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Abstract. We discuss the implementation of the finite volume method on a staggered

grid to solve the full shallow water equations with a conservative approximation for

the advection term. Stelling & Duinmeijer [15] noted that the advection approxima-

tion may be energy-head or momentum conservative, and if suitable which of these to

implement depends upon the particular flow being considered. The momentum conser-

vative scheme pursued here is shown to be suitable for 1D problems such as transcritical

flow with a shock and dam break over a rectangular bed, and we also found that our

simulation of dam break over a dry sloping bed is in good agreement with the exact

solution. Further, the results obtained using the generalised momentum conservative

approximation for 2D shallow water equations to simulate wave run up on a conical

island are in good agreement with benchmark experimental data.
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1. Introduction

Shallow water equations (SWE) are often used to model fluid flow in rivers, lakes,

estuaries or coastal areas. The main assumption in adopting a SWE model is that the

horizontal length scale is much greater than the vertical scale — and for example, complex

changes to rapidly varying flows in coastal hydrodynamics may be described, including the

inundation of dry land. From the mathematical point of view, the mass and momentum

conservation equations involved constitute an hyperbolic system, and the finite volume

method is known to be very effective for computations involving equations derived from

conservation laws (such as in SWE modelling).
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Unlike finite difference methods, where derivatives at a point are replaced with trun-

cated Taylor series, in finite volume methods the focus is on approximating the conserva-

tive equations in discrete form on a fixed volume in space called a cell. The flux entering a

given cell is identified with that leaving an adjacent cell or cells, so finite volume methods

are known as conservative schemes. In Godunov, Suliciu or other relaxation schemes, the

two equations in the SWE are approximated on the same cell and the numerical fluxes

are computed using an approximate Riemann solver — cf. [2, 10, 14, 17, 18] for descrip-

tions and analysis of this approach. Refs. [8, 13, 19] present thorough investigations of a

high-order finite volume scheme applied to uniform or non-uniform meshes for the SWE

model. Alternatively, finite volume schemes can involve approximations on adjacent cells,

resulting in schemes where the two unknowns of the SWE are calculated on a staggered

grid. Implementing a finite volume scheme on a staggered grid has a great advantage, for

the numerical fluxes can be computed more simply since the need to use an approximate

Riemann solver can be avoided. Staggered finite volume approximations for solving non-

linear hyperbolic systems involving conservation laws have been investigated in the past

few years [4,9,15,16]. The advection term in a SWE model is the most difficult to approx-

imate, and Stelling & Duinmeijer [15] discuss two alternative approaches (energy-head or

momentum conservative) — although their applicability depends upon the particular prob-

lem. The appropriate choice of conservative method for topographies with abrupt changes

has been discussed [15],

In this article, we show that the momentum conservative approach is suitable for dam

break simulation for various bottom topographies — and also for simulations of 2D wave

run up on a conical island, found to be in good agreement with experimental data [3]

previously used for validating various nonlinear shallow water equations solvers [6,12,20].

Our discussion starts in Section 2 with a description of the finite volume method on a

staggered grid for a simple linear SWE model. The momentum conservative scheme for

a nonlinear 1D SWE model is then discussed in Section 3, and in Section 4 the scheme

is implemented for various shallow water flows. The analogous conservative scheme for

2D shallow water equations is described in Section 5, and in Section 6 we present the

simulation of run up waves on a conical island and compare the experimental data of

Ref. [3].

2. Finite Volume Method on a Staggered Grid for a Simple Linear SWE Model

We first discuss the formulation of a leapfrog method for a linear SWE model, and

stress its equivalence with the finite volume method on a staggered grid. This provides a

solid building block for further development since the method is explicit, non-dissipative,

and conditionally stable.

The simple governing equations for small amplitude gravity waves above a flat bottom

d0 are

ηt + d0ux = 0 , (2.1)

ut + gηx = 0 , (2.2)



154 S R. Pudjaprasetya and I. Magdalena

1/2i
u

+1/2i
u

-

i
xL L

1/2 0x =
Nxx1/2i

x
+ 1i

x
+1/2i

x
- 1/2Nx

x L
+

=
1x

mass

momentum

Figure 1: (Top) Leapfrog stenil (Bottom) Illustration of staggered grid, with a ell for mass and a ellfor momentum.
where η(x , t) denotes the surface elevation measured from the undisturbed water level,

u(x , t) the horizontal component of water velocity, and g is the constant gravitational

acceleration.

In a spatial domain 0 < x < L with hard wall left and right boundary conditions

u(0, t) = u(L, t) = 0, we define a staggered numerical grid with partition points x1/2 =

0, x1, · · · , x i−1/2, x i , x i+1/2, · · · , xN x+1/2 = L, and apply the second order leapfrog scheme

to (2.1) around grid points (x i, tn), and to (2.2) around (x i+1/2, tn+1/2), with stencils as

depicted in Fig. 1 (Top). Thus we consider the scheme

η
n+1/2
i
−ηn−1/2

i

∆t
+ d0

un
i+1/2
− un

i−1/2

∆x
= 0 , (2.3)

un+1
i+1/2
− un

i+1/2

∆t
+ g
η

n+1/2
i+1
−ηn+1/2

i

∆x
= 0 . (2.4)

or equivalently

ηn+1
i
−ηn

i

∆t
+ d0

un
i+1/2
− un

i−1/2

∆x
= 0 , (2.5)

un+1
i+1/2
− un

i+1/2

∆t
+ g
ηn+1

i+1
−ηn+1

i

∆x
= 0 . (2.6)

Equations (2.5) and (2.6) can be interpreted as a finite volume approximation of the

linear SWE (2.1) and (2.2). Thus consider an interval 0 < x < L with a staggered grid as

depicted in Fig. 1 (Bottom). This figure illustrates both the mass cell [x i−1/2, x i+1/2] cen-

tred at the grid point x i where the mass conservation equation (2.1) is approximated, and
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the adjacent cell [x i, x i+1] centred at the staggered grid point x i+1/2 where the momen-

tum conservation equation (2.2) is approximated. Eq, (2.5) is a discrete approximation of

the mass conservation equation (2.1) in the cell [x i−1/2, x i+1/2], since during time ∆t the

change of mass in that cell corresponds to the difference between the mass flux through the

sides x i−1/2 and x i+1/2, and in the linear SWE model the surface elevation η is neglected

such that these mass fluxes at the sides x i−1/2 and x i+1/2 are respectively d0ui−1/2 and

d0ui+1/2. In respect of (2.6), the surface height difference between sides x i and x i+1 of the

cell [x i, x i+1] with length ∆x yields an hydrostatic pressure difference g(ηn+1
i+1
−ηn+1

i
), so

the gravity induces an horizontal flow in that cell with rate (un+1
i+1/2
− un

i+1/2
)/∆t.

The leapfrog scheme (2.5) and (2.6) is of second-order accuracy, and the Courant-

Friedrichs-Lewy stability condition is 0 < C ≤ 1 where C =
p

gd0∆t/∆x . When dealing

with large gradient solutions, the scheme suffers from weak dispersion error, but this does

not occur for long waves. Finally, we note that this scheme is explicit and therefore very

efficient, and exhibits no numerical damping error for any Courant number C satisfying

the stability condition.

3. Momentum Conservative Scheme for a 1D Nonlinear SWE Model

Consider the nonlinear shallow water equations written in conservative form

ht + (hu)x = 0 , (3.1)

(hu)t +

�

hu2 +
1

2
gh2

�

x

= ghdx − C f |u|u , (3.2)

where h(x , t) denotes the total water height, η(x , t) the surface elevation, u(x , t) the

horizontal fluid velocity, d(x) the bottom topography and C f the friction coefficient — cf.

Fig. (2). A familiar equivalent form of this system is

ht + (hu)x = 0 , (3.3)

ut + uux + gηx = −C f

|u|u

h
, (3.4)

that can be obtained through a relation for the advection term

uux =
1

h

�

∂ (qu)

∂ x
− u
∂ q

∂ x

�

, (3.5)

where q = hu denotes the horizontal momentum. (This relation (3.5) will subsequently be

used in approximating the advection term.)

We now proceed to describe our staggered grid finite volume scheme for Eqs. (3.3) and

(3.4). The mass conservative approximation of Eq. (3.3) at the cell [x i−1/2, x i+1/2] is

dhn
i

d t
+

∗hn

i+ 1

2

un

i+ 1

2

− ∗hn

i− 1

2

un

i− 1

2

∆x
= 0 (3.6)
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Figure 3: Staggered grid for the nonlinear SWE.
— cf. also Fig. 3. Eq. (3.6) holds at every full grid point x i, but must be approximated at

half-step points denoted by i+1/2 (terms indicated by the superscript ∗). On implementing

the first-order upwind approximation

∗hi+ 1

2

=

¨

hi , if ui+1/2 ≥ 0 ,

hi+1 , if ui+1/2 < 0 ,
(3.7)

the term ∗hi+1/2ui+1/2 expresses the first-order approximation of mass flux at the edge

x i+1/2 as shown in Fig. 3. The upwind approximation (3.7) is a direct consequence of

considering the flow direction — when the flow is to the right (ui+1/2 ≥ 0), we take the

left flux hiui+1/2; and when the flow is to the left (ui+1/2 < 0), we take the right flux

hi+1ui+1/2. Eq. (3.6) for positive flow is thus

hn+1
i
− hn

i

∆t
+

hn
i
un

i+ 1

2

− hn
i−1

un

i− 1

2

∆x
= 0 .

Hence approximation (3.6) preserves mass conservation property at every cell [x i−1/2, x i+1/2],

and this holds for either flow direction.

Analogous to Eq. (2.6), the approximated momentum equation (3.4) at the cell [x i, x i+1]

is
dun

i+1/2

d t
+ (uux)

n
i+1/2

+ g
ηn+1

i+1
−ηn+1

i

∆x
= − C f

|u|u

h

�

�

�

�

n

i+1/2

(3.8)

as Fig. 3 also illustrates, and the nonlinear friction term involved may be calculated using

Picard linearisation — i.e.

(|u|u)n ≈ |un|un+1. (3.9)
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The approximation of the advection term (uux)i+1/2 is most important, and we recall for

clarity the momentum conservative approximation introduced in Ref. [15] in approximat-

ing the advection term using the relation (3.5). Thus under the condition that that total

water depth remains positive h̄i+1/2 > 0, the advection term in Eq. (3.5) is approximated

by

(uux)i+1/2 =
1

h̄i+ 1

2

�

q̄i+1
∗ui+1 − q̄i

∗ui

∆x
− ui+ 1

2

q̄i+1 − q̄i

∆x

�

, (3.10)

h̄i+1/2 =
1

2
(hi + hi+1) , q̄i =

1

2
(qi+ 1

2
+ qi− 1

2
) , qi+ 1

2
= ∗hi+ 1

2
ui+ 1

2
.

At points denoted by i there is no value of u, as indicated by ∗ui and approximated by

∗ui =

(

ui− 1

2
, if q̄i ≥ 0 ,

ui+ 1

2

, if q̄i < 0 .
(3.11)

Thus the choice similarly depends on the flow direction, as in approximating ∗h via (3.7),

and for positive flow the advection approximation is

q̄i

h̄i+1/2

�

ui+ 1

2
− ui− 1

2

∆x

�

=
hiui+ 1

2
+ hi−1ui− 1

2

hi + hi+1

�

ui+ 1

2
− ui− 1

2

∆x

�

.

In summary, the spatial approximation for the nonlinear SWE model is to adopt (3.6)

and (3.7) for mass conservation and (3.8), (3.9) and (3.10) for momentum balance. In

Ref. [15], this approximation is called the momentum conservative scheme. It is second-

order accurate for the linear parts but only of order one for the nonlinear parts, since they

are computed using the upwind approximation. We also note that Eq. (3.8) is implemented

when the corresponding cell [x i, x i+1] is wet, indicated by hi > 0 or hi+1 > 0, whereas in

dry cells the values ui+1/2 are set to zero. This is known as the wet-dry procedure, allowing

simulation of flows with dry areas.

4. Test Simulations for the 1D Nonlinear SWE Model

In this section, we discuss our implementation of the momentum conservative scheme

for simulating several shallow water flows, and several other cases commonly used as

benchmark tests for numerical SWE solvers. We find that our momentum conservative

scheme produces results that compare well with those from other conservative schemes,

and where there an exact solution we obtain good agreement. Except for a possible adjust-

ment at the left and right boundaries, no special treatment required for all three examples

below, indicating the robustness of our scheme. (For further comparisons, see Ref [7].)

4.1. Transcritical flow with a shock

The following is a test case designed for a relatively long computational time before a

steady state is reached [2, 11, 21]. We take the computational domain to be 0 < x < 25
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Figure 4: Transritial �ow with a shok. Left: Steady surfae pro�le at time t = 200 seonds. Right:Enlargement of the shok region.
and consider shallow flow over the topography

d(x) =

¨

−0.2+ 0.05(x − 10)2 , if 8< x < 12 ,

0 , otherwise .

The initial data are h(x , 0) = 0.33 and u(x , 0) = 0.18/0.33, the left discharge boundary

condition hu(0, t) = 0.18, right boundary h(25, t) = 0.33, and gravitational acceleration

g = 9.81. This test case contains flows with different Froude number Fr = u/
p

gh —

i.e. Fr < 1 upstream and downstream but Fr > 1 above the bump. We used ∆x = 0.05

corresponding to Nx = 501 spatial grid points, and the time step ∆t = 0.008. The surface

profile reached steady state around the time t = 125 seconds and then remained steady,

with the computation capturing a surface with a shock — cf. Fig. 4. Our result is plotted

together with a reference result obtained using 2501 grid points.

4.2. Dam break flow over a rectangular bump

We next present a dam break simulation above a rectangular bump, a rapidly varying

flow over a discontinuous bottom topography. The computational domain is 0< x < 1500,

and the initial conditions are

h(x , 0) =

¨

20 , x ≤ 750 ,

15 , otherwise ,

and zero velocity. The bottom topography is assumed to be

d(x) =

¨

−8 , if |x − 750| ≤ 1500/8 ,

0 , otherwise .

We adopted ∆x = 3.75 and ∆t = 0.2, and gravitational acceleration g = 9.81, and the

result is shown in Fig. 5. Thus as time progresses, a shock wave front travels to the right,

while a rarefaction wave moves to the left. In the enlarged plot, our result is clearly
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Figure 5: Dam break over a retangular bump. Left: Surfae pro�le at time t = 15 s ompared withthe initial pro�le. Right: Enlargement above the retangular bump.
comparable with results from Ref. [21], obtained using the non-oscillatory WENO scheme

and Runge-Kutta Discontinuous Galerkin (RKGD) approach. Apart from small wiggles near

the shock, our staggered scheme calculates the shock wave and its speed accurately. The

staggered scheme is not monotone, and the small wiggles are due to dispersion error.

4.3. Dam break into a dry bed

We also considered a dam break simulation involving a dry bed, where the computa-

tional domain was −10 < x < 10, the initial condition h(x , 0) = 1 for x < 0 and zero

elsewhere, and zero initial velocity u(x , 0) = 0. For this simulation, we used ∆x = 0.01

and ∆t = 0.003, gravitational acceleration g = 9.81, and incorporated the wet-dry proce-

dure. For a flat bed (no slope), we computed the surface elevation and horizontal velocity

for two cases — no friction and with friction. Fig. 6 displays our numerical results for

the no friction case, in which the wave front propagates as a rarefaction wave, and the

result from our momentum conservative scheme compares well with the exact solution.

As observed by Stelling & Duinmeijer [15], other conservative schemes (such as energy-

head scheme) incorrectly produce a shock wave front, unlike our momentum conservative

scheme for this dry bed case. Fig. 6 also shows that a frictional force with C f = 0.1 reduced

the wave front location and velocity.

Further, we implemented the same problem for a sloping bed, where the depth d(x)

is a linear function with slope S0 = 0.01. Fig. 7 illustrates our result, compared with the

exact solution [5]

h(x , t) =











1 , x < −t ,
1

9

�

2+ 1

2
S0 t − x/t
�2

, −t ≤ x ≤ x1 ,

max{hs(x , t),−d(x)} , x1 ≤ x < xs ,

max{0,−d(x)} , x ≥ xs ,

(4.1)

with hs(x , t) ≡ [6α(xs − x)u/R + 1

2
S0t]1/3. The wave tip region is x1 < x < xs with



160 S R. Pudjaprasetya and I. Magdalena

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

x

su
rf

a
ce

 e
le

va
tio

n

 

 

numeric
exact
numeric with friction C

f
= 0.1

−10 −5 0 5 10
0

1

2

3

4

5

6

x

h
o

ri
zo

n
ta

l v
e

lo
ci

ty

 

 

numeric
exact
numeric with friction C

f
 = 0.1

Figure 6: Dam break into a �at dry bed at time t = 1.8 seonds, without frition and with fritionoe�ient C f = 0.1. Left: Water level h. Right: Horizontal veloity u.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

x

su
rf

ac
e 

el
ev

at
io

n

 

 

numeric with friction
exact with friction
exact without friction

−5 −4 −3 −2 −1 0 1 2 3
0

0.005

0.01

0.015

0.02

x

|h
nu

m
er

ic
−

h ex
ac

t|

 

 

∆ x =.02
∆ x=.01
∆ x=.005

Figure 7: (Left) Surfae pro�le in wave tip region. (Right) Di�erene between hnumeric and hexact at time
t = 4 s for various ∆x .
x1 = (3u/2− 1)t and the wave front location is given by

xs = x1+
R

u

1

6α

�

1−
u

2
+

1

2
S0t

�6

.

For our simulation, we used the same initial data as before, but the gravitational accel-

eration g was normalised to one. We took α = 1, and the Reynolds number Re = 4.73

corresponding to friction parameter C f = 5.7143. As shown in Fig. 7 (Right), the error

decreases as ∆x decreases, but there are rather large errors at the wave front location

and a refinement does not reduce these errors significantly. Nevertheless, the agreement

elsewhere between our simulation and the exact solution indicates that the momentum

conservative scheme is otherwise suitable for this case.

5. Finite Volume Method for 2D SWE Simulations

In this section, a direct extension of the momentum conservative scheme to 2D shallow

flow is discussed. This method is described in Ref. [15], but let us recall some details for
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clarity before we show that it is suitable for simulating wave run up on a conical island.

The relevant 2D shallow water equations are

ht + (hu)x + (hv)y = 0 , (5.1)

uqt +

�

uqu+
1

2
gh2

�

x

+ (uqv)y = ghdx , (5.2)

v
qt +

�

v
qv +

1

2
gh2

�

y

+ (
v
qu)x = ghdy , (5.3)

where uq = hu and
v
q = hv denote the momentum in the x and y directions, respectively.

The equivalent form are

ht + (hu)x + (hv)y = 0 , (5.4)

ut + uux + vuy + gηx = 0 , (5.5)

vt + uvx + vvy + gηy = 0 , (5.6)

since the advection terms uux , vuy , uvx , vvy can be written in terms of uq,
v
q, u, v , and h

— i.e.

uux + vuy =
1

h

�

(uqu)x − uqxu
�

+
1

h

�

(
v
qu)y − v

qyu
�

, (5.7)

uvx + vvy =
1

h

�

(uqv)x − uqxv
�

+
1

h

�

(
v
qv)y − v

qyv

�

. (5.8)

We considered the computational domain [0, L] × [0, M] with homogeneous Neumann

boundary conditions along its four sides, and adopted the 2D staggered grid sketched in

Fig. 8 that is a generalisation of the 1D staggered grid known as the Arakawa-C grid [1].

The analogous approximation of the continuity equation (5.4) at the mass cell around

(x i, y j) is

dhi, j

d t
+

∗hi+1/2, jui+1/2, j −
∗hi−1/2, jui−1/2, j

∆x
+

∗hi, j+1/2vi, j+1/2 −
∗hi, j−1/2vi, j−1/2

∆y
= 0 , (5.9)
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with upwind approximations

∗hi+ 1

2
, j =

¨

hi, j , if ui+1/2, j ≥ 0 ,

hi+1, j , if ui+1/2, j < 0 ,
∗hi, j+ 1

2

=

¨

hi, j , if vi, j+1/2 ≥ 0 ,

hi, j+1 , if vi, j+1/2 < 0 .
(5.10)

The conservative approximation of the momentum equation (5.5) is implemented at the

light grey cell around (x i+1/2, y j), and (5.6) at the dark grey cell around (x i, y j+1/2). Anal-

ogous to the 1D case, invoking the 2D momentum conservative approximation requires a

consistent approximation for the advection terms in Eqns. (5.7) and (5.8). For positive

flow directions u > 0,v > 0 they are

dui+1/2, j

d t
+

ūqi, j

h̄i+1/2, j

ui+1/2, j − ui−1/2, j

∆x
+

v̄
qi, j−1/2

h̄i+1/2, j

ui+1/2, j − ui−1/2, j−1

∆y
+ g
ηi+1, j −ηi, j

∆x

= 0 , (5.11)

dvi, j+1/2

d t
+

ūqi−1/2, j

h̄i, j+1/2

vi, j+1/2 − vi−1, j+1/2

∆x
+

v̄
qi, j

h̄i, j+1/2

vi, j+1/2 − vi, j−1/2

∆y
+ g
ηi, j+1 −ηi, j

∆y

= 0 , (5.12)

where h̄i+1/2, j = (hi, j+hi+1, j)/2, h̄i, j+1/2 = (hi, j+hi, j+1)/2, and all other values are defined

accordingly.

6. Run Up Waves on a Conical Island

We used our 2D numerical scheme in a context where large scale 2D experimental

databases were available for comparison. Briggs et al. [3] conducted a laboratory exper-

iment to investigate solitary wave run-up on a conical island. This experiment physically

simulated a tsunami impact on a small conical island was simulated and the run-up height

measured around the island.

The experimental setup involved a large basin, 25 metres long and 30 metres wide,

with water depth h= 0.32 metres and a small island. The centre of the island was located

at x = 12.96 and y = 13.80 metres. The island was the shape of a truncated circular cone

of diameter 7.2 metres at the toe and 2.2 metres at the crest, 0.625 metres high and with

a side slope of 1 : 4. There were 27 gauges placed around the island to measure wave

heights. Fig. 9 shows a simplified sketch of the experimental setup.

A solitary wave with amplitude A/h= 0.045 was generated using the Directional Spec-

tral Wave Generator (DSWG) from the left side. The origin of the x−axis of the coordinate

system was located at the wave generator, and the y−axis was directed parallel to the wave

generator. The run up wave around the conical island was measured at several positions,

and we compared the results from our 2D numerical scheme at four gauges as indicated in

Fig. 9, with directions and positions given in Table 1.

The wave recorded by gauge 3, depicted in Fig. 10, is the generated solitary wave

that we used as input for our numerical simulation. We implemented our 2D momentum



Momentum Conservative Schemes for Shallow Water Flows 163Table 1: Gauges and their positions.
Gauges Direction Position

6 0◦ ( 9.36,13.80)

9 0◦ (10.36,13.80)

16 90◦ (12.96,11.22)

22 180◦ (15.56,13.80)
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Figure 9: Top view of the experimental basin by Briggs et.al. [3℄.
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Figure 10: The inident solitary wave as reorded by gauge 3.
conservative scheme for computing the surface elevation around a conical island, using

∆x = ∆y = 5 centimetres and ∆t = 0.01 seconds. We recorded the surface profile at

the four gauges positions above, and compare the results with experimental data of run-up

height measurements from the NOAA Center for Tsunami Research, known as a benchmark

for validating 2D run-up numerical models. The results plotted in Fig. 11 clearly show good

agreement, so we again consider that the momentum conservative scheme is suitable for

2D wave run up simulations.
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Figure 11: Time series of surfae elevations at gauges around a onial island, dash lines are experimentaldata and solid lines are numerial results.
7. Conclusions

We have implemented conservative approximations for solving both 1D and 2D shal-

low water equations, including a momentum conservative scheme was for approximating

the nonlinear advection terms. Accurate results were obtained for the two 1D test cases

of transcritical flow with shock and dam break flow over a rectangular bed. Indeed, good

agreement with exact solutions were obtained for 1D dam break over a dry sloping bed,

with and without friction. The computed 2D run up wave on a conical island was shown

to be in good agreement with experimental data. These applications are benchmark prob-

lems for numerical solvers of the nonlinear shallow water equations, and it emerged that

momentum conservative approximations are suitable for these problems. Moreover, no

special treatment was required, indicating the robustness of this approach that is easy to

implement.
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