > 0 and β are constants and f (x , t) is a given forcing term. The

physical dispersion in the BBMB equation is the same as in the Benjamin-Bona-Mahony

(BBM) equation and the dissipation is the same as in the Burgers equation, providing an

alternative to the Korteweg-de Vries-Burgers (KdVB) equation [17]. Stabilisation of the

boundary feedback control for the BBM, KdVB and Burgers equations has been investi-

gated in Refs. [3, 4, 16, 18]. In the case of the KdV equation, the feedback controller is

locally and globally controllable and stabilisable. When it is small, the solution of the gen-

eralised regularised long wave-Burgers (GRLWB) equation decays like the solution of the

corresponding linear equation [8]. Since the BBMB equation is an important case of the

GRLWB equation, we can design the controller and control the system (1.1) using a linear-

quadratic regulator method. Here the quadratic B-spline finite element method is adopted

to convert the BBMB equation into a finite set of nonlinear ordinary differential equations,

in designing the full-order control law. Using the reduced-order basis obtained by the POD

method, we then design the low-order controller.

In Section 2, we describe the B-spline finite element approximation of solution of the

BBMB equation. In Section 3, we briefly review POD-based reduced-order bases, and in

Section 4 we discuss our numerical scheme for the distributed feedback control problem.

Some numerical results are given in Section 5, followed by a brief Conclusion in Section 6.

2. Finite Element Approximation

2.1. Formulation

Finite element methods (FEM) have often been applied to solve various linear and non-

linear partial differential equations (PDE). Standard Lagrangian finite element basis func-

tions provide only simple C0-continuity, and therefore cannot be used for the spatial dis-

cretisation of higher-order (e.g. third-order or fourth-order) differential equations. On the
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other hand, B-spline basis functions of various degrees can at least achieve C1-continuity

globally, and so are often used in the numerical solution of PDE — e.g. the quadratic B-

spline Galerkin method [1, 20, 21]. Spectral methods can also be used for discretising the

BBMB equation, but we prefer a lower-order method.

Let us now consider the BBMB equation subject to boundary conditions and an initial

condition as above. We use a variational formulation to define a finite element method to

approximate the system (1.1) as follows: find y ∈ L2(0, T ; H1
0(Ω)) such that

















∫

Ω

yt vd x +

∫

Ω

yx t v′d x +α

∫

Ω

yx v′d x + β

∫

Ω

yx vd x +

∫

Ω

y yx vd x

=

∫

Ω

f vd x ∀ v ∈ H1
0(Ω) ,

y(x , 0) = y0(x) in Ω ,

(2.1)

where H1
0
= {y ∈ H1(Ω) : y|Ω = 0} and H1(Ω) = {v ∈ L2(Ω) : ∂ v/∂ x ∈ L2(Ω)}. A typical

finite element approximation of (2.1) is as follows: first choose conforming finite element

subspaces V h ⊂ H1(Ω) and then define V h
0
= V h∩H1

0
(Ω). One then seeks yh(t, ·) ∈ V h

0
such

that

















∫

Ω

yh
t
vhd x +

∫

Ω

yh
x t
(vh)′d x +α

∫

Ω

yh
x
(vh)′d x + β

∫

Ω

yh
x
vhd x +

∫

Ω

yh yh
x
vhd x

=

∫

Ω

f vhd x ∀ vh ∈ V h
0 (Ω) ,

yh(x , 0) = yh
0 (x) in Ω ,

(2.2)

where yh
0 (x) ∈ V h

0 is an approximation (e.g. a projection) of y0(x).

The interval Ω = [0, L] is divided into N finite elements of equal length h by knots x i

such that 0= x0 < x1 < · · ·< xN = L. The set of splines {η−1,η0, · · · ,ηN} form a basis for

functions defined on Ω. Quadratic B-splines with the required properties are denoted and

defined by [31]:

ηi(x) =
1

h2













(x i+2 − x)2 − 3(x i+1 − x)2 + 3(x i − x)2) , [x i−1, x i] ,

(x i+2 − x)2 − 3(x i+1 − x)2, [x i , x i+1] ,

(x i+2 − x)2, [x i+1, x i+2] ,

0 , otherwise ,

where h = x i+1 − x i, i = −1,0, · · · , N . The quadratic spline and its first derivative vanish

outside the interval [x i−1, x i+2], and the spline function value and first derivative at the

knots are given by

¨

ηi(x i−1) = ηi(x i+2) = 0 , ηi(x i) = ηi(x i+1) = 1 ;

η
′

i(x i−1) = η
′

i(x i+2) = 0 , η
′

i(x i) = η
′

i(x i+1) = 1 .
(2.3)
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Thus an approximate solution can be written in terms of the quadratic spline functions as

yh(x , t) =

N
∑

i=−1

ai(t)ηi(x) , (2.4)

where the ai(t) are as yet undetermined coefficients.

Each spline covers three intervals such that three splines ηi−1(x), ηi(x), ηi+1(x) cover

each finite element [x i , x i+1]. All other splines are zero in this region. Using Eq. (2.4)

and the spline function properties in Eq. (2.3), we can express the nodal values of function

yh(x , t) and its derivative at the knot x i and fixed time t̃ in terms of the coefficients ai( t̃):

yh(x i, t̃) = ai−1( t̃) + ai( t̃) ,
∂ yh(x , t̃)

∂ x

�

�

�

x=xi

=
2

h

�

ai( t̃)− ai−1( t̃)
�

. (2.5)

For an homogeneous boundary condition, from Eq. (2.5) a−1(t) = −a0(t) and aN (t) =

−aN−1(t), whence

yh(x , t) =

N−1
∑

i=0

ai(t)ξi(x) , (2.6)

where ξ0(x) = (η0(x)−η−1(x)), ξi(x) = ηi(x) ∀ i = 1,2, · · · , N−2, ξN−1(x) =ηN−1(x)−
ηN (x). Consequently, the N unknowns ai(t) (i = 0,1, · · · , N − 1) can be determined for

every instant t.

In the Galerkin method, the chosen weighted function in (2.2) is vh
i
(x) = ξi(x) for

i = 0,1, · · · , N − 1, so on substituting Eq. (2.6) into (2.2) we obtain



































N−1
∑

i=0

�∫

Ω

ξiξ jd x

�

dai(t)

d t
+

N−1
∑

i=0

�∫

Ω

ξ
′

iξ
′

j d x

�

dai(t)

d t

+ α

N−1
∑

i=0

�∫

Ω

ξ
′

iξ
′

j d x

�

ai(t) + β

N−1
∑

i=0

�∫

Ω

ξ
′

iξ j d x

�

ai(t)

+

N−1
∑

i=0

N−1
∑

k=0

�∫

Ω

ξiξ
′

kξ j d x

�

ai(t)ak(t) =

∫

Ω

f ξ j d x ,

N−1
∑

i=0

�∫

Ω

ξiξ j d x

�

ai(0) =

∫

Ω

y0(x)ξ j d x , j = 0,1, · · · , N − 1 .

(2.7)

Assuming mi j = (ξi ,ξ j), si j = (ξ
′

i
,ξ
′

j
), di j = (ξ

′

i
,ξ j), ni jk = (ξiξ

′

k
,ξ j), f j = ( f ,ξ j),

y
j

0
= (y0,ξ j), mass matrix M = (mi j), stiff matrix S = (si j), D = (di j), N = (ni jk),

~f = ( f0, f1, · · · , fN−1)
T , ~y0 = (y

0
0 , y1

0 , · · · , yN−1
0
), ~a0 = (a0(0), a1(0), · · · , aN−1)

T and ~a(t) =

(a0(t), a1(t), · · · , aN−1(t))
T , we can then write the system (2.7) in the matrix form







(M+ S)
d~a

d t
+ (αS+ βD)~a+ (~a)TN~a = ~f ,

M~a0 = ~y0 ,

(2.8)
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a system of N nonlinear ordinary differential equations in N unknowns subject to the initial

condition. Since (M+S) andM are invertible matrices, the system (2.8) can be written as

standard first order nonlinear ordinary differential equations subject to initial conditions

— viz.
d~a

d t
= (M+ S)−1
�

~f − ((αS+ βD)~a+ (~a)TN~a)
�

, ~a0 =M
−1 ~y0 , (2.9)

and for simplicity we take ~y0 =M
−1 ~y0. The terms in Eq. (2.9) on the right-hand sides are

continuously differentiable, so the system (2.9) has a unique solution — and a zero equi-

librium solution when the forcing term f (x , t) tends to zero and the time tends to infinity.

Thus on taking the equilibrium solution as the starting point, we may obtain the numeri-

cal solution of the system (1.1) by the Newton method used to generate the snapshots —

i.e. the M snapshot vectors

~am =
�

a0(tm) a1(tm) · · · aN−1(tm)
�T

, m= 1, · · · , M

are determined by evaluating the approximate solution of the system (2.9) at M equally

spaced time values tm, from t1 = 0 to tM = T .

Remark 2.1. For convenience, by “nodal value” we mean the solution of the differential

equation at the knot, and “coefficient” refers to any coefficient appearing in Eqs. (2.4) and

(2.5).

Remark 2.2. The property (2.5) will be used in the control solutions, so the nodal values

of the full-order and reduced-order control solutions at a knot x i equal the sum of the

coefficients at the knots x i−1 and x i (at other than the boundary points).

2.2. The convergence test for the quadratic B-spline method

In this subsection, we present a numerical test for the error estimate and convergence.

Let us consider














yt − yx x t −αyx x + β yx + y yx

= exp(−t)

�

cos x − sin x +
1

2
exp(−t) sin(2x)

�

in Ω× [0, T ] ,

y(0, t) = y(π, t) = 0 on [0, T ] ,

y(x , 0) = sin x in Ω ,

(2.10)

for which the exact solution is u(x , t) = exp(−t) sin x . Table 1 shows the estimate of error

||e||∞,h = maxi,n |y
h(x i, tn)− y(x i , tn)| for various spatial step sizes h. The time step can

be ∆t = h for a second-order scheme in time, such as the Crank-Nicholson method, or

∆t = h2 for a first-order scheme. The quadratic B-spline method provides a second-order

scheme for the space discretisation — cf. Refs. [1,20,21] and references therein for more

information on B-spline FEM.

The convergence rate for the finite difference solution of the BBMB equation in the L∞-

norm was found to be about second-order, and error estimates showed that the actual error

is lower than for the quadratic B-spline FEM [26].
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Table 1: Convergene rate in maxmum norm.

1/h ||e||∞,h =maxi,n |y
h(x i, tn)− y(x i , tn)| convergence rate

10 1.817280262880139e-03

20 4.743102628801399e-04 3.83

40 1.212538700144372e-04 3.91

80 3.066562894760150e-05 3.95

160 7.685621290125688e-06 3.99

3. Reduced-Order Bases via POD

Let us now briefly describe the derivation of reduced-order bases using the POD method.

Given a discrete set of snapshot vectors ħY = {~am}
M
m=1 belonging to R

N where M < N , we

form the N ×M snapshot matrix with columns the snapshot vectors ~am — viz.

Y = (~a1 ~a2 · · · ~aM ) .

Let

U
T
YV =

� ∑

0

0 0

�

,

where U and V are N × N and M × M orthogonal matrices respectively, and where
∑

=

diag(σ1, · · · ,σM̃ ) with σ1 ≥ σ2 ≥ · · · ≥ σM̃ is the singular value decomposition of Y.

Here M̃ is the rank of Y— i.e. the dimension of the snapshot set ħY, which is less than M

whenever the snapshot set is linearly dependent. It is well known [14] that if

U = ( ~φ1
~φ2 · · · ~φN ) and V = ( ~ψ1

~ψ2 · · · ~ψM ) ,

then

Y ~ψi = σi
~φi and YT ~φi = σi

~ψi for i = 1, · · · , M̃ ,

and hence

Y
T
Y ~ψi = σi

~φi and YYT ~φi = σi
~ψi for i = 1, · · · , M̃

such that σ2
i
, i = 1, · · · , M̃ are the nonzero eigenvalues of YT

Y (and also YYT) arranged in

non-decreasing order. The matrix ħC = YT
Y is the correlation matrix for the set of snapshot

vectors ħY = {~am}
M
m=1 — i.e. we have ħCmn = ~a

T
m~an.

In a reduced-order model, given a set of snapshots ħY = {~am}
M
m=1 belonging to R

N , the

POD reduced-basis of dimension K ≤ M < N is the set of vectors { ~φk}
K
k=1

also belonging

to R
N that consists of the first K left singular vectors of the snapshot matrix Y. Thus one

can determine the POD basis by computing the (partial) singular value decomposition of

the N ×M matrix Y. Alternatively, one can compute the (partial) eigensystem {σ2
k
, ~ψi}

K
i=1

of the M × M correlation matrix ħC = YT
Y, and then set ~φk = Y ~ψk, k = 1, · · · , K . The

K-dimensional POD basis has the obvious property of orthonormality.

For reduced-order models, the snapshot vectors are coefficient vectors in the expansion

of the finite element approximate solution of the PDE at different instants in time, so to each
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snapshot vector there corresponds a finite element function. One can thus define a POD

basis with respect to functions instead of vectors — i.e. start with a snapshot set consisting

of finite element functions. According to the optimal properties of POD basis and some

related reasoning, we can therefore rewrite the correlation matrix as ħC = YT
MYwhereM is

a mass matrix [9], so we can again use singular value decomposition to determine the POD

basis function. To this end, consider the mass matrix M =WT
W, where the N × N matrix

W could be chosen to be a symmetric, positive definite square root of M (i.e. W =M1/2),

or alternatively a Cholesky factor (i.e. WT = L). We may then let ħW = M1/2
Y such that

ħC = ħWT ħW, and therefore the POD bases are the first K left singular vectors of ħW.

Remark 3.1. In the computation here, the snapshots differ from the numerical solutions,

as is usually noted in the reduced-order PDE model — i.e. rather than “nodal values", the

snapshots are coefficients mentioned in Remark (2.1).

4. Feedback Control Design

The control problem is as follows.

Find an optimal control u∗(t), which minimises the cost functional

J(u) =

∫ ∞

0

||y(t, ·)||2
L2(Ω)

+ |u(t)|2d t

subject to the constraint equations







yt − yx x t = αyx x − β yx − y yx + f (x , t) in Ω× [0, T ] ,

y(0, t) = y(L, t) = 0 on [0, T ] ,

y(x , 0) = y0(x) in Ω .

(4.1)

We will assume the forcing term f (x , t) has the special form b(x)u(t), where u(t) is the

control input and b(x) is a given function that distributes the control over the domain.

4.1. Linear quadratic regulator design

Provided the nonlinear term in the BBMB equation is small, a suboptimal feedback

control u∗ can be obtained from well-known linear quadratic regulator theory [11,22,30].

A full state feedback control involves finding an optimal control u∗ ∈ L2([0, T ), L2(Ω)) by

minimising the cost functional

J(u) =

∫ ∞

0

(Q y(t, ·), y(t, ·))L2 (Ω) +
�

Ru(t),u(t))
�

d t

subject to the constraint equations

ẏ(t) =A y(t) +Bu(t) , y(0) = y0 for t > 0 ,
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whereQ : L2(Ω)→ L2(Ω) is a non-negative definite self-adjoint weighting operator for the

state and R : L2(Ω)→ L2(Ω) is a positive definite weighting operator for the control. The

optimal control u∗(t) can be found as

u∗(t) = −
1

2
R−1B T

Πy(t) = −K y(t) ,

where K is called the feedback operator and Π is the symmetric positive definite solution

of the algebraic Riccati equation

ΠA +A T
Π−ΠBR−1B T

Π+Q = 0 . (4.2)

4.2. Linear feedback controllers with state estimate feedback

The design controller method adopted here is similar to the simple classical linear

quadratic regulator (LQR) scheme, which assumes that the full state is “feed back" into

the system by the control, but the properties (2.5) are considered in the whole process.

Knowledge of the full state is not possible for many complicated physical systems, so a

compensator design provides a state estimate based on state measurements used in the

feedback control law. Thus it is not assumed we have knowledge of the full state, and

instead assume a state measurement of the form

z(t) = C y(t) , (4.3)

where C ∈ L (L2(Ω),Rm). We can apply the theory and results to show that a stabilising

compensator-based controller can be applied to the system [10]. The observer design is

mainly needed to provide the feedback control law with estimated state variables, and the

control law and observer are combined into a complete system called the compensator.

This technique requires a limited measurement of the state as a condition for a system

of the assumed form

ẏ(t) =A y(t) +G (y(t)) +Bu(t) , y(0) = y0 , (4.4)

where y(t) is in a state space L2(Ω) and u(t) is in a control space U . From Eq, (4.3), a

state estimate ỹ(t) is computed by solving the observer equation

˙̃y(t) =A ỹ(t) +G ( ỹ(t)) +Bu(t) +L
�

z(t)−C ỹ(t)
�

, ỹ(0) = ỹ0 . (4.5)

The feedback control law is

u(t) = −K ỹ(t) , (4.6)

where K is called the feedback operator. As usual, the operator K and estimator gain

operator L are determined by the linear quadratic regulator (LQR) and Kalman estimator

(LQE), respectively. From the above, we already know that

K =R−1B T
Π . (4.7)
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Next, P is found as the non-negative definite solution of

AP +PA T −P C TCP + Q̄ = 0 ,

where Q̄ is a non-negative definite weighting operator. If the solution P exists, we can

define

L =PC T . (4.8)

From Eqs. (4.3)-(4.8), we obtain the closed loop compensator







ẏ(t) =A y(t)−BK ỹ(t) +G (y(t)) ,

˙̃y(t) =LC y(t) + (A −LC −BK ) ỹ(t) +G ( ỹ(t)) ,

y(0) = y0 , ỹ(0) = ỹ0 .

(4.9)

4.3. Reduced-order compensators

Implementation of the controller involves some numerical discretisation scheme. For

example, a finite element method provides finite-dimensional approximations of Eqs. (4.3)

and (4.4) of order N , where order refers to the degree of freedom of the finite element:









ẏN (t) = AN yN (t) +GN (yN (t)) +BNuN (t) ,

yN (0) = yN
0

,

zN (t) = CN yN (t) ,

with AN = (M+ S)−1(αS+ βD), the BN constructed by integration of the product of b(x)

and the test function ξ(x), and GN (y) = (M + S)−1 yT
Ny. In a full-order compensator

design, the order N approximations are used to compute KN and LN . The respective finite-

dimensional approximations from the compensator equation (4.5) and control law (4.6)

are








˙̃yN (t) =AN ỹN (t) +GN ( ỹN (t)) +BNuN (t) +LN
�

zN (t)−CN ỹN (t)
�

,

ỹN (0) = ỹN
0 ,

uN (t) =−KN ỹN (t) ;

and the approximation to the closed-loop compensator system (henceforth referred to as

full-order) is









ẏN (t) =AN yN (t)−BN
K

N ỹN (t) +GN (yN (t)) ,

˙̃yN (t) =LN
C

N yN (t) +AN ỹN (t)−LN
C

N ỹN (t)−BN
K

N ỹN (t) +GN ( ỹN (t)) ,

yN (0) =yN
0 , ỹN (0) = ỹN

0 .

(4.10)

However, as real-time control via the full-order compensator may not be possible for

the many physical problems that require large discretised systems for an adequate approx-

imation, a reduced-order compensator is used. A “reduce-then-design” approach has the
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potential drawback that important physics or other information in the model can be lost be-

fore the controller is obtained [19], so we adopt a “design-then-reduce” approach — i.e. a

controller is designed based on the high-order model, and then reduced:

¨

˙̃yK(t) =AK ỹK(t) +GK( ỹK(t)) +BKuK(t) +LK
�

zK(t)−CK ỹK(t)
�

,

ỹK(0) = ỹK
0 ,

(4.11)

uK(t) = −KK ỹK(t) , (4.12)

�

ẏK(t) =AK yK(t) +GK(yK(t)) +BKuK(t) ,

yK(0) =yK
0 .

(4.13)

The suggested control law (4.12) is substituted into Eqs. (4.11) and (4.13), producing









ẏK(t) =AK yK(t)−BK
K

K ỹK(t) +GK(yK(t)) ,

˙̃yK(t) =LK
C

K yK(t) +AK ỹK(t)−LK
C

K ỹK(t)−BK
K

K ỹK(t) +GK( ỹK(t)) ,

yK(0) =yK
0

, ỹK(0) = ỹK
0

.

(4.14)

Reduced bases are formed using the POD process, as described in Section 3. The reduced

bases are used to compute the compensator equation, feedback control law and model

problem in Eqs. (4.11)-(4.12). Then the reduced systems given by Eqs. (4.14) are compared

with the full-order compensator system in Eqs. (4.10), and the Backward Euler method is

applied to solve the systems (4.10) and (4.14) numerically.

5. Computational Experiments

Two examples were considered.

Example 5.1. Parametersα=0.5,β=1, T=5 and initial condition y0(x) = exp(−x) sin(πx).

Example 5.2. Parameters α = 0.0001, β = 10, T = 10, and initial condition y0(x) =

4x(1− x).

The spatial interval was taken to be [0,1], full-order dimension N = 64, reduced-order

dimension K = 8. and the spatial step size and time step size h = 1/N and 1/100, respec-

tively. The control input operator wasB =
∫ L

0
b(x)ξi(x)d x , where b(x) = x and ξi(x) is a

test function(i = 0,1, · · · , N −1). The state weighting operatorQ used in the Riccati equa-

tion calculations was (M+ S); and we set the control weighting operator R(1,1) = 10−6,

and the weighting operator Q̄ was also chosen as (M + S). Finally, we created the mea-

surement operator C , with C y(t, x) = 8
∫ 5/6

3/4
y(t, x)d x for the state estimate feedback

controller.

Fig. 1 presents uncontrolled solutions of the BBMB equation, and Figs. 2 and 3 depict

full-order controlled solutions and reduced-order controlled solutions. In the whole control

process, we find that both the full-order and reduced-order control are very stable, and
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Figure 1: Unontrolled solution of the BBMB equation for Example 5.1 (left) and Example 5.2 (right).

Figure 2: Full-order ontrolled solution (left) and redued-order ontrolled solution (right) for Exam-

ple 5.1.

although of two kinds (the control methods are slightly different for Example 5.2), the

results obtained are very similar for both Examples.

Fig. 4 shows the L2-norms for the solutions of the uncontrolled and controlled prob-

lem. For Example 5.1, the two kinds of control methods have almost the same effect; for

Example 5.2, the full-order control is stronger than the reduced-order control until the 8th

second, but after that the results are very similar. The finite element solution of the BBMB

equation is smooth and slowly tends to zero when the time becomes large. For Example 5.1,

the controlled solution at first rapidly reduces and then slowly approaches zero; for Exam-

ple 5.2, for small coefficient α and constant β the finite element approximate solution of

the BBMB equation fluctuates in a certain range, but the control solution at first rapidly

reduces and then approaches zero with very small fluctuations.



72 G.-R. Piao and H.-C. Lee

Figure 3: Full-order ontrolled solution (left) and redued-order ontrolled solution for Example 5.2.
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Figure 4: L2
-norms for the solutions of the unontrolled and ontrolled problem vs. time for Example 5.1

(left) and Example 5.2 (right).

6. Conclusion

We have investigated a reduced order model for stabilisation of the BBMB equation

through a feedback control, using a state estimate feedback. For real-time computation of

the feedback control problem, we designed a reduced order model producing results that

demonstrate our POD approach is feasible and efficient. In future, we intend to study a

feedback control problem for a complicated system using a proper orthogonal decomposi-

tion and centroidal Veronoi tessellation (POD-CVT) reduced order model.
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