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Abstract. To understand a genetic regulatory network, two popular mathematical mod-

els, Boolean Networks (BNs) and its extension Probabilistic Boolean Networks (PBNs)

have been proposed. Here we address the problem of constructing a sparse Probabilis-

tic Boolean Network (PBN) from a prescribed positive stationary distribution. A sparse

matrix is more preferable, as it is easier to study and identify the major components and

extract the crucial information hidden in a biological network. The captured network

construction problem is both ill-posed and computationally challenging. We present a

novel method to construct a sparse transition probability matrix from a given stationary

distribution. A series of sparse transition probability matrices can be determined once

the stationary distribution is given. By controlling the number of nonzero entries in

each column of the transition probability matrix, a desirable sparse transition proba-

bility matrix in the sense of maximum entropy can be uniquely constructed as a linear

combination of the selected sparse transition probability matrices (a set of sparse irre-

ducible matrices). Numerical examples are given to demonstrate both the efficiency and

effectiveness of the proposed method.

AMS subject classifications: 65C20, 92B05

Key words: Boolean Networks (BNs), Entropy, Probabilistic Boolean Networks (PBNs), genetic

regulatory networks, sparsity, stationary probability distribution, transition probability matrix.

1. Introduction

In the post-genome era, rapidly evolving genomic technologies have paved the way

for massive amounts of genomic data. This enhances the fast development in systems

biology, a field of study focusing on the interactions among the components of biological

systems. Through the study, one can better understand the functions and behavior of a
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biological system in a holistic manner. Building genetic and related biological networks

have been enhanced by the advancement of computational and statistical techniques. A

tremendous amount of mathematical and computing approaches have been used to glean

the understanding of biological processes over the past few decades. Directed graphs can

be viewed as the most straightforward way to model a Genetic Regulatory Network (GRN).

Bower and Bolouri [14] introduced some classic models of genetic networks. Other models

like multivariate Markov chain models [9] and regression models [38] can also be found

in the literature.

A Bayesian network [13] depicts the genetic regulatory process from a probability per-

spective. The dynamic Bayesian network, an extension of Bayesian network can describe

statistical temporal dependencies among genes. However, it does not explicitly describe

temporal relations among genes in a functional form. In the perspective of dynamical

systems, differential equations have been employed to describe the change rate of expres-

sion levels. Discrete Dynamical System (DDS) Model [23], a discrete version of ODEs,

assists one to understand the interactions among variables systematically. It has gained a

solid foot in quantitative modeling of GRNs. Other stochastic models for studying the dy-

namical properties of GRNs can be found in [26]. Mathematical models based on genetic

programming and fuzzy logic have been studied in [22]. Reviews on other mathematical

formalisms can be found in [12,33].

Two popular mathematical models, Boolean Networks (BNs) and its extension Prob-

abilistic Boolean Networks (PBNs) have been proposed in the literature. From a logical

standpoint, the expression of a gene in the network is quantized to be two states: “ON”

and “OFF”, see for instance [18,19]. This helps us in understanding the key dynamic prop-

erties of a regulatory process. BNs belong to a class of discrete dynamical systems in that

genes interact with each other precisely determined by molecular interactions over a set

of Boolean variables [20]. BN models have been applied in various aspects for its simplic-

ity and deterministic property. The uncertainty in genetic regulation process and errors

of microarray data caused by experimental noise require more realistic models other than

deterministic model like BN model. PBN model [29–32] is an extension of BN model that

incorporates the stochastic characteristics of GRNs. Each gene is regulated through a set

of Boolean functions with corresponding selection probabilities. The model combines de-

terministic functional aspects and the inherent probabilistic characteristics of complex sys-

tems. A PBN can be regarded as a Markov chain process [6] and therefore it can be studied

using the well established Markov chain theory [5]. Given a PBN, its stationary distribution

characterizes the network behavior. Efficient numerical methods [21, 36], approximation

methods [6] and perturbation methods [35] for computing transition probability matrix

and the resulting stationary distribution have been developed. These methods are impor-

tant for one to understand the structure of a genetic regulatory network and it also facili-

tates the study and the design of optimal control policies for gene intervention [8,10,28].

Network inference from steady-state data is essential in that most microarray data sets

are presumed to be obtained from sampling the steady-state. Two algorithms have been

proposed in [25] to find attractors composing a BN. Here we consider an inverse problem

of constructing a PBN based on the prescribed positive stationary probability distribution.
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This problem was first formulated as the inverse problem in [37] in the form of a con-

strained least squares problem. The basic idea is to impose a suitable criteria for selecting

PBNs, the criteria is to maximize the entropy rate of a Markov chain [17]. For more de-

tails about information theory and entropy, we refer readers to [11]. A heuristic method

based on Conjugate Gradient (CG) algorithm, an iterative method, was then proposed

to solve the resulting least squares problem. The computational cost of this problem is

huge [25, 37], we therefore seek for further reduction and approximation. The idea is to

introduce sparsity into the construction. On one hand, it can reduce the complexity of the

problem and on the other hand it agrees with the gene network property in certain ex-

tend [1]. The problem can be split into two sub-problems as follow: (i) Construct a sparse

transition probability matrix from a given positive stationary distribution (Problem 1); and

(ii) Construct a PBN from the obtained sparse transition probability matrix (Problem 2).

We note that a sparse matrix is preferable, as it is easier to identify the major component

of a network. For Problems 1 and 2, a favorable result has been obtained through adding

an α-norm term to the objective function [3]. Here we shall focus more on the follow-

ing problem: given a positive stationary distribution, we try to obtain a series of sparse

transition probability matrices and then construct a PBN from them.

Fixing the number of nonzero entries in the column of transition probability matrix, one

can obtain a unique solution among all the linear combinations of the sparsest transition

probability matrices in the context of maximum entropy [27]. Details will be elucidated in

the following sections with proof. The construction of PBN is then tackled efficiently once

knowing the PBN structures for the sparsest transition probability matrices respectively. In

this framework, the inverse problem can be efficiently solved.

The remainder of the paper is structured as follows. In Section 2, a review on BNs and

PBNs will be given. We will also briefly review our previous works on Problems 1 and 2. In

Section 3, we present the mathematical formulation of the inverse problem. Mathematical

properties of the model will also be discussed. Numerical experiments are given to demon-

strate the effectiveness of our proposed method in Section 4. Finally, concluding remarks

are given in the last section.

2. A Brief Review on BNs and PBNs

In this section, we first give an brief introduction to BNs and PBNs. We then review

some previous works related to the construction of PBNs (Problems 1 and 2). Since the

transition matrix A is sparse, for the rest of this section, we assume that the transition

probability matrix is A and its size is 2n× 2n, where n is number of genes (vertices) in the

network and each column of A has at most m non-zero entries.

A Boolean Network (BN) G(V, F) consists of a set of vertices V = {v1, v2, · · · , vn} and a

list of Boolean functions F = { f1, f2, · · · , fn} where fi : {0,1}n → {0,1}. Define vi(t) to be

the state (0 or 1) of the vertex vi at time t. The rules of the regulatory interactions among

the genes are then represented by

vi(t + 1) = fi(v(t)), i = 1,2, · · · , n
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State v1(t) v2(t) f (1) f (2)

1 0 0 0 0

2 0 1 1 0

3 1 0 0 1

4 1 1 1 0

where v(t) = [v1(t), v2(t), · · · , vn(t)]
T is called the Gene Activity Profile (GAP). The GAP

can take any possible forms (states) from the set

S = {(v1, v2, · · · , vn)
T : vi ∈ {0,1}} (2.1)

and totally there are 2n possible states in the network. It is known that eventually a BN

will enter into a cycle (attractor cycle) and stay there forever. The cycles actually have

biological significance such as cell proliferation, differentiation and apoptosis [15,16].

The following is an example of a two-gene BN (taken from [7]) with its truth table

being given in Table 1. From the table, one can see that if the current network state is 1

then it will make a transition to itself in one step. The next transition step is state 3 if the

current state is either 2 or 4. Finally if the current state is 3, the state in the next step will

be 2. The transition probability matrix (Boolean Network matrix) of the 2-gene BN is then

given by

B =











1 0 0 0

0 0 1 0

0 1 0 1

0 0 0 0











. (2.2)

Since the network is deterministic, each column in B has only one non-zero element and

the column sum is one. We remark that there is an one-to-one relation between a BN and

its corresponding BN matrix.

Since there are random errors in data measurement, stochastic model is more prefer-

able. In view of this, to overcome the deterministic rigidity of a BN model, it is nat-

ural to consider a stochastic extension of a BN model. To extend the BN model to a

stochastic model, for each vertex vi in a PBN, instead of having only one Boolean func-

tion as in the case of a BN, there are a number of Boolean functions (predictor functions)

f
(i)

j
( j = 1,2, · · · , l(i)) to be chosen for determining the state of gene vi. Here l(i) ≤ 22n

and l(i) is the total number of possible Boolean functions of gene i available. Then there

are

N =

n
∏

i=1

l(i)

different possible realizations of BNs. The probability of choosing f
(i)

j
as the predictor
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State v1(t) v2(t) f

(1)
1 f

(1)
2 f

(2)
1 f

(2)
2

1 0 0 0 1 0 1

2 0 1 1 0 0 1

3 1 0 0 1 1 0

4 1 1 1 0 0 1

function is c
(i)

j
where

0≤ c
(i)

j
≤ 1 and

l(i)
∑

j=1

c
(i)

j
= 1, i = 1,2, · · · , n.

Since there are N possible realizations of BNs and they are characterized by N vector

functions f1, f2, · · · , fN ordered lexicographically. Here f1 = ( f
(1)

1 , f
(2)

1 , · · · , f
(n)

1 ) is the first

vector function for the first BN and fN = ( f
(1)

l(1)
, f
(2)

l(2)
, · · · , f

(n)

l(n)
) is the last vector function for

the N th BN. Then in an independent PBN (the selection of the Boolean function for each

gene is assumed to be independent), the probability of choosing the kth BN having the

vector function ( f
(1)

k1
, f
(2)

k2
, · · · , f

(n)

kn
) is given by

qk =

n
∏

i=1

c
(i)

ki
, k = 1,2, · · · , N . (2.3)

We note that the transition process among the states of the set S in (2.1) is a Markov

chain process. Let a and b be any two column vectors in the set S. Then the transition

probability of the Markov chain is given by

Prob
n

v(t + 1) = a | v(t) = b
o

=

N
∑

j=1

Prob
n

v(t + 1) = a | v(t) = b, the kth network is selected
o

· qk.

The transition probability matrix A of the captured PBN (Markov chain) can then be ob-

tained by computing the above probabilities for all the possible states in the set S. It is

straightforward to show that the transition probability matrix A can be written as the sum

of the BN matrices Ak (see for instance [6]):

A=

N
∑

k=1

qkAk. (2.4)

Here qk is the probability of choosing the BN having the BN matrix Ak.
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Let us consider a 2-gene example, a PBN. The truth table is given in Table 2. In this

example, each gene has two Boolean functions and therefore we have l(i) = 2 (i = 1,2)

and there are N =
∏2

i=1 l(i) = 4 possible realizations and they are

f1 = ( f
(1)

1 , f
(2)

1 ), f2 = ( f
(1)

1 , f
(2)

2 ), f3 = ( f
(1)

2 , f
(2)

1 ), f4 = ( f
(1)

2 , f
(2)

2 ).

Moreover, if

c
(1)
1 = 0.6, c

(1)
2 = 0.4, c

(2)
1 = 0.5, c

(2)
2 = 0.5,

then we can get the selection probabilities of the corresponding BNs as follow:






q1 = c
(1)
1 · c

(2)
1 = 0.3, q2 = c

(1)
1 · c

(2)
2 = 0.3,

q3 = c
(1)

2
· c(2)

1
= 0.2, q4 = c

(1)

2
· c(2)

2
= 0.2.

The transition probability matrices of corresponding BNs can be given as follow:

A1 =











1 0 0 0

0 0 1 0

0 1 0 1

0 0 0 0











, A2 =











0 0 1 0

1 0 0 0

0 0 0 0

0 1 0 1











,

A3 =











0 1 0 1

0 0 0 0

1 0 0 0

0 0 1 0











, A4 =











0 0 0 0

0 1 0 1

0 0 1 0

1 0 0 0











.

We note that transition probability matrix can be written as follows:

A= 0.3 ·A1 + 0.3 ·A2 + 0.2 · A3 + 0.2 · A4.

2.1. A maximum entropy approach for construction of a transition probability

matrix

It is known that both Problems 1 and 2 are difficult inverse problems. In [7], some

heuristic algorithms are proposed to construct a PBN from a given transition probability

matrix (Problem 2). It has been shown that entropy can be used as a measurement for find-

ing good candidates. In this subsection, we briefly review the maximum entropy method

proposed in [2] for Problem 2. As we mentioned before, because the entries in q and A are

non-negative, assuming that each column of A has m non-zero entries, there are at most

m2n

BNs constituting this PBN. We label the transition probability matrices of these BNs by

A1,A2, · · · ,Am2n systematically.

To construct a PBN, the parameters q (a distribution) has to satisfy the following con-

straints:
m2n

∑

i=1

qiAi = A (2.5)
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and

0≤ qi ≤ 1 and

m2n

∑

i=1

qi = 1.

Usually, there are too many feasible solutions and we then adopt entropy as the measure-

ment to narrow down the solution set or even get an unique (optimal) solution. In fact,

entropy is a measure of the uncertainty associated with a random variable. It measures,

in the sense of an expected value, the information contained in a message [27]. Entropy

can also be regarded as a measure of the multiplicity associated with the state of the ob-

jects [2,37].

To simplify the discussion, we define (see for instance [2])

M

















a11 · · · a1l
...

...
...

al1 · · · al l

















= [a11, · · · , al1, a12, · · · , al2, · · · , · · · , a1l , · · ·al l]
T (2.6)

and we let

U = [M(A1), M(A2), · · · , M(Am2n )] and p= M(A). (2.7)

To ensure the condition
m2n

∑

i=1

qi = 1

we add a row vector of [1,1, · · · , 1] to the bottom of the matrix U and form a new matrix

Ū . Meanwhile, we add an entry 1 at the end of the vector p to get a new vector p̄. The

maximum entropy algorithm can be formulated as follows:

max
q

m2n

∑

i=1

(−qi log qi) (2.8)

subject to

Ūq = p̄ and 0≤ qi, i = 1,2, · · · , m2n

.

We remark that the constraint qi ≤ 1 can be discarded as we require that

m2n

∑

i=1

qi = 1, 0≤ qi, i = 1,2, · · · , m2n

.

Newton’s method in conjunction with CG method can be applied to solve the above prob-

lem [2,3].

For demonstration purpose, we consider a PBN with n = 2 and m = 2. Suppose the

observed transition probability matrix of the PBN is given as follows:

A2,2 =











0.1 0.3 0.5 0.6

0.0 0.7 0.0 0.0

0.0 0.0 0.5 0.0

0.9 0.0 0.0 0.4











.



360 H. Jiang, X. Chen, Y. Qiu and W.-K. Ching

0 2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 1: The distribution q obtained by the maximum entropy approa
h (Taken from [2℄).
Using this maximum entropy approach, one can obtain the solution as shown in Fig. 1.

The x -axis represents the kth BN and the y-axis is the probability distribution q choosing

the BN. It is been shown that the re-constructed PBN is supposed to be dominated by the

9th, the 11st and the last 4 BNs. Here we see that this method can be used to identify the

major components of the BNs constituting the PBN.

A modified entropy approach has been proposed in [3]. By adding an α-norm to the

objective function (2.8), we can generate a PBN with sparser q as suggested in [4,34]. The

mathematical formulation for Problem 2 becomes

max
q







−
m2n

∑

i=1

qi log qi − β
m2n

∑

i=1

qαi







(2.9)

subject to

Ūq = p̄ and 0≤ qi, i = 1,2, · · · , m2n

,

where 0 < α < 1 and β ≥ 0. The first term is the entropy as in (2.8) and the second

term is the α-norm part which helps in getting a sparse solution q. Here α and β are two

parameters. In practice, a grid search method was adopted to find optimal values of α and

β .

We use the same example given in (2.9) to demonstrate this method and compare

with the maximum entropy method as well. Using this modified entropy approach, we

obtain the solution as shown in Fig. 2. The optimal solution is reached when α= 0.63 and

β = 1.40. Compared it with the result in Fig. 1, one can see that the modified entropy

approach can get a sparser solution.

Now the approach can also be applied to solving Problem 1. For Problem 1, suppose the



On Generating Optimal Sparse PBNs 361

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 2: The distribution q obtained by the modi�ed entropy approa
h (Taken from [3℄).
observed stationary distribution is π = [π1, · · · ,π2n]T , we have the following algorithm:

max
pi j







2n
∑

j=1

π j

 

−
2n
∑

i=1

pi j log pi j

!

−
2n
∑

j=1

 

β

2n
∑

i=1

pαi j

!







(2.10)

subject to



















2n
∑

i=1

pi j = 1, j = 1,2, · · · , 2n,

Pπ = π,

pi j ≥ 0, i, j = 1,2, · · · , 2n,

(2.11)

where the first term in (2.10) is the entropy rate of the Markov chain having transition

probability matrix P = (pi j)2n×2n . Here 0 < α < 1 and β ≥ 0 are weightings that one can

also use grid search method to find their optimal values. We remark that for Problem 1,

suppose the observed steady-state distribution is

π = [0.1,0.2,0.3,0.4]T .

Using the modified entropy method, we get the optimal transition probability matrix as

follows:

P =











0.0000 0.0830 0.1126 0.1240

0.0000 0.2097 0.2234 0.2276

0.1902 0.3250 0.3115 0.3063

0.8098 0.3824 0.3525 0.3420











.

The optimal solution is reached when α= 0.94 and β = 1.6 as suggested in [3].
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One of the major drawbacks of the proposed methods is that the computational cost

is very expensive and is infeasible for a large network. To reduce the computational cost,

we consider constructing PBNs from a class of sparse matrices. This idea is motivated by

the fact that biological networks are robust in general and more than one network can be

inferred from the data [24].

3. The New Approach

In this section, we would like to provide the mathematical formulation of the inverse

problem. Since it can be divided into two sub-problems : (i) constructing a sparse transi-

tion probability matrix from the stationary distribution (Problem 1) and (ii) approximating

the sparse transition probability matrix with PBNs, we will study them one by one (Problem

2).

3.1. Sparse transition probability matrix construction

We assume the number of genes to be n, π= [π1,π2, · · · ,πN]
T is a positive stationary

probability distribution where N = 2n. Once knowing the stationary distribution π, we can

obtain N − 1 sparse transition probability matrices as follow:

T1 =





















1− t1 0 · · · 0 0 tN

t1 1− t2 · · · 0 0 0

0 t2

. . . 0 0 0
...

...
. . .

. . .
...

...

0 0 · · · tN−2 1− tN−1 0

0 0 · · · 0 tN−1 1− tN





















, (3.1)

T2 =





















1− t1 0 · · · 0 tN−1 0

0 1− t2 · · · 0 0 tN

t1 0 1− t3 0 0 0

0 t2

. . .
. . .

...
...

...
...

. . . 0 1− tN−1 0

0 0 · · · tN−2 0 1− tN





















, (3.2)

...

TN−1 =





















1− t1 t2 · · · 0 0 0

0 1− t2 t3 0 0 0

0 0 1− t3 t4 0 0

0 0
...

. . .
. . .

...
...

...
. . . 0 1− tN−1 tN

t1 0 · · · 0 0 1− tN





















. (3.3)
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Here

t i =

1

πi

i=N
∑

i=1

1

πi

, i = 1,2, · · · , N .

We note that these matrices are the sparsest irreducible matrices.

Next, we consider the linear combinations of the N − 1 sparsest transition probability

matrices. Suppose we fix the number of nonzero entries in each column of the transition

probability matrix to be k, we are interested in getting a desirable (optimal) matrix in the

sense of maximizing the entropy. Mathematically speaking, we are to solve the following

problem:

max
pi j







−
N
∑

j=1

π j

N
∑

i=1

pi j log pi j







subject to















































































N
∑

i=1

pi j = 1, j = 1,2, · · · , N ,

Pπ = π, P = [pi j],

pi j ≥ 0, i, j = 1,2, · · · , N ,

P =

k−1
∑

j=1

qi j
Ti j

,

k−1
∑

j=1

qi j
= 1,

qi j
> 0,

{i1, i2, · · · , ik−1} ⊂ {1,2, · · · , N}.

(3.4)

Theorem 3.1. If the number of nonzero entries in each column of the transition probability

matrix is fixed to be k, then one can have C k−1
N−1 optimal solutions.

Proof. There are N − 1 sparsest transition probability matrices. We also note that for

all the N − 1 matrices, the number of nonzero entries in each column is 2. Together with

the particular characteristics embedded in these matrices we need exactly k − 1 matrices

to make a transition probability matrix with k nonzero entries in each column. We prove

that the uniformly (probability 1/(k− 1)) linear combination of any k− 1 matrices satisfy

the above optimization problem.

We assume that

P =

k−1
∑

j=1

qi j
Ti j
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then the entropy can be expressed as follows:

−
N
∑

j=1

π j

N
∑

i=1

pi j log pi j

=−
N
∑

j=1

π j



(1− t j) log(1− t j) +

k−1
∑

l=1

qil
t j log(qil

t j)





=−
N
∑

j=1

π j(1− t j) log(1− t j)−
N
∑

j=1

π j

k−1
∑

l=1

h

qil
t j(log(qi j

) + log(t j)))
i

=−
N
∑

j=1

π j(1− t j) log(1− t j)−
N
∑

j=1

π j t j

k−1
∑

l=1

�

qil
log(qil

)
�

−
N
∑

j=1

π j t j log(t j)

=−
N
∑

j=1

π j

�

(1− t j) log(1− t j) + t j log(t j)
�

−
N
∑

j=1

π j t j

k−1
∑

l=1

�

qil
log(qil

)
�

.

Since πi, t i , i = 1,2, · · · , N are already known, they can be viewed as constants. Apart

from that, because of the convexity of the function x log(x), one can easily achieve the

optimal solution when

qic
= qid

=
1

k− 1
, c, d ∈ {1,2, · · · , k− 1}.

This clearly states the irrelevance in selection of the k − 1 matrices. Therefore, we can

have C k−1
N−1 kinds of combinations as long as all the combination coefficients are 1/(k− 1).

Therefore this completes the proof.

From the above theorem, we know that for any fixed number k, there are C k−1
N−1 optimal

solutions among all the k − 1 linear combinations of the sparsest transition probability

matrices with the same maximum entropy. By varying the parameter k, one can improve

the entropy and get a better solution. The following theorem addresses this issue.

Theorem 3.2. The optimal entropy of the transition probability matrix is an increasing func-

tion in k (number of nonzero entries in each column).

Proof. From Theorem 3.1, we define the optimal entropy function E(k) as follows:

E(k) =−
N
∑

j=1

π j

�

(1− t j) log(1− t j) + t j log(t j)
�

−
N
∑

j=1

π j t j

l=k−1
∑

l=1

�

1

k− 1
log

�

1

k− 1

��

=−
N
∑

j=1

π j

�

(1− t j) log(1− t j) + t j log(t j)
�

+







N
∑

j=1

π j t j






log(k− 1)
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and

E(k+ 1)− E(k) =







N
∑

j=1

π j t j





 log

�

1+
1

k− 1

�

> 0.

This completes the proof.

Since for a fixed number k in transition probability matrix construction, we can have

C k−1
N−1 optimal solutions within all the possible k − 1 linear combinations of the sparsest

transition probability matrices. Among the C k−1
N−1 possibilities, we would like to choose the

most preferable one. We have the following theorem.

Theorem 3.3. The solution to the following optimization problem:

max
pi j







−
N
∑

j=1

π j

N
∑

i=1

pi j log pi j







subject to



















N
∑

i=1

pi j = 1, j = 1,2, · · · , N ,

Pπ = π, P = [pi j],

pi j ≥ 0, i, j = 1,2, · · · , N ,

(3.5)

is achieved when pi j = πi, i, j = 1,2, · · · , N.

Proof. The optimization problem is equivalent to the following minimization problem:

min
pi j







N
∑

j=1

π j

N
∑

i=1

pi j log pi j







with the same constraints. We then apply the method of Lagrange multiplier and we

rewrite














































f =

N
∑

j=1

π j

N
∑

i=1

pi j log pi j ,

ki =

N
∑

j=1

pi jπ j −πi, i = 1,2, · · · , N ,

h j =

N
∑

i=1

pi j − 1, j = 1,2, · · · , N ,

gi j = −pi j , i, j = 1,2, · · · , N .
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Then we have for λ ∈ RN , r ∈ RN , µ ∈ RN2

, such that






∇ f +∇hλ+∇kr+∇gµ = 0,

gµ = 0,

µ ≥ 0,

where







g = [g11, g12, · · · , g1N , g21, g22, · · · , g2N , · · · , gN N],

h = [h1,h2, · · · ,hN ],

k = [k1, k2, · · · , kN ].

We note that pi j > 0, so the non-negativity constraints are indeed inactive. Then we can

have the following equations:






























π j(1+ log(pi j)) +λ j + riπ j = 0, i, j = 1,2, · · · , N ,

i=N
∑

i=1

pi j = 1, j = 1,2, · · · , N ,

N
∑

j=1

pi jπ j = πi, i = 1,2, · · · , N .

We therefore have

pi j = e
−1−

λ j

π j
−ri

, i, j = 1,2, · · · , N .

Using the condition that
N
∑

i=1

pi j = 1, j = 1,2, · · · , N

one can obtain

e
−1−

λ j

π j

N
∑

i=1

e−ri = 1, j = 1,2, · · · , N . (3.6)

On the other hand, with
N
∑

j=1

pi jπ j = πi, i = 1,2, · · · , N

we get

e−ri

N
∑

j=1

π je
−1−

λ j

π j = πi, i = 1,2, · · · , N . (3.7)

Using Equation (3.6), we know that e−1−(λ j/π j) is a constant. If we define

e
−1−

λ j

π j = C
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then from Equation (3.7) we have

e−ri C = πi, i = 1,2, · · · , N .

This implies that

pi j = e
−ri−1−

λ j

π j = e−ri C = πi, i, j = 1,2, · · · , N .

We note that

∇2 f +

N
∑

i=1

λi∇
2hi +

N
∑

j=1

r j∇
2k j +

N
∑

l=1

N
∑

m=1

µlm∇
2 gi j = Diag(p̃)

where

p̃ =

�

π1

p11

,
π2

p12

, · · · ,
πN

p1N

,
π1

p21

, · · · ,
πN

pN N

�T

.

It is clear that the Hessian matrix is positive definite, hence pi j = πi, i, j = 1,2, · · · , N is

the global optimal minimum point of the function f subject to the constraints. Hence the

proof is complete.

Knowing that Tstd = [pi j] where pi j = πi, (i, j = 1,2, · · · , N) is the transition probabil-

ity matrix with maximum entropy, we can differentiate (select the best) the C k−1
N−1

possible

transition probability matrices by using the Euclidean distances between the matrices and

the matrix Tstd . Fixing the number k, for matrix TestM in C k−1
N−1 transition probability

matrices, the smallest distance between TestM and Tstd indicates that the corresponding

matrix contains the most abundant information. We therefore choose the matrix as our

preferable transition probability matrix.

3.2. Construction of PBNs from the selected transition probability matrix

In the process of constructing PBNs from the transition probability matrix, a favorable

result has been obtained through the technique of adding α-norm to the objective function.

We thus can utilize the algorithm to get the desired PBNs.

For Ti , i = 1,2, · · · , N , as there are only two nonzero entries in each column in these

matrices, it is very fast to get the desired PBNs for all the N − 1 matrices. Without loss of

generality, we hypothesize that

T j =

M
∑

l=1

coe f
j

l
B

j

l
, j = 1,2, · · · , N .

For a fixed number k, if we assume the optimal transition probability matrix is in the

following expression:

OPk =
1

k− 1

k−1
∑

j=1

Ti j
, {i j , j = 1,2, · · · , k− 1} ⊂ {1,2, · · · , N}.
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Then we can directly get the desired PBNs for OPk without further computation.

OPk =
1

k− 1

k−1
∑

j=1

M
∑

l=1

coe f
i j

l
B

i j

l
.

This would reduce much time for the construction of PBNs, in particular when k is large, as

the major computational complexity was efficiently reduced from O(k323n) to O(k23n) [2],

thereby offering a new perspective in PBN construction.

4. Numerical Experiments

In this section, we present numerical experiments to illustrate the effectiveness of our

proposed method. Suppose the number of genes is n = 2, then the number of states

N = 2n = 4. Further assume the stationary distribution is

π = [0.1,0.2,0.3,0.4]T .

Once we know the information, it’s straightforward to construct the set of sparsest proba-

bility transition matrices T1, T2, T3.

T1 =











0.52 0.00 0.00 0.12

0.48 0.76 0.00 0.00

0.00 0.24 0.84 0.00

0.00 0.00 0.16 0.88











, T2 =











0.52 0.00 0.16 0.00

0.00 0.76 0.00 0.12

0.48 0.00 0.84 0.00

0.00 0.24 0.00 0.88











, (4.1)

T3 =











0.52 0.24 0.00 0.00

0.00 0.76 0.16 0.00

0.00 0.00 0.84 0.12

0.48 0.00 0.00 0.88











and Tstd =











0.1 0.1 0.1 0.1

0.2 0.2 0.2 0.2

0.3 0.3 0.3 0.3

0.4 0.4 0.4 0.4











. (4.2)

Applying the α-norm algorithm proposed in [3] to construct the PBNs, we get the major

components of BNs and their corresponding coefficients as follows:

T1 ≈ 0.12×











1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 0











+0.16×











1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 1











+0.24×











1 0 0 0

0 0 0 0

0 1 1 0

0 0 0 1











+0.48×











0 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1











,

T2 ≈ 0.12×











1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 0











+0.16×











1 0 1 0

0 1 0 0

0 0 0 0

0 0 0 1











+0.24×











1 0 0 0

0 0 0 0

0 0 1 0

0 1 0 1











+0.48×











0 0 0 0

0 1 0 0

1 0 1 0

0 0 0 1











,

T3 ≈ 0.12×











1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0











+0.16×











1 0 0 0

0 1 1 0

0 0 0 0

0 0 0 1











+0.24×











1 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1











+0.48×











0 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1











.
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N−1

matri
es with Tstd for di�erent k.
k = 2 T1 T2 T3

2-norm with Tstd 0.9763 1.0554 0.9208

k = 3 (T1 + T2)/2 (T1 + T3)/2 (T2 + T3)/2

2-norm with Tstd 0.8834 0.8704 0.8482

k = 4 (T1 + T2 + T3)/3

2-norm with Tstd 0.8374Table 4: Constru
tion of optimal transition probability matri
es for di�erent k.
PBNs

k = 2 0.12× T13 + 0.16× T23 + 0.24× T33 + 0.48× T43

k = 3 1

2

h

0.12× T12 + 0.16× T22 + 0.24× T32 + 0.48× T42 + 0.12× T13

+0.16× T23 + 0.24× T33 + 0.48× T43

i

k = 4 1

3

h

0.12×T11+0.16×T21+0.24×T31+0.48×T41+0.12×T12+0.16×T22

+0.24×T32+0.48×T42+0.12×T13+0.16×T23+0.24×T33+0.48×T43

i

Now we are ready to construct PBNs for certain given conditions. Let k = 2, with the

support of Theorem 3.3, we can find the desirable optimal transition probability matrix:

T3 having smallest distance with Tstd . Let k = 3, we can find the desired optimal transition

probability matrix: (T2 + T3)/2. When k = 4, in a similar manner, the desired optimal

transition probability matrix is (T1 + T2 + T3)/3. For better illustration, see Table 3.

Since we have already got the decomposition for transition probability matrices T1, T2,

T3, the corresponding PBNs for the optimal transition probability matrices with different k

can then be efficiently constructed. If we rewrite the PBNs for all the probability transition

matrices T1, T2, T3 in the following way:







T1 ≈ 0.12× T11 + 0.16× T21 + 0.24× T31 + 0.48× T41,

T2 ≈ 0.12× T12 + 0.16× T22 + 0.24× T32 + 0.48× T42,

T3 ≈ 0.12× T13 + 0.16× T23 + 0.24× T33 + 0.48× T43.

Then, for different values of k, the optimal transition probability matrices are given in

Table 4.

5. Conclusions

In this paper we have proposed a novel perspective to tackle the problem of PBNs

construction from a prescribed positive stationary distribution. Here we present a novel
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method to construct a sparse transition probability matrix based on a given stationary

distribution. A series of sparsest transition probability matrices can be determined once

giving the stationary distribution. Then by fixing the number of nonzero entries in each

column of the transition probability matrix, the desired sparse transition probability matrix

in the sense of maximum entropy can be uniquely constructed as a linear combination of

the selected sparsest transition probability matrices. Compelling support in theory and

efficiency in realization constitute a powerful demonstration for our developed model.
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