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Abstract. This article analyses temperature data for Seoul based on a well defined
daily average temperature (DAT) derived from records dating from 1954 to 2009, and
considers related weather derivatives using a previous methodology. The temperature
data exhibit some quite distinctive features, compared to other cities that have been
considered before. Thus Seoul has: (i) four clear seasons; (ii) a significant seasonal
range, with high temperature and humidity in the summer but low temperature and
very dry weather in winter; and (iii) cycles of three cold days and four warmer days in
winter. Due to these characteristics, seasonal variance and oscillation in Seoul is more
apparent in winter and less evident in summer than in the other cities. We construct
a deterministic model for the average temperature and then simulate future weather
patterns, before pricing various weather derivative options and calculating the market
price of risk (MPR).

AMS subject classifications: 91G20, 60H15, 60J65

Key words: Weather derivatives, market price of risk, HDD, CDD, CAT.

1. Introduction

On January 4, 2010 there was a 25.8 centimeters snowfall in the central area of Korea
encompassing the Capital Region and Gangwon-do, a record-breaking event since 1937.
This heavy snowfall temporarily paralyzed transportation in that large area, and caused
numerous accidents on the icy roads. Many agricultural facilities, including the ginseng
greenhouses, were also broken by the weight of the piled-up snow. The loss of property
caused by this snowfall was estimated to total 10.6 billion won. Apart from heavy snow-
falls, the extreme weather events in Korea include unexpectedly intensive typhoons, heavy
rains and heat waves in summer, and very cold winters. The cost of the annual average
weather damage during the last ten years has been estimated to be more than 2 trillion
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won, so financial losses due to weather risks should be covered by adequate weather-
related insurances and derivatives. However, the Korean insurance market is rather stag-
nant, especially in regard to weather risks. According to the General Insurance Association
of Korea, the number of weather-related contracts was thirty-six in 2002, twenty-seven in
2003, and forty-one in 2004. Although the market may be growing, it is restricted to con-
tingency insurance where the insurance companies compensate the insured for damages
that actually happen, and the proper estimation of total losses between the policyholders
and the companies remains highly controversial.

The importance of weather risk has been recognized in most developed countries,
where it is fast becoming customary to provide against uncertain climatic change. The
typical provision includes the introduction of weather derivatives and associated Risk Man-
agement. An early weather transaction was executed by Aquila Energy, which structured a
dual-commodity hedge for the Edison Company in 1996. Over-the-counter (OTC) weather
derivatives have been traded since 1997, and at the Chicago Mercantile Exchange (CME)
since the summer of 1999. In September 2003, the CME launched seasonality products for
ten new cities, and then monthly for a list of twelve cities in the USA that was expanded
to include five European cities. The CME now offers temperature products for twenty-four
cities in the USA, six in Canada, eleven in Europe, three in Australia, and three elsewhere in
the Asia-Pacific — cf. Tables 1 and 2). In addition to the increasing number of cities covered
at the CME, the volume of weather derivative contracts issued has significantly increased
— from 630,000 in 2005 to 798,000 in 2006, and to nearly 1,000,000 in 2007 [12, 23].
Although the volume did fall by about 16 % in 2008, that occurred during the onset of the
current global financial crisis.

With the rapid growth of weather-related industries, relevant futures prices have been
studied extensively [2–6,9,11,13,15–17,19–22,25–29]. Since weather derivatives are non-
tradable, no-arbitrage models (such as the Black-Scholes model) are inapplicable to pricing
weather options. In 2000, Dornier & Querel [13] used mean-reverting Itô diffusions based
on a standard Brownian motion to model Chicago temperature data. Brody et al.! [9]
proposed another dynamical model based on a fractional Brownian motion, and Alaton
et al. [2] applied the Ornstein-Uhlenbeck process with a monthly variation to analyze the
temperature at the Bromma Airport, Stockholm. Benth et al. [4, 5] generalized Dornier
& Querel’s approach by employing continuous autoregressive (CAR) models to analyze
temperature data at Stockholm; and Härdle & Cabrera [16] also applied the CAR approach
to Berlin temperature data, but they considered a nonzero market price of risk (MPR). To
date no significant research for Korean weather derivatives and pricing has been reported,
and a weather market has yet to be introduced. However, in order to keep pace with the
growth of world-wide weather markets, the Financial Supervisory Commission of Korea
now seems to favour the introduction and development of weather derivatives. The Korea
Meteorological Administration (KMA) has also recently announced it intends to develop a
weather index effective from 2012, to serve as one basic reference.

In this paper, we analyse the Seoul temperature data and then price related weather
options, using the approach adopted in Refs. [2], [5] and [16]. The paper is organized as
follows. In Section 2, we construct our Seoul temperature model based on observed data.
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Table 1: Weather product: Temperature on CME (December, 2010).

Product name Region
U.S. Cooling (Monthly/Seasonal) Atlanta, Chicago, Cincinnati

U.S U.S. Heating (Monthly/Seasonal) New York, Dallas, Philadelphia
U.S. Weekly Weather Las Vegas, Boston, Houston, etc.

Canada CAT (Monthly/Seasonal) Calgary, Edmonton
Canada Canada Cooling (Monthly/Seasonal) Montreal, Toronto

Canada Heating (Monthly/Seasonal) Vancouver, Winnipeg
Europe Europe CAT (Monthly/Seasonal) London, Paris, Amsterdam, Berlin

Europe Heating (Monthly/Seasonal) Stockholm, Essen, Barcelona, Rome, etc.
Australia Australia Cooling (Monthly/Seasonal) Bankstown, Sydney

Australia Heating (Monthly/Seasonal) Brisbane Aero, Melbourne
Asia-Pacific Asia-Pacific (Monthly/Seasonal) Hiroshima, Osaka, Tokyo

Table 2: Weather product on CME (December, 2010).

Index Product name Region
Hurricane Gulf Coast, Florida, Southern Atlantic Coast

Hurricanes Hurricane Seasonal Northern Atlantic Coast, Eastern U.S.
Hurricane Seasonal Maximum Cat-In-A-Box, Florida Gold Coast

Frost Frost (Monthly/Seasonal)
Snowfall Snowfall (Monthly/Seasonal) Boston, New York Central Park, Chicago, etc.
Rainfall Rainfall (Monthly/Seasonal) Chicago O’Hare International Airport

Put and call options are then priced in Section 3, based on temperature derivatives. Finally,
in Section 4 the market price of risk (MPR) is calculated, using the Korea Composite Stock
Price Index (KOSPI).

2. Temperature Derivatives for Seoul

We investigate the temperature data for Seoul in a somewhat different way from pre-
vious analyses for other places. Firstly, most researchers [2,3,5,6,13,16] have defined the
daily mean temperature as the average of the maximum and minimum temperatures for
that day, but we adopt the following definition for the daily average temperature.

Definition 2.1 (Daily average temperature (DAT)). From the year 1997, the daily average

temperature Tt is defined to be the average temperature of 8 observed temperature values
at the 03, 06, 09, 12, 15, 18, 21, 24 hour times during the day t; and before 1997, Tt is
defined as the average temperature of 4 observed values at the 03, 09, 15, 21 hour times
during the day t.

We begin with the 20440 DAT data recorded for the 56 years from 1954.01.01 to
2009.12.31 at Seoul, Korea (Fig. 1) obtained from the KMA [1]. Leap-year day data are
excluded. These data, which basically contain seasonal periodicity and an increment trend
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Figure 1: Daily average temperature from 1954.01.01to 2009.12.31 at Seoul, Korea.

due to global warming, are to be interpreted as a function in time in the mathematical
analysis. It seems natural to try to fit the yearly periodicity with a cosine polynomial and
the global warming property with a linear term [2,5,16]. However, we assume

Λt = λ0 +λ1 t +λ2 cos
2π(t −λ3)

365
+λ4 cos

4π(t −λ5)

365
, (2.1)

and remark that the difference between the form used by Benth et al [5] and Eq. (2.1)
is the fourth term representing a half-year period. We include this term so that the ACF
analysis in Section 3.2 works when seasonality in the squared residuals remains apparent,
as will be seen in Fig. 7d. This seasonality is a distinct feature of the temperature at Seoul,
compared to the other cities that have been considered elsewhere [2,5,7,16].

Using the method of least squares, we get the coefficients λ0 = 11.1897, λ1 = 0.0001,
λ2 = 13.9112, λ3 = −161.2643, λ4 = 1.3705, and λ5 = −92.7957. The fitted function
and DAT are plotted in Fig. 2a. The blue line is the daily average temperature, while the
red one is a fitted form using Eq. (2.1). Fig. 2b also depicts these data and fitted function,
during the 10 years from 2000.1.1 to 2009.12.31. The coefficient λ2 represents half of the
temperature difference between the highest DAT in summer and the lowest DAT in winter,
which is approximately 28◦C — cf. Table 3. Compared to European cities (Berlin [16]
and Stockholm [2]) and other Asian cities (Tokyo, Osaka, Taipei [7]), this value is much
higher. The second term in Eq. (2.1) evidently reflects the greenhouse effect, with the
annual average temperature rising as seen in Table 4.
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Table 3: Temperature differences between the highest DAT in summer and the lowest DAT

in winter.

Seoul Berlin Stockholm Tokyo Osaka Taipei
27.8◦C 19.6◦C 20.8◦C 20.7◦C 23◦C 13.6◦C

Table 4: Monthly average temperatures during the 1950-1959 and 2000-2009 decades.

1 2 3 4 5 6 7 8 9 10 11 12 Annual
1950’s -4.3 -1.0 3.5 10.6 16.4 20.6 23.9 25.1 20.1 13.0 6.6 -0.5 11.2
2000’s -1.6 1.0 6.0 12.8 18.3 22.5 24.9 25.7 21.6 15.3 7.5 0.4 12.9

3. Temperature Derivatives

There are three types of temperature indices used at the CME — viz. HDD, C DD and
CAT . The HDDn and C DDn indices usually measure temperatures over a period starting
from day u1 to day un, with regard to heating and cooling when the DAT is below and
above 18◦C , respectively. The CAT index accounts for the accumulated average tempera-
ture over day u1, day u2, · · · , day un. Specifically, these three types are defined as follows:

HDDn =

n∑

i=1

max (18− Tui
, 0) , (3.1a)

C DDn =

n∑

i=1

max (Tui
− 18,0) , (3.1b)

CATn =

n∑

i=1

Tui
. (3.1c)

As shown in Table 1, the HDD and C DD indices are used in the USA, Canada and
Australia. In Europe, the CAT index substitutes for the C DD index utilizing the HDD–
C DD parity — thus

C DDn−HDDn = CATn − 18n. (3.2)

Similar to Japan, in Korea we may define the accumulated temperature index to be the
sum over the period day u1, day u2, · · · , day un of daily average temperatures, averaged
over temperatures observed 8 times daily — i.e.

CATn =

n∑

i=1

Tui
, (3.3)

where Tui
=
∑8

j=1
eTui , j/8 involves the temperature eTui , j measured at hour 3 j on day ui ,

j = 1, · · · , 8.
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Figure 2: Seasonality effect and daily average temperatures for Seoul: the blue lines repre-
sent daily average temperatures (DAT), and the red lines fitted functions given by Eq. (2.1).

3.1. Option pricing for temperature derivatives 1: HDD and CDD

In order to calculate option pricing for the HDD and C DD, we follow the scheme of
Alaton et al. [2] where the mean temperature Tt follows the Ornstein-Uhlenbeck process
with mean reverting rate a — i.e.

dTt = a(T m
t − Tt) d t +σt dWt , (3.4)
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Table 5: The quadratic variation bσµ given by Eq. (3.7).

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
3.079 2.718 2.404 2.356 2.139 1.758 1.592 1.472 1.540 2.036 2.887 3.143

where T m
t is the equilibrium or mean temperature value given by the expected temperature

at day t from the past historical data for the temperature. We normally choose T m
t = Λt ,

where Λt is given by Eq. (2.1). In Eq. (3.4), σt represents the degree of volatility around
T m

t , and Wt the Brownian motion on the probability space (Ω,F , P) with a filtration {Ft}.
To satisfy a mean-reverting property, we should add the term dT m

t /d t to Eq. (3.4) —
cf. Dornier & Querel [13]. We then arrive at the stochastic differential equation

dTt =

¨
dT m

t

d t
+ a(T m

t − Tt)

«
d t +σt dWt (3.5)

with solution given by

Tt = (x − T m
s )e
−a(t−s)+ T m

t +

∫ t

s

e−a(t−τ)στ dWτ , (3.6)

where x = Ts is the temperature observed at the starting day s. We need an estimation
of both a and σ in Eq. (3.6). For j = 1, · · · , 365, let T j denote the average temperature
of DAT j+365(k−1) where k = 1, · · · , 56 — i.e. the average of all DAT ’s at the jth day of
each year from 1954 to 2009. We then introduce an estimator σ based on the quadratic
variation of Tt — i.e.

bσµ =

√√√√ 1

Nµ

Nµ−1∑

j=0

�
T j+1+sµ

− T j+sµ

�2
, (3.7)

where µ denotes a specific month (µ = 1, · · · , 12) of the year and Nµ the number of days in
that month, and sµ indicates the number of days up to the last day of the previous month
(µ− 1).

Table 5 shows the quadratic variation bσµ of each month, where it is notable that the
variations in winter are about twice as large as those in the summer. As previously noted,
there are cycles of three cold days and four warm days during winter, and the hot temper-
ature in summer does not change significantly — and such characteristic features in the
Korean peninsula should be taken into account in modelling relevant weather derivatives
and option pricing.

With bσµ from Table 5, we obtain the mean-reversion parameter value ban = 0.2748,
based on the martingale estimation functions method [8] where

ban =

∑n
i=2 Yi−1

n
Ti − Ti−1 − dT m

i−1/d t
o

∑n
i=2 Yi−1{T m

i−1 − Ti−1}
, (3.8)
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with Yi−1 = (T
m
i−1 − Ti−1)/σ

2
i−1 (i = 2, · · · , n) and σ j = bσk if the j-th day starting from 1

January 1954 lies in the k-th month in some year.
In order to price call and put options for the HDD, we first compute the conditional

expectation and variance. Let us consider option prices under a martingale measure Q

characterized by the MPR θ , which is equivalent to P. From the Girsanov theorem, the
expectation changes under the measure Q but the variance does not — i.e. we have

EQ[Tti
|Ft] = EP[Tti

|Ft]−
θσi

ban

�
1− e−ban(ti−t)
�

= (Tt − T m
t )e
−ban(ti−t) + T m

ti
− θσi

ban

�
1− e−ban(ti−t)
�

, (3.9)

VarQ[HDDn|Ft] =
∑

VarQ[Tti
|Ft] + 2
∑

i< j

CovQ[Tti
, Tt j
|Ft]

=
∑ σ2

i

2ban

�
1− e−ban(ti−t)
�
+ 2
∑

i< j

e−ban(t j−ti)
σ2

i

2ban

�
1− e−ban(ti−t)
�

,

where Φ is the cumulative distribution function for the standard normal distribution. On
setting

βn = (K −µn)/σn , µn = EQ[HDDn|Ft] = 18n−
∑

EQ[Tti
|Ft] (3.10)

where σ2
n = VarQ[HDDn|Ft], we find the price of the HDD call option given by

HDDcal l(t) = exp [−r(tn− t)] EQ
h

max (HDDn− K , 0)|Ft

i

= exp [−r(tn− t)]

�
(µn− K)Φ(−βn) +

σnp
2π

exp
�
− β

2
n

2

��
. (3.11)

Further, the price of the HDD put option is likewise given by

HDDput(t) = exp [−r(tn − t)] EQ[max (K −HDDn, 0)|Ft]

= exp [−r(tn − t)]

�
(K −µn)

�
Φ
�K −µn

σn

�
−Φ
�
− µn

σn

��

+
σnp
2π

�
exp
�
− β

2
n

2

�
− exp
�
− µ

2
n

2σ2
n

���
. (3.12)

The formulae for C DD call and put options can be derived analogously, and are quite
similar to Eqs. (3.11) and (3.12). It is notable that θ in Eq. (3.9) represents the market
price of risk (MPR), discussed in detail in Section 4. From these equations, we get the
option prices shown in Table 6, assuming that M PR = 0. The HDD and C DD call and
put option prices with r = 0.036 are illustrated in Fig. 3 for January and August of 2011,
respectively.
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Table 6: Option prices: Market Price of Risk (MPR)=0, r = 0.036, and the trading date is
the first of December for the HDD and the first of July for the C DD, respectively.

Index HDD call HDD put CDD call CDD put

Strike price 600 600 220 220
Measurement Period Jan.2011 Jan.2011 Aug.2011 Aug.2011

Price 23.25 16.25 9.97 8.75
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Figure 3: Option prices: Market Price of Risk (MPR)= 0, r = 0.036, for the HDD and C DD

call and put options calculated for the months of January and August 2011, respectively.
The measurement period is the entire month of August, and the trading date is the first of
July in each case.

3.2. Option pricing for temperature derivatives 2: CAT

In this subsection, we estimate the CAT -futures price and its option value, using the
Benth et al. [5] temperature dynamics model. Letting Wt denote the Brownian motion on
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the probability space (Ω,F , P)with a filtration {Ft}0≤t≤τmax
, we now consider the vectorial

Ornstein-Uhlenbeck process

dXt = AXt d t + epσt dWt , (3.13)

where ep is the p-th unit vector in Rp and A is the p× p matrix

A=




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−αp −αp−1 −αp−2 · · · −α1




.

Further, denoting by Xqt the q-th coordinate of the vector Xt we have

Tt = Λt + X1t , (3.14)

whence from Ito’s lemma the temperature dynamic process is described as follows.

Lemma 3.1. The stochastic process Xt in Eq. (3.13) can be expressed as

Xs = eA(s−t)Xt +

∫ s

t

eA(s−u)epσu dWu ,

for s ≥ t ≥ 0.

We now proceed to consider the difference between the DAT and the seasonal be-
haviour

X t = Tt −Λt . (3.15)

The partial autocorrelation function (PACF) for X t is plotted in Fig. 4, showing that the
AR(3)-process [5] is suitable for the analysis of our data. The fitted autoregressive process
using MATLAB corresponds to

X t+3 = 0.9385X t+2− 0.3472X t+1+ 0.1132X t +σtεt , (3.16)

where the seasonal variance σ2
t and the residual εt are computed as follows.

We first compute the residuals bεt = X t+3 − 0.9385X t+2 + 0.3472X t+1 − 0.1132X t, as
plotted in Figs. 5a and 5b together with their squares bεt

2. The ACF of the residuals and
the squared residuals of AR(3) are plotted in Figs. 7a and 7c, showing that the residuals
are close to zero but the squared residuals exhibit a high seasonality pattern. To avoid this
problem, we consider the seasonal variance function σ2

t in Eq. (3.17). We also use the
least squares method to get the parameters c j ’s in the following formula:

σ2
t = c1 +

4∑

j=1

�
c2 j cos

2 jπt

365
+ c2 j+1 sin

2 jπt

365

�
, (3.17)
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Figure 4: Partial autocorrelation function (PACF) for X t during 1954.01.01 to 2009.12.31.
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Figure 5: Residuals bεt and squared residuals bεt
2 for the AR(3) during 1954.01.01 to

2009.12.31.
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Figure 6: Seasonal variance: daily empirical variance and fitted squared volatility function,
represented by the smoothed curve.
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(b) Residuals after
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(c) Squared residuals
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(d) Squared residuals after

Figure 7: ACF Residuals bεt and squared residuals bεt
2 for the AR(3) during the period

1954.01.01 to 2009.12.31.

where c1 = 4.4823, c2 = 2.5635, c3 = 0.7150, c4 = 0.8952, c5 = −0.5473, c6 = 0.3197,
c7 = −0.3531, c8 = −0.1315 and c9 = −0.0055. After dividing bεt

2 by the seasonal vari-
ance function σ2

t , as shown in Fig. 7d we find that the plot of the squared residuals results
in much smaller values than before — and moreover, it presents a non-seasonal pattern.
Consequently, using the finite difference approximation we obtained values for the coeffi-
cients of CAR(3) — viz. α1 = 2.0615, α2 = 1.4701, α3 = 0.2955 (cf. Benth et al. [5]).

Since the weather derivative market is not complete, we have to find a risk-neutral
probability measure Q equivalent to P. With this risk-neutral probability measure Q and
risk-free interest rate r, the arbitrage-free future price of the CAT with the temperature
measurement period [τ1,τ2] is

e−r(τ2−t)EQ



∫ τ2

τ1

Tsds− FCAT(t,τ1,τ2)

��Ft


= 0 ; (3.18)

and choosing a probability measure Qθ characterized by the market price of risk θ , the
futures price for the CAT with the temperature measurement period [τ1,τ2] is

FCAT(t,τ1,τ2)
= EQθ



∫ τ2

τ1

Tsds
��Ft


 , (3.19)
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Table 7: CAT call option prices: Market Price of Risk (MPR)= 0, r = 0.036, and the
measurement period the whole month of August, with the trading date the first of July.

Exercise time (τ) K=650 K=700 K=750

25. August 2011 138.64 92.25 45.87
28. August 2011 137.40 91.43 45.46
31. August 2011 136.17 90.61 45.05

where the price of the futures FCAT(t,τ1,τ2)
is Ft -adapted.

In Benth et al. [5], explicit formulae for the CAT futures price and the call option price
are as given in the following Propositions:

Proposition 3.1 (Benth et al. [5]). For 0≤ t ≤ τ1 < τ2, the CAT futures price is

FCAT(t,τ1,τ2)
=

∫ τ2

τ1

Λu du+ at,τ1,τ2
Xt +

∫ τ1

t

θuσuat,τ1,τ2
ep du

+

∫ τ2

τ1

θuσueT
1 A−1
h

exp[A(τ2− u)]− Ip

i
ep du ,

where at,τ1,τ2 = e′1A−1(exp (A(τ2− t))− exp (A(τ1− t))).

Proposition 3.2 (Benth et al. [5]). The price of the CAT call option at t ≤ τ is

CCAT(t,τ,τ1,τ2)
= exp [−r(τ− t)]×

n�
FCAT(t,τ1,τ2)

− K
�
Φ(w(t,τ,τ1,τ2))

+

∫ τ

t

Σ2
CAT (s,τ1,τ2) dsΦ′(w(t,τ,τ1,τ2))

o
,

with the strike price K at the exercise time τ ≤ τ1, the measurement period [τ1,τ2], and w

and ΣCAT given by

w(t,τ,τ1,τ2) =
FCAT(t,τ1,τ2)

− K
q∫ τ

t
Σ2

CAT
(s,τ1,τ2) ds

,

ΣCAT (t,τ1,τ2) = σ(t)e
′
1A−1(eA(τ2−t) − eA(τ1−t))ep .

4. Estimating the Market Price of Risk (MPR)

In Eq. (3.9) and Proposition 3.1, θ represents the market price of risk (MPR). Many re-
searchers [10,16,18] have shown that the MPR has a significant effect on pricing options,
so it must be determined to calculate the option prices for the HDD, C DD and CAT . In



322 J. Kim, D. Sheen, & S. Shin

Table 8: CAT call option prices: Market Price of Risk (MPR)=0.0029, r = 0.036, and the
measurement period the whole month of August, with the trading date the first of July.

Exercise time (τ) K = 650 K = 700 K = 750

25. August 2011 139.06 92.68 46.29
28. August 2011 137.82 91.85 45.87
31. August 2011 136.58 91.02 45.46

order to estimate the MPR value, information on the actual price for the weather deriva-
tives would be needed if we were to proceed as Härdle & Cabrera [16] did to infer the
MPR from the actual option price for Berlin — but in Korea there is no weather market.
Consequently, we computed the MPR of the Korea Composite Stock Price Index (KOSPI),
and used this value as the MPR for the Korean weather derivatives. Thus the assumed θ is

θ =
µ− r

σ
,

where r is the risk-free rate, µ is the return, and σ the stock volatility. From the returns on
stocks and on 3-year government bonds [14,24], the estimation of the MPR from the KOSPI
was −0.0029, and the absolute value of the MPR for temperature could be smaller [18].

Recalling that βn and µn in Eq. (3.10) depend upon the MPR, we proceeded to obtain
the value of θ to use in Eq. (3.9). In our calculations we used the three MPR values 0,
−0.0029 and 0.0029, and evaluated the corresponding βn and µn values (denoted by β j

n

and µ j
n, j = 0,−,+) using θ = 0, −0.0029 and 0.0029, respectively. Fig. 8 shows the

dependency of the HDD and C DD option prices on the MPR.

Remark 4.1. For the HDD call option, we get the inequalities µ−n < µ
0
n < µ

+
n , β+n <

β0
n < β

−
n and µ−n − K < µ0

n − K < µ+n − K in Section 3.1; the inequality HDD−
cal l
<

HDD0
cal l
< HDD+

cal l
follows because Φ and the exponential function are monotonic in-

creasing functions — cf. Fig. 8a. The C DD call option is quite similar. Thus since
µn =
∑

EQ[Tti
|Ft] − 18n for the C DD, we obtain µ+n < µ

0
n < µ

−
n , β−n < β

0
n < β

+
n and

µ+n − K < µ0
n− K < µ−n − K such that C DD+

cal l
< C DD0

cal l
< C DD−

cal l
— cf. Fig. 8c.

Tables 8 and 9 show the prices of CAT call options based on Propositions 3.1 and 3.2
with nonzero MPR. These results imply that the option prices depend on both the exercise
time and the MPR, decreasing as the measurement period gets closer or when the MPR is
larger.

5. Conclusions

We have extended the temperature model suggested by Alaton et al. (2002) and Benth
et al. (2007) to evaluate option prices for the temperature at Seoul. Using a deterministic
model, we price put and call options that are based on the temperature derivatives. To date
there are few investigations reported on weather derivatives and their pricing for Asian
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(c) C DD call
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Figure 8: Option prices. For r = 0.036, The calculated HDD and C DD options for the
months of January and August 2011, respectively — the measurement period is the whole
month of August, with the trading date being the first of July.

Table 9: CAT call option prices. Market Price of Risk (MPR)=-0.0029, r = 0.036, and the
measurement period is the whole month of August, with the trading date the first of July.

Exercise time (τ) K = 650 K = 700 K = 750

25. August 2011 138.22 91.83 45.44
28. August 2011 136.98 91.01 45.04
31. August 2011 135.75 90.19 44.63

countries, including Korea. We focused on the temperature for Seoul, but our analysis is
readily applicable to other Asian cities.

Since no weather derivatives market exists in Seoul, we considered the market price
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of risk (MPR) using the Korea Composite Stock Price Index (KOSPI). In particular, we
assumed that the MPR is constant, an assumption that deserves more scrutiny in future
research — e.g. it may be a piecewise constant or a time-dependent function.
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