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Abstract. We study the TV-L1 image approximation model from primal and dual per-

spective, based on a proposed equivalent convex formulations. More specifically, we

apply a convex TV-L1 based approach to globally solve the discrete constrained opti-

mization problem of image approximation, where the unknown image function u(x) ∈
{ f1, . . . , fn}, ∀x ∈ Ω. We show that the TV-L1 formulation does provide an exact con-

vex relaxation model to the non-convex optimization problem considered. This result

greatly extends recent studies of Chan et al., from the simplest binary constrained case

to the general gray-value constrained case, through the proposed rounding scheme. In

addition, we construct a fast multiplier-based algorithm based on the proposed primal-

dual model, which properly avoids variability of the concerning TV-L1 energy function.

Numerical experiments validate the theoretical results and show that the proposed al-

gorithm is reliable and effective.

Key words: Convex optimization, primal-dual approach, total-variation regularization, image pro-

cessing.

1. Introduction

Many tasks of image processing can be formulated and solved successfully by con-

vex optimization models – e.g. image denoising [21, 24], image segmentation [5], image

labeling [4, 22] etc. The reduced convex formulations can be studied in a mathemati-

cally sound way and usually tackled by a tractable numerical scheme. Minimizing the

total-variation function for such convex image processing formulations is of great impor-

tance [5,6,17–20,24,27], as it preserves edges and sharp features.
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In their pioneer works [8,9], Chan et al. proposed the TV-L1 regularized image approx-

imation model

min
u

�

P(u) := α

∫

Ω

�

� f − u
�

� d x +

∫

Ω

|∇u(x)| d x
	

, (1.1)

which was first introduced and studied by Alliney [1, 2] for discrete one-dimensional sig-

nals’ denoising. Chan et al. [8,9] demonstrated an interesting property of the TV-L1 model

(1.1) – viz. that for the input binary image f (x) ∈ {0,1}, there exists at least one global

optimum u(x) ∈ {0,1}. It follows that the convex TV-L1 formulation (1.1) actually solves

the nonconvex optimization problem

min
u(x)∈{0,1}

α

∫

Ω

�

� f − u
�

� d x +

∫

Ω

|∇u(x)| d x , (1.2)

globally and exactly! Hence (1.1) provides an exact convex relaxation of the binary con-

strained optimization problem (1.2). Chan et al. [8, 9] also proved that rounding the

computed result of (1.1) may give a series of global optima of the binary constrained opti-

mization model (1.2).

Previous work and motivation

With the help of co-area formula, Chan et al. [8,9] proved that the energy functional P(u)

of (1.1) can be represented in terms of the upper level-set sequence of the image functions

u(x) and f (x) – i.e.

P(u) =

∫ +∞

−∞

�

|∂ Uγ| + α
�

�Uγ△Fγ
�

�

	

dγ , (1.3)

where Uγ and Fγ denote the γ−upper level set of the unknown u(x) and the input f (x)

for each γ respectively, such that

Uγ(x) =

¨

1 , when u(x)> γ

0 , when u(x)≤ γ
, x ∈ Ω , i = 1, . . . , n ; (1.4)

and |∂ Uγ| denotes the perimeter of Uγ and
�

�Uγ△Fγ
�

� the area of the symmetric difference

of the two level sets, respectively.

Yin et al. [30] pointed out that minimizing such a layer-wise energy function (1.3)

actually amounts to properly stacking the optimal Uγs, which corresponds to solving (1.2)

for each given binary indicator function of Fγ. In other words, solving (1.1) can be re-

duced to optimizing a sequence of binary constrained problems as (1.2). Since Uγ1 ⊂ Uγ2

when γ1 ≥ γ2 , the process recovers the optimum u∗(x) of (1.1) by properly arranging

all the associated level sets Uγ, γ ∈ (−∞,+∞). The same result was also discovered by

Darbon et al. [10,11] in an image graph setting, where the anisotropic total-variation term

was considered and a fast graph-cut based algorithm introduced. Goldfarb and Yin also

developed an efficient pre-flow based graph-cut approach to such L1 image approximation

regularized by discretized total-variation.
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However, in the spatial continuous setting [30], such an approach has advantages and

disadvantages for processing a gray-scale image in practice. On the one hand, the total

number of gray values is finite – i.e. u(x) ∈ {0, . . . , 255} – and hence only a finite number

of optimization problems (1.2) should be considered. On the other hand, solving (1.2) for

each layer Fγ is not trivial. In order to globally tackle (1.1), one must be at least examine a

large number of obtained level-sets – so computation directly addressing multiply layered

level-sets is impractical, in a real image processing task with a large number of different

gray values. A similar and interesting work in spatially continuous image labeling along

linearly ordered labels (i.e. layered level sets) was recently addressed [3].

In addition, the PDE-descent method is often taken to numerically approximate the

global optimum of (1.1) [8, 9, 12, 30], which smooths the total-variation term by (∂xu2

+∂yu2 + ε2)1/2. Actually, even if ε takes a small enough value, the co-area formula is no

longer satisfied. Indeed, new gray levels appear and the indicator functions are blurred.

Motivated by the above observations, we introduce the primal and dual perspective of

the TV-L1 model (1.1) and study the exactness of (1.1) as the convex relaxation of the

discrete constrained optimization problem

min
u(x)∈{ f1,..., fn}

α

∫

Ω

�

� f − u
�

� d x +

∫

Ω

|∇u(x)| d x , (1.5)

given f (x) ∈ { f1, . . . , fn}. In this paper, we assume the gray values fi , i = 1, . . . , n, are

ordered by f1 < . . . < fn. Clearly, integers 0, . . . , 255 may be taken as the option in

most cases. We greatly extend the result for the binary constrained image denoising (1.2),

obtained by Chan et al. [8,9], to the more general gray-value constrained case.

Our main contributions can be summarized as follows:

1. We propose equivalent formulations in terms of primal and dual, and build up a new

analytical framework which results in a new variational perspective of (1.1).

2. By the proposed equivalent formulations, we show that the TV-L1 formulation (1.1)

can be used as the convex relaxed model of its relevant discrete constrained image

processing task. This greatly extends the results achieved by Chan et al. [8, 9] to

more general cases, which the authors believe to be new.

3. We introduce an elegant multiplier-based algorithm, which explores the equivalent

primal-dual formualtion through two simple projection substeps, instead of tackling

the highly nonsmooth TV-L1 energy functional directly. Its reliability and efficiency

are verified by optimization theories and experiments.

In parallel to our multiplier-based method, several other dual formulations and algo-

rithmic schemes were proposed recently in the literature, [12, 14, 25, 26, 28, 29, 31]. In

contrast to [14,28,29,31], we apply the proposed equivalent primal-dual and dual formu-

lations as a complete approach to (1.1), including both variational analyses and algorithms

and not just a derivation of the algorithmic scheme. In addition, the primal-dual algorithm

we proposed differs from [14,28,29,31] for the solution u is treated as the multiplier. This

seems to be a new idea.
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2. Equivalent Models

We call the TV-L1 image approximation (1.1) primal model in this paper, for comparison

with the equivalent models introduced in this section.

2.1. Equivalent primal-dual model

With the help of conjugates [23], the data term of (1.1) can be re-expressed as

α

∫

Ω

�

� f − u
�

� = max
q∈Sα




q, f − u
�

, Sα := {q |
�

�q(x)
�

�≤ α , ∀x ∈ Ω } . (2.1)

Moreover, it is well known that the total-variation term of (1.1) can also be formulated

as [16]

∫

Ω

|∇u| d x = max
p∈C1




div p,u
�

, C1 := {p | p ∈ C1
c (Ω,R2) ,
�

�p(x)
�

�≤ 1 , ∀x ∈ Ω } . (2.2)

In view of (2.1) and (2.2), after some rearrangement the TV-L1 approximation formu-

lation (1.1) can be rewritten as

max
q∈Sα

max
p∈C1

min
u

�

E(u; q, p) :=



q, f
�

+



div p− q,u
�	

, (2.3)

which is the primal-dual model equivalent to the primal model (1.1).

2.2. Equivalent dual model

On observing that u is unconstrained and minimizing (2.3) over u, we have the linear

equality

div p = q ,

and hence the constrained maximization problem

max
q∈Sα

max
p∈C1

�

D(q, p) :=



q, f
�	

, s.t. div p = q . (2.4)

Likewise, we call (2.4) the equivalent dual model to (1.1).

2.3. Optimization facts

For the primal-dual formulation (2.3), the conditions of the minimax theorem (e.g. see

[13,15]) are all satisfied – i.e. the constraints on the dual variables p and q are convex and

the energy function is linear to both u and (p,q), hence convex l.s.c. for fixed u and concave

u.s.c. for fixed p and q. It follows that there exists at least one saddle point [13, 15], so

the min and max operators of the primal-dual model (2.3) can be interchanged – i.e.

max
q∈Sα

max
p∈C1

�

min
u

E(u; q, p)
	

= min
u

�

max
q∈Sα

max
p∈C1

E(u; q, p)
	

. (2.5)
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It is easy to see that the optimization of the primal-dual model (2.3) over the dual

variables q and p reacts on the primal formulation (1.1) of TV-L1 image approximation –

i.e. the right hand side of (2.5):

P(u) = E(u; q∗, p∗) = max
q∈Sα

max
p∈C1

E(u; q, p) .

Likewise, the dual model (2.4) can be achieved by optimizing the image function u(x)

in (2.3) – i.e. the left hand side of (2.5):

D(q, p) = E(u∗,q, p) = min
u

E(u; q, p) . (2.6)

3. Global and Exact Optima

In this section, we study the nonconvex optimization problem (1.5) and show the TV-

L1 formulation (1.1) gives the convex relaxed model of (1.5) – i.e. its optimum solves (1.5)

globally and exactly through the proposed rounding scheme. We prove several propositions

in stating our results.

Proposition 3.1 (Extremum Principle). Given the image function f (x) ∈ { f1, . . . , fn}, ∀x ∈
Ω, along with ordering f1 < . . . < fn, each optimum u∗(x) of (1.1) suffices f1 ≤ u∗(x) ≤ fn

almost everywhere.

Proof. Let u∗ be the minimum of (1.1). Due to the convexity of (1.1), u∗ is simply

accepted as the global minimum. We first prove that u∗(x)≤ fn ∀x ∈ Ω.

If u∗(x)> fn at some area Ω̃⊂ Ω, then we define the function u′ which just threshholds

the value u∗(x) to be not larger than fn, i.e.

u′(x) =

¨

fn at x ∈ Ω̃
u∗(x) at x ∈ Ω\Ω̃

.

Obviously, in view of f (x)≤ fn and u∗(x)> fn ∀x ∈ Ω̃, we have

∫

Ω

�

�u∗ − f
�

� d x =

∫

Ω\Ω̃

�

�u∗ − f
�

� d x +

¨∫

Ω̃

�

� fn − f
�

� d x +

∫

Ω̃

�

�u∗ − fn

�

� d x

«

=

∫

Ω

�

�u′ − f
�

� d x +

∫

Ω̃

�

�u∗ − fn

�

� d x .

It follows that
∫

Ω

�

� f − u′
�

� d x <

∫

Ω

�

� f − u∗
�

� d x . (3.1)

By the co-area formula of the total variation term

TV(u) =

∫ +∞

−∞

Lγ(u) dγ ,
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where Lγ(u) is the length of the γ−upper level set of u, it follows that

TV(u′) < TV(u∗) , (3.2)

because the fn−upper level set of u′ is threshholded to vanish.

From (3.1) and (3.2), we must have

∫

Ω

�

� f − u′
�

� d x + αTV(u′) <

∫

Ω

�

� f − u∗
�

� d x + αTV(u∗) .

This is in contradiction to the fact that u∗ is the global minimum of (1.1).

Likewise, we can also prove u∗(x) ≥ f1 x ∈ Ω in the same way. In consequence, we

prove that each minimum u∗(x) of (1.1) suffices u∗(x) ∈ [ f1, fn].

Proposition 3.2. Given a bounded scalar function f1 ≤ u(x) ≤ fn ∀x ∈ Ω, if an optimal

vector field p∗ maximizes the integral
∫

Ω
udiv p d x over the convex set C1, i.e.

∫

Ω

|∇u| d x =

∫

Ω

udiv p∗ d x ,

then for every γ−upper level set Uγ(x) of u(x) with γ ∈ [ f1, fm), p∗ also maximizes the

integral
∫

Ω
Uγ div p d x over the convex set C1 and

∫

Ω

Uγ div p∗ d x = |∂ Uγ| ,

which is the perimeter of the level set Uγ(x).

Proof. Consider the interval Γ = [ f1, fn] co-area formula gives

∫

Ω

|∇u| d x =

∫

Γ

∫

Ω

|∇Uγ| d x dγ. (3.3)

By applying this formula we can deduce

∫

Ω

u div p∗ d x =

∫

Ω

|∇u| d x =

∫

Γ

∫

Ω

|∇Uγ| d x dγ=

∫

Γ

�

max
p∈C1

∫

Ω

Uγ div p d x

�

dγ. (3.4)

Since u(x) =
∫ u(x)

f1
dγ=
∫

Γ
Uγ(x)dγ for any x ∈ Ω, we have

∫

Ω

u div p∗ d x =

∫

Ω

�∫

Γ

Uγ(x)dγ

�

div p∗(x) d x =

∫

Γ

∫

Ω

Uγ div p∗ d x dγ. (3.5)

Therefore combining (3.4) and (3.5),

∫

Γ

∫

Ω

Uγ div p∗ d xdγ =

∫

Γ

�

max
p∈C1

∫

Ω

Uγ div p d x

�

dγ. (3.6)
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This equality (3.6) together with the fact that for any γ ∈ [ f1, fn)

∫

Ω

Uγ div p∗ d x ≤max
p∈C1

∫

Ω

Uγ div p d x . (3.7)

Then it implies that
∫

Ω

Uγ div p∗ d x =max
p∈C1

∫

Ω

Uγ div p d x

for almost every γ ∈ [ f1, fn). Clearly, the perimeter of the level set Uγ is given by

|∂ Uγ| =

∫

Ω

|∇Uγ| d x =max
p∈C1

∫

Ω

Uγ div p d x .

Corollary 3.1. Given a bounded scalar function f1 ≤ u(x) ≤ fn ∀x ∈ Ω and n− 1 different

values γi, i = 1, . . . , n− 1 such that f1 ≤ γ1 < . . . < γn−1 ≤ fn, if an optimal vector field p∗

maximizes the integral
∫

Ω
udiv p d x over the convex set C1, then for the image function

uγ(x) =

n−1
∑

i=1

( fi+1 − fi)U
γi (x)

p∗ also maximizes the integral
∫

Ω
uγ div p d x over the convex set C1 – i.e. we have

∫

Ω

|∇uγ| d x =

∫

Ω

uγ div p∗ d x .

Proof. By virtue of Prop. 3.2, p∗ also maximize the integral

∫

Ω

Uγi div p d x

over the convex set C1 for each γi , i = 1, . . . , n− 1.

Then it follows that for the piecewise constant image function

uγ(x) =

n−1
∑

i=1

( fi+1 − fi)U
γi(x) ,

p∗ also maximizes the integral

∫

Ω

uγ div p d x =

n−1
∑

i=1

¨

( fi+1 − fi)

∫

Ω

Uγi div p d x

«

over the convex set p ∈ C1, because f1 < . . . < fn is ordered such that

fi+1 − fi > 0 , i = 1, . . . , n− 1 .
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Therefore we have
∫

Ω

|∇uγ| d x =

∫

Ω

uγ div p∗ d x .

Given the above, we can prove the following proposition:

Proposition 3.3. Given the image function f (x) ∈ { f1, . . . , fn}, where f1 < . . . < fn and the

boundary of each concerning upper level set F fi(x), i = 1, . . . , n, is regular, then for any given

n− 1 values γi, i = 1, . . . , n− 1 such that

f1 < γ1 < f2 < . . . < γn−1 < fn (3.8)

we define the image function uγ(x) by the n−1 upper level sets (1.4) of the computed optimum

u∗(x) of (1.1):

uγ(x) = f1 +

n−1
∑

i=1

( fi+1 − fi)U
γi(x) . (3.9)

Then uγ(x) ∈ { f1, . . . , fn} and uγ(x) gives an exact global optimum of (1.5).

Proof. Let (u∗,q∗, p∗) be the optimal primal-dual pair of (2.3). Hence the optimal dual

variables q∗ and p∗ suffice that q∗ maximizes the integral
∫

Ω
q( f − u) d x over the convex

set Sα and p∗ maximizes the integral
∫

Ω
udiv p d x over the convex set C1.

Now uγ(x) ∈ { f1, . . . , fn} as (3.9) can be rearranged as

uγ(x) = f1 (1− Uγ1(x))+

n−1
∑

i=2

fi (U
γi−1(x)− Uγi (x))+ fn Uγn−1(x) .

Further, uγ is also a global optimum of (1.1), since by Corollary 3.1, p∗ also maximizes

the integral
∫

Ω
uγ div p d x over the convex set C1 and

∫

Ω

|∇uγ| d x =



uγ, div p∗
�

. (3.10)

At the next step, we can prove

α

∫

Ω

�

� f − uγ
�

� d x =



q∗, f − uγ
�

. (3.11)

The optimal dual variable q∗(x) actually gives the sign of f (x)− u∗(x) at each x ∈ Ω,

when f (x) 6= u∗(x); when f (x) = u∗(x), q∗(x) can take any value in [−α,α]. Now we

assume u∗(x) ∈ [ fk, fk+1] for the position x ∈ Ω, then in view of (1.4) and (3.9) we have

u∗(x) ∈ [ fk,γk] =⇒ uγ(x) = fk

and

u∗(x) ∈ (γk, fk+1] =⇒ uγ(x) = fk+1 .

Since f (x) ∈ { f1, . . . , fn}, we can analyze q∗(x) in two cases: f (x) ≤ fk and f (x) ≥
fk+1.
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• When f (x)≤ fk, in view of u∗(x)≥ fk we have q∗(x) = −α for u∗(x)> fk or q∗(x)≥
−α for u∗(x) = f (x), in order to maximize q(x) ·( f (x)−u∗(x)) over q(x) ∈ [−α,α].

Then in both cases, q∗(x) also maximizes the product q(x) · ( f (x)− fk) or q(x) ·
( f (x)− fk+1) over q(x) ∈ [−α,α]. Hence q∗(x) maximizes q(x) · ( f (x)− uγ(x))

over q(x) ∈ [−α,α].

• When f (x) ≥ fk+1, in view of u∗(x) ≤ fk+1 we have q∗(x) = α for u∗(x) < fk+1

or q∗(x) ≤ α for u∗(x) = f (x), in order to maximize q(x) · ( f (x)− u∗(x)) q(x) ∈
[−α,α]. In both cases, q∗(x) also maximizes the product q(x) · ( f (x)− fk) or q(x) ·
( f (x)− fk+1) over q(x) ∈ [−α,α]. Hence q∗(x)maximizes q(x) ·( f (x)−uγ(x)) over

q(x) ∈ [−α,α].

Thus we have that q∗ maximizes the integral



q, f − uγ
�

over the convex set Sα, and hence

(3.11) is proven.

By virtue of (3.10), (3.11) and the dual model (2.4), we have

P(uγ) = E(uγ, p∗,q∗) =



q∗, f
�

+



uγ, div p∗ − q∗
�

=



q∗, f
�

= P(u∗) .

Then it follows that uγ is also a global minimum of (1.1) as u∗ is a global minimum of (1.1).

Since (1.1) is just the relaxed version of (1.5), uγ(x) ∈ { f1, . . . , fn} solves (1.5) exactly and

globally.

The proposed rounding scheme (3.9) actually gives

uγ(x) =







f1 , when u∗(x)< γ1

fi , when γi−1 ≤ u∗(x)< γi, i = 2, . . . , n− 1

fn , when u∗(x)≥ γn−1

.

In the experiments of this paper, we adopt the above scheme to obtain rounding results.

4. Multiplier-Based Algorithm

In this paper, we build up the algorithm upon the equivalent primal-dual model (2.3).

Clearly, the primal variable u works as the multiplier in (2.3) for the linear equality div p−
q = 0. The energy function of (2.3) gives the corresponding Lagrangian function. Thus we

define its augmented Lagrangian function as

Lc(q, p,u) =



q, f
�

+



div p− q,u
�

−
c

2



div p− q




2

where c > 0 – so the classical augmented Lagrangian algorithm can be applied in a splitting

optimization framework over each dual variables q and p, by exploring projections to

corresponding convex sets under the following multiplier-based algorithm.

Algorithm 4.1. Multiplier-Based Algorithm

• Set the starting values: q0, p0 and u0, and let k = 1;
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• Start the k−th iteration which includes two successive sub-steps:

1. Optimize qk+1 by fixing pk and uk:

qk+1 := arg max
‖q‖∞≤1

Lc(q, pk,uk)

= arg max
‖q‖∞≤1




q, f
�

−
c

2



q− (div pk − uk/c)




2
,

which is approximated by the projection

qk+1 = Proj‖q‖∞≤1( f /c + (div pk − uk/c)) ; (4.1)

2. Optimize pk+1 by fixing qk+1 and uk:

pk+1 := arg min
p∈Cλ

1

2



div p− (qk+1+ uk/c)




2
, (4.2)

which is the projection of (qk+1 + uk/c) to the convex set div Cλ and can be

implemented by Chambolle’s algorithm [7];

• Update uk+1 by

uk+1 = uk + c (qk+1− div pk+1) ; (4.3)

and set k = k+ 1, and repeat until convergence is achieved.

Clearly, Algorithm 4.1 explores two simple projection sub-steps at each iteration, which

avoids tackling the less smooth terms in (1.1) directly.

5. Numerical Experiments

In all experiments, convergence was achieved by evaluating the following error:

err = c


div p− q


/‖u‖ ,

which is the ratio of the primal-dual gap to the image approximation u(x), see (4.3).

To evaluate the performance of rounded results in the following experiments, we took

the energy difference associated with the computed optimum u∗ and the rounded result uγ

which is evaluated by

ratio =
�

�P(u∗)− P(uγ)
�

�/P(u∗) .
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(a)

(b) (c) (d) (e) (f) (g)Figure 1: (a) onvergene rate (600 iterations); (b) the ground truth image olor-oded as red: 0, green:
0.5, blue: 1; () the input image f (x); (d) the omputed image u∗(x) where α = 1; (e) the image uγrounded by {γ1 = 0.25, γ2 = 0.75}; (f) the image uγ rounded by {γ1 = 0.35, γ2 = 0.65}; (g) the di�erenebetween the two rounded results.
5.1. Synthetic image

A synthetic image f (x) ∈ {0,0.5,1} taken for this experiment is shown in Fig. 1(c),

color-coded as red: 0, green: 0.5, blue: 1. We set the penalty parameter α = 1 and the

augmented parameter c = 6, when the algorithm ran for 600 iterations and converged

with error err= 3.23× 10−7. Fig. 1(a) shows the plot of convergence rate.

In this experiment, two rounding schemes were taken: {γ1 = 0.25, γ2 = 0.75}; {γ1 =

0.35, γ2 = 0.65}. For the computed result u∗, it gave the energy P(u∗) = 2938.7. The

two corresponding rounded results produced the energy P(uγ) = 2937.3, 2937.3, i.e. both

rounding schemes gave the same energy! The energy ratios are 4.76× 10−4.

5.2. Gray value images

For the given gray-value images f (x) of the experiments, 256 gray levels are naturally

encoded by f (x) ∈ {0, . . . , 255}.
The experiment results given in Fig. 2 show the denoising of the penguin image in

Fig. 2(a), as downloaded from the middleburry data set: http://vision.middlebury.edu/MRF.

The rounding scheme is given by γ = {0.5,1.5, . . . , 255}, i.e. it just gives the nearest in-

teger. In all experiments where α = 1.3, 1, 0.5, the algorithm 4.1 converged to an error

below 2× 10−6 within 300 iterations – cf. Fig. 2(b). For the α = 1.3, 1, 0.5, the ratios of

the energy differences are all nearly zero!
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Figure 2: (a) the input image f (x); (b) plot of onvergenes (300 iterations): red irle line : α = 1.3,blue solid line: α = 1 and green star line: α = 0.5. Figures of 2nd row show the omputation resultswhen α = 1.3, 1, 0.5, respetively. Figures of 3rd row show the rounding results when α = 1.3, 1, 0.5,respetively.
The images processed in the experiments, shown in Fig. 3, are downloaded from the

Berkeley segmentation dataset and benchmark. In all experiments, we set α = 0.5. All

experiment results show the ratios of energy differences are again all nearly zeros.

6. Conclusions

This work studies the discrete constrained image approximation, based on the corre-

sponding TV-L1 energy function. We prove that the convex TV-L1 approximation model

(1.1) can be applied to solve such nonconvex optimization problem (1.5) exactly and glob-

ally, in the spatially continuous context. This greatly extends recent studies of Chan et
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Figure 3: Four input images are shown in the �rst row; the omputed images u∗(x) are given in the 2ndrow, respetively; the rounded images u∗(x) are shown in the 3rd row, respetively. In all experiments,we set α = 0.5.
al. [8, 9], from the simplest binary case to the general gray-scale case. In the numerics,

we build up the multiplier-based algorithm based upon the proposed equivalent convex

formulation, which avoids any variability in the considered TV-L1 energy considered. Its

numerical reliability and efficiency have been verified by experiments.
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