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Abstract. We discuss the development, verification, and performance of a GPU accel-
erated discontinuous Galerkin method for the solutions of two dimensional nonlinear
shallow water equations. The shallow water equations are hyperbolic partial differen-
tial equations and are widely used in the simulation of tsunami wave propagations.
Our algorithms are tailored to take advantage of the single instruction multiple data
(SIMD) architecture of graphic processing units. The time integration is accelerated by
local time stepping based on a multi-rate Adams-Bashforth scheme. A total variational
bounded limiter is adopted for nonlinear stability of the numerical scheme. This lim-
iter is coupled with a mass and momentum conserving positivity preserving limiter
for the special treatment of a dry or partially wet element in the triangulation. Accu-
racy, robustness and performance are demonstrated with the aid of test cases. Further-
more, we developed a unified multi-threading model OCCA. The kernels expressed
in OCCA model can be cross-compiled with multi-threading models OpenCL, CUDA,
and OpenMP. We compare the performance of the OCCA kernels when cross-compiled
with these models.
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1 Introduction

The shallow water equations (SWE) are of great interest in the modeling of tsunamis,
storm surges and tidal waves. They are the simplest nonlinear models for water wave
propagation. The shallow water assumptions simplify three-dimensional wave propaga-
tion to two-dimensional hyperbolic partial differential equations, reducing the complex-
ity of the model. The reduced complexity makes the shallow water equations attractive
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for tsunami modeling. These equations are valid for long waves but may represent the
wave propagation of short waves or dispersive waves poorly. However, these simpli-
fied equations provide satisfactory solutions of tsunami wave propagation [18] over long
distances.

The shallow water equations are two-dimensional hyperbolic PDEs with velocity and
fluid height as unknown quantities. These equations are complicated by the presence of
largely varying length scales, varying bathymetry, and nonlinear effects near the shore.
Stable, accurate and efficient algorithms are of great interest for these applications.

There is an extensive literature for finite difference [4, 21], finite volume [2, 18] and
finite element [22] methods for shallow water equations. Recently, there has been grow-
ing interest in using discontinuous Galerkin methods (DG) for solutions of the shallow
water equations [1,8,11,17]. DG methods are locally mass conservative like finite volume
methods and can achieve high order accuracy on unstructured meshes like finite element
methods. This allows flexibility in handling irregular boundaries with out compromis-
ing accuracy for problems with sufficiently smooth solutions. DG methods can achieve
O(HN+1/2) accuracy with a piecewise degree N polynomial approximation [14]. Where,
H is the largest length scale in the mesh.

In DG formulations, elements are coupled using weak penalty terms, resulting in
localized memory access. Furthermore, a high order polynomial representation of the
solution in each element results in high arithmetic intensity per degree of freedom. Both
of these features are well suited for the GPU hardware architecture [12, 15, 16]. This mo-
tivated us to adopt GPUs along with a nodal DG discretization for large-scale tsunami
simulations. Furthermore, to alleviate the need to write kernels for thread models like
OpenMP, CUDA, and OpenCL separately, we developed OCCA: A unified approach to
multi-threading languages. Kernels written in OCCA are cross compiled with any of
these thread models at runtime. This gives us the flexibility in choosing the most efficient
multi-threading model for a given hardware architecture, without writing new codes.

This paper is organized as follows: In Sections 2 and 3, we outline the governing
equations and nodal discontinuous Galerkin discretization. In Section 4, we describe lo-
cal time stepping using multi-rate Adams-Bashforth time integration. In Section 5, we ex-
plain the stabilization of numerical scheme using positivity preservation, wetting drying
treatment and modified total variational bounded (TVB) limiter. Several tests for verifica-
tion of accuracy and robustness are presented in Section 6. We discuss GPU kernels and
their performance in Section 7. In Section 8, we will describe the fundamentals and fea-
tures of the OCCA multi-threading model and compare the performance of the kernels
written in OCCA, when they are cross compiled with OpenCL, CUDA, and OpenMP.

2 Governing equations

The shallow water equations are depth averaged incompressible Navier-Stokes equa-
tions, and are given in conservative form by [18],
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where h, u, and v are water depth, depth averaged velocity components in longitudinal
and latitudinal directions. B is bathymetry and g is the acceleration due to gravity (see
Fig. 1 for the notation).

h−B

Ocean bed topography

Mean sea level

Free surface

Figure 1: Diagram of notations.

In simplified form, these equations are represented as
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The state vector Q, nonlinear flux vectors F, G and the source vector S are given by
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We use a high order discontinuous Galerkin method to obtain the solution of Eq. (2.2).
We explain the method in the next section.

3 Discretization

We assume the domain Ω⊂R
2, is partitioned in to a set of non-overlapping, conform-

ing triangles {Ω = ∪kDk}. We approximate the solution Q by QH, the components of
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which belong to the space of discontinuous piecewise polynomial of a given degree N in
each element (PN(Dk)). The PDEs in the Eq. (2.2) are expressed in weak form. For each
element we find QH ∈ (PN(Dk))3 such that,

(
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,φ

)
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+
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,φ

)
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∂G
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)
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Integrating by parts and replacing the multi-valued fluxes on the boundary of each
element with stable numerical fluxes F∗ and G∗gives,
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Here (·,·)Dk represents the inner product taken over the element Dk, while (·,·)∂Dk

represents the inner product taken over the boundary of the element Dk denoted by ∂Dk.
We use Lagrange polynomials with Warp & Blend interpolation nodes [13] as the basis for
the polynomial space in each element, and use well-balanced local Lax-Friedrich flux [27]
to compute F∗ and G∗. The volume integrals are computed using cubature rules for
triangles [6], while the surface integrals are computed using Gauss quadrature rules (see
Fig. 2), leading to a system of ordinary differential equations given by,

dQH

dt
=R(QH)=N (QH)+S(Q

g,+
H ,Q

g,−
H ). (3.3)

Here, R is the spatial discretization operator and N , S are nonlinear operators cor-
responding to volume and surface integrations. Q

g
H is a vector of the state variables at

the Gauss quadrature nodes. Q
g,+
H and Q

g,−
H represent the positive and negative traces of

the solution at the element interfaces. The ODEs in Eq. (3.3) are integrated using a local
time-stepping scheme to obtain the solution at a given time t.

(a) Interpolation nodes (b) Cubature nodes (c) Gauss quadrature nodes

Figure 2: The distribution of interpolation nodes, cubature integration nodes, and Gauss quadrature integration
nodes for the interpolating polynomial order 5, and the integration order 10.
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4 Local time stepping

Explicit time integration is conditionally stable; the time step ∆t, has to satisfy Courant-
Friedrichs-Lewy criterion,

∆t=min
Dk

{
Hk

a
C

}

, a= |(u,v)|+
√

gh. (4.1)

Here, Hk is the characteristic length of the element Dk, a is the wave speed, and C is a
constant that depends on the stability region of the time integration scheme and spatial
polynomial order.

For a global scheme, the smallest length scale in the mesh determines the overall time
step, which leads to a very small allowable time step size. To allow each element to be
integrated with its own allowable time step, we adopt a local time stepping based on
the multi-level third order AB scheme [10, 12] to nonlinear ODEs. For the shallow water
applications, mesh resolutions can vary in few orders of magnitude because a very fine
mesh is used near the shore regions to resolve high frequencies in the waves, while a
coarse mesh is sufficient to resolve the flow in the deep oceans. The global allowable
time step is few orders of magnitude smaller than the allowable time step for a coarse
element.

Local time stepping is done efficiently by grouping the elements into levels based
on their characteristic lengths and integrating the elements in a level with a fixed time
step size. After mesh generation, the individual time step for each element is evaluated
and elements with an allowable time step ∆t are grouped in to a level l if 2l−1∆tmin ≤
∆t < 2l∆tmin. All elements in level l are integrated with a time step 2l−1∆tmin. Once
the elements are grouped in to levels, they are re-grouped such that any two neighbor
elements are at most one level apart. The elements with smallest allowable time step
size (or finer elements) are integrated first followed by elements with larger allowable
time step size (or coarser elements). At the interface of the coarse and fine elements,
the field values of the coarse elements at intermediate time step are obtained using the
extrapolation of the AB time stepping scheme, that uses right hand side evaluations at
previous time steps.

For a given initial condition Q0, the time integration procedure is described in the
Algorithm 1. ΠHQ0 is the projection of the initial conditions on to the space of piecewise
discontinuous polynomials, n is a time level, and Nlevels is the total number of levels in
multi-rate scheme. αi’s are coefficients corresponding to the 3rd order Adams-Bashforth
linear multi-step method and βi’s are coefficients corresponding to extrapolation at the
coarse element interfaces. ∆tl(= 2l−1∆tmin) is the time step size for elements in level l,

Q
n+

nstep
Nsteps

H

∣
∣
l

is the numerical solution corresponding to the elements in level l and time

t = tn+ nstep
Nstep ∆tNlevels, here Nsteps(= 2Nlevels) is the number of intermediate time steps

needed to complete a time step update.
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Algorithm 1 Multi level Adam-Bashforth explicit time stepping

1: Q0
H =ΠHQ0 { project initial conditions on to polynomial space }

2: for n=0,1,2,··· do { time stepping until final time }

3: R(Qn
H)=N (Qn

H)+S(Q
g+,n
H ,Q

g−,n
H ) { evaluate right hand side function }

4: for nstep=1,2,··· ,Nsteps do { loop over intermediate time steps }
5: for l=1,2,··· ,Nlevels do { loop over the levels from fine to coarse }
6: if nstep%2l−1 =0 then { if the step is divisible by the level time step }

7: Q
n+

nstep
Nsteps

H

∣
∣
∣
∣
l

= Q
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nstep−2l−1
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H

∣
∣
∣
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8: { integrate elements in this level }
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∣
∣
∣
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∣
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10: { update coarse interface fields, if any }

11: R

(

Q
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∣
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=N

(

Q
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H
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Q
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Nsteps

H ,Q
g−,
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Nsteps

H

)

12: { update the right hand side for this level }

From the Eq. (4.1), it can be observed that size of the time step for the stability changes
over time with the change in characteristic speeds and the elements need to be regrouped
in to levels. Grouping the elements into levels carries a nontrivial setup cost and hence
is inefficient to do this every time step. In this work, the allowable time step for each
element is fixed throughout the simulations, and our experiments indicate that changes
in characteristic speeds are not strong enough to cause instabilities in the solutions and
do not pollute the spectral accuracy. However, if needed, elements can be regrouped
after every few time steps to satisfy the updated CFL conditions. Please note that, in
doing so, the history of the data for the solution and fluxes may need to be interpolated
or extrapolated.

5 Well-balancing, positivity preserving and slope limiting

schemes

5.1 Well-balancing

In the numerical solutions of shallow water equations, it is possible to have nonzero flux
derivatives while maintaining a steady state. In these cases, the derivatives are balanced
by the source terms from the bathymetry distribution. The numerical schemes have to
exactly balance these terms (exact C-property). We choose a numerical flux proposed
in [26, 27] to satisfy the exact C-property.

h∗,±=max(0, h±+B±−max(B+,B−)), (5.1a)
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Q∗,±=





h∗,±

h∗,±u±

h∗,±v±



. (5.1b)

Here + and − refer to positive and negative trace of field values at the element inter-
faces. Q∗ is intermediate field vector. The well-balanced fluxes are given by,

F∗,±=FLF(Q
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0
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2 (h
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0



, (5.2a)

G∗,±=GLF(Q
∗,+,Q∗,−)+





0
0

g
2 (h

±)2− g
2 (h

∗,±)2



, (5.2b)

where FLF,GLF are Lax-Friedrich fluxes at the element interfaces.

5.2 Positivity preserving limiter

Another concern in the numerical simulation of the shallow water equations is the ap-
pearance of dry areas where no water is present. The shallow water equations implic-
itly assume non-negative depth of water and hence this property has to be ensured by
the numerical scheme. Otherwise, the flux Jacobian will have non-real eigenvalues and
the PDE will no longer be hyperbolic. For a finite volume method, the water depth is
a constant in each element. An element is flagged as dry if the fluid height is below
a threshold value and is not considered as part of the simulation until the fluid height
reaches the threshold value. This is no longer valid for a high order DG discretization
since the height is typically not a constant but a non-monotonic high order polynomial.
A wetting drying scheme that conserves mass and momentum is required. Positivity
preserving algorithms have been developed under the assumptions of piecewise linear
approximation [3] for the shallow water equations and rectangular elements [28] for the
Euler equations. These were later extended to high order polynomials on rectangular el-
ements for shallow water flows [27]. These schemes cannot be extended to triangles due
to the assumptions made on numerical integration schemes. We adopt the approach pre-
sented for linear polynomials and triangular meshes in [3], and extend it to an arbitrary
order polynomial approximation.

We represent the positive preserving operator with MΠH, this operator is used along
with a TVB limiter ΛΠH at every intermediate time step in the multi-rate integration.
First, we discuss in detail the operator MΠH that ensures positivity of the fluid height.
To reduce the notational complexity, we represent the numerical solution QH with q. A
given polynomial q=(h,hu,hv)T in an element Dk is modified such that the polynomial
corresponding to the fluid height (h) is positive (≥h0) in the element, where h0 is a thresh-
old value of the fluid height for considering an element/region as dry land. At a time
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Algorithm 2 Positivity preserving limiter MΠQH := q̃n

1: hn
min =min

j
hj { minimum height across all interpolation and integration nodes }

2: if hn
min >ǫ then { if nodal values for height are +ve }

3: q̃n =qn, ∀x∈Dk { do not modify the solution }
4: else

5: qn,1=Πn
1qn { project the solution to linear polynomial }

6: if h̄n <h0 then { if dry element, i.e., mean is less than cutoff }
7: hn =h0, hun =0, and hvn =0 { modify the solution }
8: else

9: if h̄n ≥h0 then { if mean is positive }

10: hn,1
min =min

i
hn,1

i , ∀xi∈ { vertices of the triangle }

11: q̃n
j = θ(qn,1

j − q̄n)+ q̄n, θ=min

{

1,
h̄n,1−h0

h̄n−hn,1
min

}

,

level n, the polynomial solution qn =(hn,hun,hvn)T is modified to obtain q̃n using Algo-
rithm 2.

It is easy to see that linear polynomial representation of the fluid height hn,1 is pos-
itive (≥ h0) at all interpolation nodes, and so at the integration points. Note that local
conservation of mass and momentum are not violated for wet or partially wet elements.
This is achieved by keeping the constant modes in the orthogonal polynomials unaltered
during the limiting.

5.3 TVB slope limiter

A slope limiter removing high frequency oscillations in numerical solutions is applied
to avoid instabilities due to nonlinear effects. We use Cockburn and Shu’s characteristic
based TVB limiter [5, 23] designed for Runge-Kutta methods. However, the TVB limiter
does not ensure the positivity of the solution. Therefore, we perform a post processing of
the solution to ensure positivity of the fluid height. We discuss the post-processing step
without going into the details of the TVB limiter.

TVB slope limiter restricts the local solution to a linear polynomial. A linear polyno-
mial attains its maximum and minimum at the vertices. We modify ∆̂1,∆̂2,and ∆̂3 (refer
to [5] for the notation) to ∆̃1,∆̃2,and ∆̃3 without changing the average of these to ensure
the positivity of the fluid height at the vertices. The values at the vertices are given in
Fig. 3,

∆̃i = ∆̄+θ(∆̂i−∆̄), for i={1,2,3}, (5.3a)

∆̄=avg(∆̂1,∆̂2,∆̂3), (5.3b)
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h̄

h̄ + ∆̂1

h̄ + ∆̂2h̄ + ∆̂3

h̄−∆̂1+∆̂2+∆̂3

h̄+∆̂1−∆̂2+∆̂3 h̄+∆̂1+∆̂2−∆̂3

(a) TVB limiter

h̄

h̄ + ∆̃1

h̄ + ∆̃2h̄ + ∆̃3

h̄−∆̃1+∆̃2+∆̃3

h̄+∆̃1−∆̃2+∆̃3 h̄+∆̃1+∆̃2−∆̃3

(b) Modified TVB limiter

Figure 3: Modification of TVB limiter to ensure positivity of the fluid height.

θ=
h̄+∆̄−h0

∆̄− min
i,j,k={1,2,3},i 6=j 6=k

{−∆̂i+∆̂j+∆̂k}
. (5.3c)

As reported in [3, 7], a positive preservation and/or a wetting drying treatment com-
bined with a slope limiter may artificially activate each other causing instability. To avoid
this instability, the TVB limiter is not applied for elements that are considered dry. For
high order approximations, the TVB limiter may be artificially activated in the immediate
neighbors of the dry elements also. Therefore, we do not apply the TVB limiter for dry
elements and the immediate neighbors of dry elements as well. The robustness of these
limiters and effect on the solution accuracy are demonstrated in the next section.

6 Verification

In this section, we use several test cases with known analytical solutions to study the
discussed limiters. In all these test cases, we do not employ local time stepping, in other
words, we use a local time stepping with only one level.

6.1 Accuracy test for smooth solution: Couette flow

We consider Couette flow between two concentric cylinders spinning at different veloci-
ties with the exact solution given by,

h=1, u=−sin(θ)uθ , v=cos(θ)uθ, (6.1)

where azimuthal velocity uθ and bathymetry B are given by uθ =
1

75

(
−r+ 16

r

)
and B =

1
752

(
r2

2 −32log(r)− 128
r2

)
. Here, θ = tan−1( y

x ) and r =
√

x2+y2. Since the solution corre-
sponds to a steady state, the simulations are started with the exact solution as the initial
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Figure 4: The sequence of meshes used to perform convergence analysis of rotating Couette flow between two
concentric cylinders.
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Figure 5: Plot of L2 error in fluid height vs H/H0 for smooth solutions, with polynomial orders N=2,3,4, and 5.

conditions and run for a long time (t = 10s) to compute the spatial errors. We observe
L2-errors decaying like O(HN+1/2) (see Fig. 5). The order of convergence for each poly-
nomial order is computed by determining a polynomial that fits the error in the least
square sense.

6.2 Accuracy test for smooth solution: Translating vortex

We use this problem to test the accuracy of the time dependent solutions. An isentropic
vortex translates in space with a constant speed and satisfies the two dimensional Euler
equations [13, p.209]. By replacing the density (ρ) with the fluid height (h), and choosing
the gas constant γ = 2 and gravity g = 2, an analytical solution for the shallow water
equations is obtained

h=1−
β2

32π2
e2(1−r2), u=1−βe1−r2 y−y0

2π
, v=βe1−r2 x−t−x0

2π
, (6.2)
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Figure 6: The sequence of meshes used to perform convergence analysis for a translating vortex in a rectangular
domain.

where r=
√

(x−t−x0)2+(y−y0)2 and the bathymetry is a constant. A rectangular do-
main [−5,10]⊗[−6,6]∈R

2 is chosen as the domain for this problem and both the initial
conditions and Dirichlet boundary conditions are set to the exact solution. The sequence
of meshes used are given in the Fig. 6. Again we observe that L2-error converges like
O(HN+1/2) (see Fig. 5) as expected for hyperbolic PDEs [14].

6.3 Parabolic bowl

We use this test case [7,24] to study the effect of the positive preserving limiter on solution
accuracy. The bathymetry is given by a parabola, b(x,y)= αr2, where r=

√

x2+y2. The

exact solution for fluid height is non zero for r<
√

(X+Ycosωt)/α(X2−Y2), where X>0,
|Y|<X and ω2=8gα. The nonzero exact solution is given by

h(x,y,t)=
1

X+Ycos(ωt)
+α(Y2−X2)

r2

(X+Ycos(ωt))2
, (6.3a)

u(x,y,t)=−
Yωsin(ωt)

X+Ycos(ωt)

x

2
, (6.3b)

v(x,y,t)=−
Yωsin(ωt)

X+Ycos(ωt)

y

2
. (6.3c)

Here, the constants are α= 1.6×10−7m−, X = 1m−, and Y =−0.41884m− . The solu-
tions are obtained in the square domain with side length 8000m centered at the origin.
The solution is continuous, but not continuously differentiable. Fig. 7 demonstrates the
O(H1.5) behavior of the global error in fluid height for approximations with polynomials
of order N=1,2, and 3, while the local errors computed in regions far from the wet/dry
front behave like O(HN+1). Fig. 8 indicates that the errors are localized near the wet/dry
front and further mesh refinements reduce these local errors. Here m, s refer to meters
and seconds respectively.

6.4 Positivity preserving test: Rarefaction wave

We use this test case introduced in [7] to demonstrate the effectiveness of positive pre-
serving limiter. We consider a rectangular domain of 50m×40m, with a flat bottom. The
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Figure 7: Parabolic bowl test case: (a) global L2 error in fluid height (b) L2 error in fluid height for region
r<500m.

(a) H=160m, N=2, solution for fluid height (b) H=160m, N=2, error in fluid height

(c) H=40m, N=2, solution for fluid height (d) H=40m, N=2, error in fluid height

Figure 8: Parabolic bowl test case: example numerical results at time t=T/2.
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Figure 9: Rarefaction wave: global and local L2 errors in the solution for fluid height.

analytical solution depends on ξ= (x−20)
t , and is given by

(h,u,v)=







(h0, 0,0) if ξ<−
√

gh0,

(0,0,0) if ξ>2
√

gh0,

( 1
9g (ξ−2

√

gh0)2, 2
3(ξ+

√

gh0), 0) otherwise.

(6.4)

We consider h0 = 1 and g = 1. The simulations are run until final time T = 10s. A
CFL number of 0.03 is used for these simulations in order to minimize transient error
and study only the spatial accuracy. The analytical solution at time t= 2s is used as the
initial condition so that the solution is in C0(Ω). The L2 errors in the fluid height are
presented in Fig. 9. The TVB limiter is not applied for this test case since the solution
is smooth enough for a stable computation. We observe that global L2 error in fluid
height is O(H1.4), O(H1.5), and O(H1.5) for the polynomial approximations N=1,2,and 3
respectively.

Since the solution is projected onto linear polynomials, we can expect the global error
to behave like O(H1+1/2), which is observed in the estimated order of convergence. To
quantify the effect of the positive preserving limiter on the solution accuracy, the L2 errors
are measured for the region, x∈ [15,35], where the solution is continuously differentiable.
The estimated convergence are O(H2.2), O(H3.0), and O(H2.9) for the polynomials N=
1,2,and 3 respectively (see Fig. 9). The fluid height is a quadratic polynomial in space
and rational polynomial in time, hence increasing the spatial polynomial interpolation
beyond N=2 does not improve the spatial accuracy which explains the estimated order
of convergence for N=3.

There is an increase in error for further refinements. This is due to large oscillations in
the numerical solutions, and the slope limiter should be applied to control these oscilla-
tions. The point wise EOCs are plotted in the Fig. 10. It can be observed that the pollution
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(a) N=1 (b) N=3

(c) Point wise error in fluid height, N=2 and H=0.714

Figure 10: Rarefaction wave: Empirical order of convergence for polynomial orders 1 and 3, and point wise
error in fluid height for polynomial order 2.

of the solution accuracy is localized to an area of size O(T), which is the distance traveled
by the rarefaction wave in time T. The white regions in the plots indicate the error is zero
and the light blue color indicate that the error is constant due to the positivity preserving
limiter in the dry regions.

6.5 Limiter test: Two dimensional oscillating lake

We use this test case proposed in [9,27] to test the effectiveness of the positivity preserving
limiter and the modified TVB limiter. We consider a rectangular domain [−2,2]⊗[−2,2]
with a parabolic bottom topography given by

B(x,y)=h0
x2+y2

a2
, (6.5)
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(a) H=0.0625, N=4, final time=T/2 (b) H=0.03125, N=2, final time=T/2

(c) H=0.0625, N=4, final time=T (d) H=0.03125, N=2, final time=T

Figure 11: Oscillating lake 2D: example numerical solutions for fluid height.

where h0 and a are specified constants. The analytical solution is given by

h(x,y,t)=max

(

0,
σh0

a2
(2xcos(ωt)+2ysin(ωt)−σ)+h0−b

)

, (6.6a)

u(x,y,t)=−σωsin(ωt), v(x,y,t)=σωcos(ωt), (6.6b)

with frequency ω=
√

2gh0/a and time period T=2π/ω.
The constants considered are a = 1, σ = 0.5, and h0 = 0.1. The initial conditions are

defined by Eq. (6.6) with t=0. Reflecting boundary conditions are used for all the bound-
aries. Simulations are run until time T with various uniform meshes (H = 0.25, 0.125,
0.0625, and 0.03125). The numerical solutions for H= 0.0625, and 0.03125, with polyno-
mials of order 3 and 2 respectively are plotted in the Fig. 11. The solutions on the line
y= 0 for these simulations are compared with analytical solutions in Fig. 12. For a fine
mesh, the numerical solutions are in good agreement with the analytical solutions. The
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(a) H=0.0625, N=4, final time t=T/2
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(b) H=0.03125, N=2, final time t=T/2
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(c) H=0.0625, N=4, final time t=T
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(d) H=0.03125, N=2, final time t=T

Figure 12: Oscillating lake 2D: Comparison of numerical solution with analytical solution along the line y=0.

(a) N=1 (b) N=2

Figure 13: x-t empirical order of convergence of the numerical solution for the fluid height. The errors are
computed along the line segment y=0 for t∈ [0,1].



R. Gandham, D. Medina and T. Warburton / Commun. Comput. Phys., 18 (2015), pp. 37-64 53

wet-dry front pollutes the accuracy of the solution. To study the convergence properties
of spatial errors, the point wise errors are computed at very small time t∈ [0,1]. Fig. 13
shows the improvement of point wise EOCs in the solution for N=2, compared to N=1.
These point wise errors are computed along the line y=0.

6.6 Summary of the test cases

We summarize all the test cases in Table 1. For each test case, we describe the regularity
of the solution, the limiters used for the simulation, global L2 error estimates, and local
L2 estimates for the solutions with insufficient regularity.

Table 1: Summary of the test cases. For each test case in column I, column II indicates the number of dimensions
and regularity of the analytical solution, column III indicates the limiters used if any, column IV and V provide
the observed convergence rates for errors in fluid height. The local errors are measured in regions far from the
wave front.

Test case Solution Limiters Global error in Local error in

regularity fluid height fluid height

Couette flow 2D, C∞(Ω) - O(HN+1/2) O(HN+1/2)

Isentropic vortex 2D, C∞(Ω,T) - O(HN+1/2) O(HN+1/2)

Parabolic bowl 2D, C0(Ω,T) PP O(H1+1/2) O(HN+1/2)

Rarefaction wave 1D, C0(Ω,T) PP O(H1+1/2) O(HN+1)

Oscillating lake 2D, C0(Ω,T) PP, TVB - -

We demonstrated that the rate of decay in the error matches the predicted rate for
sufficiently smooth solutions, while accuracy is lost for the problems with insufficient
regularity. For these problems, we illustrated that the low EOCs are confined to regions
of wave front. To demonstrate the impact of the limiters on the solution accuracy, we
estimated the point-wise empirical order of convergence for the rarefaction wave test
case and observed that the pollution in the accuracy is localized to the regions the wave
front. The localized errors can be controlled by adaptively refining the meshes near the
irregularities in the solution, however the mesh refinement techniques are beyond the
focus of this paper.

7 GPU acceleration

A majority of the required computations are performed on an element-local way, with a
weak coupling between the neighboring elements. This results in locality of the memory
access. In addition, the high order nature of the discontinuous Galerkin methods, make
them require more computations per degree of freedom, increasing the overall computa-
tional intensity. Both of these features make their computations on GPUs more attractive.
This Section describes a mapping of the nodal DG discretization onto the wide SIMD
model of GPUs using OpenCL. See [15, 25] for a detailed description of OpenCL imple-
mentation of DG for electromagnetic applications.
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There are three major computations; volume integration, surface integration, and time
step update. OpenCL kernels VolumeKernel, SurfaceKernel, and UpdateKernel per-
form these computations respectively.

dQH

dt
︸ ︷︷ ︸

UpdateKernel

= N (QH)
︸ ︷︷ ︸

VolumeKernel

+S(Q
g,+
H ,Q

g,−
H )

︸ ︷︷ ︸

SurfaceKernel

. (7.1)

An OpenCL work group computes the integrals of one or more elements, while one
work item computes the contribution from each integration node in these kernels. For
each element, contributions from volume and surface integrals are represented as matrix-
vector products of a dense rectangular matrix and a vector of field values or fluxes. Each
work item in a work group computes one entry of the matrix-vector product for every
field to avoid the memory conflicts. Here, we explain the implementation and discuss
the performance tuning of these kernels.

Table 2: Notation.

Symbol Definition

Nfaces : Number of interfaces per triangle (3)

N : Polynomial order

Np : Number of interpolation points (N+1)*(N+2)/2

Nfp : Number of interpolation points on an interface N+1

Ncub : Number of cubature nodes on a triangle

Ngauss : Number of Gauss integration nodes on a line segment

7.1 Volume kernel

The contributions from volume integrals (N (QH)) are computed in this kernel. N (QH)
is a vector of length Np per field for each element Dk. N (QH)i represents ith entry of the
vector. The computations are

N (QH)=Pr×cF1+Ps×cF2+P×cS, (7.2)

where cF1, cF2 are numerical flux components in r-, s-directions and cS is a vector of
source terms at the cubature integration nodes. P, Pr and Ps are projection matrices that
are pre multiplied with cubature integration weights and depend only on the reference
triangle.

• Interpolation to cubature nodes: Each work item computes all the field values (cQ)
at a cubature node. This involves three matrix vector products, all with the same
interpolation matrix. The resulting field values are stored in register memory. Ncub
work items are assigned for this operation.
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• Volume flux evaluation: Each work item computes all the volume fluxes (cF1 and
cF2) and source terms (cS) at a cubature node using the cubature field values stored
in register memory, and stores them in a shared memory array for the fluxes. Ncub
work items are assigned for this operation.

• Projection to interpolation nodes: Each work item computes the contribution from
volume integrals to time derivatives at an interpolation node. This involves eight
matrix vector products (three for Pr×cF1, three for Ps×cF2 and two for P×cS) with
three projection matrices (Pr, Ps and P) and three flux vectors that were stored in
shared memory in flux evaluation. Np work items are assigned for this operation.

To accommodate the number of work items required for all the computations, a max-
imum of Np and Ncub work items are requested per element. This requires total number
of Kv*max(Ncub, Np) work items per work group, where Kv is the number of elements
processed by a work group.

7.2 Surface kernel

The contributions from surface integrals (S(Q
g,+
H ,Q

g,−
H )) are computed in this kernel.

S(Q
g,+
H ,Q

g,−
H ) is a vector of length Np per field for each element Dk. S(Q

g,+
H ,Q

g,−
H )i repre-

sents ith entry of the vector. The computations are

S(Q
g,+
H ,Q

g,−
H )=−Lg×F

∗,g
n , (7.3)

where Lg is a projection/lifting operator that projects the contribution from the surface
integrals to the interpolation nodes. F

∗,g
n is a vector of stable numerical fluxes at Gauss

quadrature nodes. Qg, the vector of field values at the Gauss quadrature nodes is com-
puted a priori to this kernel.

• Numerical flux evaluation: Each work item computes all the numerical fluxes at a
Gauss quadrature node (F

∗,g
n ). These numerical fluxes are stored in shared memory

for further computations. Ngauss*Nfaces work items are assigned for this opera-
tion.

• Lifting the flux to interpolation nodes: Each work item computes the surface inte-
gral contribution at an interpolation node. This involves three matrix vector prod-
ucts with lifting operator (Lg). As discussed in volume kernel, the lifting operator
is copied to shared memory. Np work items are assigned for this operation.

To accommodate the number of work items required for all the computations, a max-
imum of Np and Ngauss*Nfaces work items are used for the computations per element.
This requires total number of Ks*max(Ngauss*Nfaces, Np) work items per work group,
where Ks is the number of elements processed by a work group.
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7.3 Update kernel

The field values at interpolation nodes (QH) and Gauss integration nodes (Q
g
H) for each

element are updated in this kernel. The update kernel is divided in to two parts.

• Update interpolation nodes: Each work item updates all the field values at an
interpolation node. Np work items are assigned for this operation.

• Interpolate to Gauss quadrature nodes: Each work item computes all the field
values at a Gauss quadrature node. This involves three matrix vector products
per element, all with a Gauss interpolation matrix. Ngauss*Nfaces work items are
assigned for this operation.

To accommodate the number of work items required for all the computations Np work
items are requested per element. This requires total number of Ku*Np work items per
work group. Interpolation to Gauss quadrature nodes is implemented in a separate ker-
nel that requires Ngauss*Nfaces*Ku work items per work group. Here, Ku is the number
of elements processed by a work group.

7.4 Kernel tuning

The performance of the above discussed kernels is very sensitive to the hardware, tuning
parameters, optimal usage of shared/local memory. Here, we discuss some of the opti-
mization techniques we adopted and resulted in significant performance improvement.

• Coalescing: The nodal values corresponding to each element, projection operator
and interpolation operator are accessed contiguously from memory to maximize
memory bus utilization.

• Padding: The vector of nodal values for each element is padded with a factor of 4
to make sure that the array accesses are aligned.

• Unrolling: Loops are unrolled to reduce the number of instructions to be executed,
leading to hiding the latencies in reading the data from memory.

• Multiple elements per work group: Multiple elements are processed by each work
group to increase the occupancy on a given hardware architecture. For low order
approximation the speed up is about 5 times compared to using one element pro-
cessed by a work group. Because of the limited availability of shared memory and
the difference in computation patterns, the optimal number of elements per work
group varies for each kernel. The optimal parameters depend on the hardware of
the GPU to a large extent. For example, we observe a significant difference in the
performance on Tesla C2050 (NVIDIA) compared to Radeon 7970 (AMD). We can
see from Fig. 14 that the performance improvement by using multiple elements
processed by each work group is much more significant for Tesla C2050 compared
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(a) Volume kernel on NVIDIA Tesla C2050
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(c) Volume kernel on AMD Tahiti 7970
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Figure 14: Single precision GFLOPS of native OpenCL volume kernel and surface kernel vs polynomial order.
OpenCL 1.1 is used on NVIDIA GPUs and OpenCL 1.2 is used on AMD GPUs. ECC memory checking is turned
off for these experiments. The numbers on each bar represent the number of elements processed by a work
group when the optimal performance is observed.

to that of Tahiti 7970. Kv and Ks are the number of elements processed by a work
group in volume and surface kernels respectively.

• Shared/local memory: The nodal values on each element and/or projection and
interpolations operators are stored in shared memory in order to reuse the data
efficiently within a kernel. Since shared memory is limited in GPUs, using a large
shared memory in a kernel will reduce the number of concurrent active work groups,
but since the operators do not vary across the elements, they have to be stored only
once for all the elements that are processed by a work group.
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8 OCCA unified multi-threading approach

The computational kernels described in previous section were written in an open stan-
dard multi-threading model OpenCL. Vendors like NVIDIA, AMD, and Intel provide
the implementation of OpenCL for their hardware. Hence, performance of these kernels
depend a lot on the vendor implementation of OpenCL. Conversely, there may be an ef-
ficient alternative programming model for a given hardware architecture, for example,
CUDA for NVIDIA GPUs and OpenMP for Intel and AMD CPUs.

It is tedious and unnecessary for either a programmer or a scientist to redesign an
application code to take advantage of another hardware or multi-threading model effec-
tively. To address this to some extent we developed OCCA, a unified approach for multi-
threaded programming. Using OCCA, it is possible to write a single code that can be used
on several hardware architectures and supporting multi-threading languages. A white
paper on OCCA can be found at [19] and the software can be downloaded from [20],
which also includes several example codes. There are two major APIs in OCCA, one
is the device API that allows us to write kernels that can be cross-compiled with above
mentioned programming models, the other is the host API that allows us to compile and
execute these kernels from an application code.

8.1 OCCA device API/kernel language

OCCA abstracts kernel languages from several multi-threading approaches and opti-
mization techniques. OCCA takes GPU approach of splitting work by work-groups and
work-items for parallelism. Using this abstraction layer, we are able to write kernels with
several keywords that can be translated to language specific words. These keywords are
represented using macros. These macros are defined for each multi-threading language.
For detailed description on the kernel language specifications, we refer the readers to
OCCA white paper [19]. The kernels written in OCCA kernel language are compiled at
runtime with a user specified compiler.

8.2 OCCA host API

We developed a stand-alone host API to be able to run the kernels written in OCCA
kernel language from the application. The host API is written in C++ and has interfaces
to programming languages C, C#, Fortran, Matlab, Julia, and Python. This allows OCCA
to be portable across several programming languages, hardware architectures, and multi-
threading models as illustrated in Fig. 15. There are three major classes in the host API,
device, memory, and kernel.

8.3 OCCA device

The device class is an abstraction layer between OCCA API and the API from supported
models/languages. Using this class, a target platform or vendor and an available device
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Figure 15: OCCA portability across several programming languages, multi-threading approaches, and hardware
architectures. We are currently testing for robustness of IntelCOI and Pthreads back-ends.

from the platform can be chosen at run-time. A device is in charge of creating a context
and a command queue from the chosen supported device. Asynchronous computations
with multiple contexts can be achieved using multiple devices. The main purpose of a
device is to allocate memory and compile kernels for the chosen device.

8.4 OCCA memory

The memory class abstracts the different device memory handles and provides some use-
ful information such as device array sizes. Although memory handling in OCCA facili-
tates host-device communication, the management of reading and writing between host
and device, for performance reasons, is still left to the programmer. Having a class ded-
icated for device memory also allows the kernel class to differentiate and communicate
between distinct memory types.

8.5 OCCA kernel

The kernel class unites device function handles with a single interface, whether for a
function pointer (OpenMP), cl_kernel (OpenCL), or cuFunction (CUDA). When using
the OpenCL and CUDA kernel handles, passing the arguments through their respective
API is simple, but there are discrepancies when comparing to the OpenMP wrapper.
For example, OpenCL and CUDA kernels work-items (or threads) have access to work-
group (or thread block) and work-item counts implicitly. However, C++ functions only
have access to the function scope and global name-space, requiring the work-group and
work-item counts to be passed as macros or as an argument to the kernel.



60 R. Gandham, D. Medina and T. Warburton / Commun. Comput. Phys., 18 (2015), pp. 37-64

8.6 Performance results

We started with our OpenCL implementation and ported them to OCCA language. In
Fig. 16, we compare the performance of the two main kernels, the volume and surface
kernels, for each platform together with the original hand-coded OpenCL kernels. The
comparisons are done on an NVIDIA Titan GPU with the optimal kernel tunings for each
model as shown in Fig. 14. Because CUDA ptx compilers can be optimized to its hard-
ware, the results between CUDA and OpenCL on the Titan are not surprising. However,
the focus is that we observe a similar performance between the OCCA kernels compared
to our original native OpenCL kernels.

In Fig. 17, we compare the performance of OCCA kernels when they are cross-
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Figure 16: Single precision GFLOPS of kernels vs polynomial order. A comparison of OpenCL, OCCA:OpenCL,
and OCCA:CUDA. Experiments ran on NVIDIA Titan GPU with CUDA-5.5 and OpenCL 1.1. ECC memory
checking is turned off for these experiments.
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Figure 17: Single precision GFLOPS of kernels vs polynomial order. A comparison of OCCA:OpenCL and
OCCA:OpenMP. Experiments ran on Intel(R) Core(TM) i7-3930K CPU using Intel OpenCL 1.2 and g++ 4.7.
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Figure 18: Percentage of time spent by volume, surface, and update kernels for polynomial orders 1,3, and 5.
OCCA:CUDA is used on NVIDIA K40 with CUDA-6.0 is used for these experiments.
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(a) Time-step efficiency on GPUs
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(b) Time-step efficiency on CPUs

Figure 19: Single precision efficiency of the time stepping on NVIDIA & AMD GPUs and Intel CPU. CUDA-6.0,
OpenCL-2.0, are used on GPUs, while Intel OpenCL and g++-4.7 are used on CPU for these computations.
Efficiency is measured by millions of DOF ( total no. of nodes × no. of fields) processed per time step per
second. ECC memory checking is turned off for on GPUs for these experiments.

compiled with OpenCL and OpenMP on CPU. We realize that Intel OpenCL on Intel
CPU does a very good job of vectorization when the number of work items per work
group is a multiple of eight. To take advantage of this, we pad the number of work items
to be a multiple of eight, when the number of work items is not a multiple of eight. This
results in a significant performance improvement for the volume kernel, while the im-
provement for surface kernel is insignificant. This is because of the poor vectorization of
the surface kernel due to conditional statements.

To study the performance of the overall solver, we used translating vortex test prob-
lem on a uniform mesh with 119400 triangles with only one level for the multi-rate time
stepping scheme. This test case does not require application of any limiter for the numer-
ical stability. Fig. 18 shows the percentage of time spent by the kernels for polynomial
orders 1,3, and 5. The percentage of time spent on volume kernel increases with the poly-
nomial order. In Fig. 19, we compare the overall efficiency of the solver on NVIDIA &
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AMD GPUs and Intel CPU, using supported multi-threading approaches. For efficiency,
we consider the overall number of degrees of freedom processed by the solver per time
step per second. We observe that an AMD Radeon 7990 GPU tends to perform better
than an NVIDIA K40 GPU when the computational intensity is higher, i.e., larger N in
this context.

9 Conclusions and future work

A GPU accelerated discontinuous Galerkin algorithm for shallow water equations is pre-
sented. This algorithm is further accelerated with a multi-rate time stepping scheme. We
presented a modified TVB limiter and a positivity preserving limiter for high order ap-
proximations. These algorithms are tested for accuracy, robustness and efficiency using
several standard test cases in the literature. We compared the performance of OCCA ker-
nels when they are cross-compiled with threading models OpenCL, CUDA, and OpenMP
at runtime. Our future work will include developing full three-dimensional incompress-
ible Navier-Stokes models using high order discontinuous Galerkin methods for better
understanding of the tsunamis near coastal regions and accelerating such simulations
through many core hardware architectures using OCCA.
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