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Abstract. Applicability of Feynman path integral approach to numerical simulations
of quantum dynamics of an electron in real time domain is examined. Coherent quan-
tum dynamics is demonstrated with one dimensional test cases (quantum dot models)
and performance of the Trotter kernel as compared with the exact kernels is tested.
Also, a novel approach for finding the ground state and other stationary sates is pre-
sented. This is based on the incoherent propagation in real time. For both approaches
the Monte Carlo grid and sampling are tested and compared with regular grids and
sampling. We asses the numerical prerequisites for all of the above.
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1 Introduction

Feynman path integral (PI) approach offers an intuitively welcome description of non-
relativistic quantum mechanics [1, 2], where classical mechanics emerges transparently
from disappearing wave nature of particles along with vanishing Planck constant. In PI
approach the presentation of the quantum dynamics with a propagator also in station-
ary quantum states is transparent, in contrast with the conventional approaches, where
time evolution is seen in the phase factor, only. However, working out analytical or com-
putational solutions to practical problems becomes more demanding with PI [3, 4], and
obviously, this is one of the main reasons for path integrals not being a popular choice
for considering quantum dynamics, not to mention the stationary quantum states.
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For the above reasons the dynamical phenomena in nonrelativistic quantum mechan-
ics are conventionally considered by searching or simulating solutions to the time de-
pendent Schrödinger equation. This is almost trivial for a single particle, but becomes
laborious and needs a number of approximations with growing complexity in a many-
body system. In contrast, with PI the many-body interactions are included transparently
and exactly within numerical accuracy. Often, the PI approach is implemented with a
stochastic sampling of paths or by analytical formulations like the Kleinert’s variational
perturbation theory [5].

Out of other approaches than the present, it is worth mentioning the path integral
Monte Carlo (PIMC), which has proven to be successful in simulations of periodic imag-
inary time propagation of many-particle systems, which leads to the finite temperature
equilibrium statistical physics description of the many-particle system in terms of mixed
state density matrix [6, 7]. By treating all particles with the same PIMC approach it
is possible to evaluate the finite temperature electronic structure with exact account of
many-body effects and beyond Born–Oppenheimer approximation as demonstrated, al-
ready [8,9]. PIMC is also robust enough to be used in various applications in nanoscience
[10, 11].

Beyond the analytical solutions to stationary states or quantum dynamics, which are
very few [3, 4, 12, 13], numerical simulation of coherent real time propagation faces sub-
stantial challenges related to the interference of paths: how to choose or sample the rel-
evant paths in a balanced way, i.e. weighting the ones with most contribution through
constructive interference and avoiding waste of efforts to those with negligible contribu-
tion due to destructive interference. In practice, time evolution of the complex many-
body wave function in a space with high number of dimensions leads to even higher
dimensional path integrals, which obviously can be sampled efficiently with the Monte
Carlo technique, only. There, the interference related slow convergence has been called
as ”numerical sign problem” [12, 13] or phase (sign) problem. Sophisticated ”stationary
phase weighting” methods have been developed to overcome this without Monte Carlo
technique [14, 15].

There are still no preferable solutions to these problems, although many approaches
and approximations for certain types of systems have been found [16,17]. Basically these
methods rely on effective propagators [18] with desired properties. They are relatively
well behaving and use the advantageous features of the PI formalism, e.g., reduction of
the total system into two parts: the lower dimensional system of interest and the effect
of an environment modeled with an influence functional [1]. Often, the effect of the
environment can be approximated classically, leaving only a lower dimensional system
to be inspected quantum mechanically. Such methods have been shown to be successful
in evaluation of the time evolution of a quantum-classical many-body systems [19] for
heavier particles than electrons.

Since there is no perfect method for solving dynamical full quantum many-body
problems in practice, it is useful to look at different methods, how they can be used,
what are their strengths and weaknesses and what is needed in implementation of those
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methods.
In this paper, we deal with real time quantum dynamics with both coherent and inco-

herent propagation. Next, we present the basic theory, exact kernels and the approximate
Trotter kernel, and in Section 3, the numerical approach to evaluation of propagation
and expectation values. In Section 4 we define one dimensional electron-in-quantum-dot
models chosen for testing. In Section 5 we analyze results for coherent quantum dynam-
ics and in Section 6 we finally present a novel approach to search for stationary quantum
states and the ground state, in particular. The last section presents our conclusions.

2 Path integral and propagators

Consider non-relativistic particle propagation in one, two or three dimensional space Ω

from xa to xb in time interval from ta to tb along all possible paths x(t). The path integral
over all paths defines the propagator

K(b,a)=
∫ b

a
exp

[

i

h̄
Sx[b,a]

]

Dx(t), (2.1)

where Sx[b,a]=
∫ b

a Lxdt is the action of the path x(t) from a=(xa,ta) to b=(xb,tb) and Lx

is the corresponding Lagrangian [1, 2]. Time evolution of the probability amplitude, i.e.,
the wave function ψ(x,t) in space Ω can now be written as

ψ(xb,tb)=
∫

Ω
K(xb,tb;xa,ta)ψ(xa,ta)dxa, (2.2)

where ta<tb. From this relation the time dependent Schrödinger equation can be derived
[1], or alternatively, the time dependent wave function ψ(x,t) can be directly evaluated
from the initial state ψ(xa,ta), in case the kernel K(x,t;xa,ta) is known.

However, general explicit forms of the propagator are known for simple cases, only,
such as the particle with mass m in the one dimensional constant linear potential V(x)=
− f x,

K(xb,xa;t)=
[ m

2πih̄t

]1/2
exp

[

i

h̄
(

m

2t
(xb−xa)

2− t

2
(V(xa)+V(xb))−

t3 f 2

24m

]

, (2.3)

which reduces to the free particle propagator with f=0 [1] or to the propagator of particle
in a box with surrounding infinite potential.

For the one dimensional forced harmonic oscillator

V(x,t)=
mω2

2
x2− f (t)x (2.4)

the exact explicit propagator takes the form [1]

K(xb,xa;t)=

[

mω

2πih̄sin(ωt)

]1/2

exp

[

i

h̄
Scl

]

, (2.5)
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where Scl is the classical action. For f ≡0 this is

Scl=
mω

2sin(ωt)

[

(x2
b+x2

a)cos(ωt)−2xbxa

]

. (2.6)

For numerical approaches robust approximations are needed. It is advantageous that
also in nontrivial forms of potential the propagation is straightforward to evaluate and
with increasing numerical accuracy the propagator approaches the exact limit. With this
in mind we discretize the time t= tb−ta to a number of short steps ∆t. This is straightfor-
ward, because

K(b,a)=
∫

Ω
K(b,c)K(c,a)dxc, (2.7)

for ta<tc<tb. This follows from additivity of action S[b,a]=S[b,c]+S[c,a] for any path [1].
Now, with a small ∆t the quantum paths can be expected to give the main contribu-

tion close to the classical path, for which ∆x= xb−xa is also small. This follows from the
canceling kinetic energy T contributions due to the destructive interference of paths in
long path propagation. This presumes, of course, smooth enough potential V, for which
also the commutator [T,V] is small.

Furthermore, for numerical approaches it is essential that the chosen discretization
also converges to the exact formalism at the limit ∆t → 0, and the faster the better for
practical purposes. Also, it is preferable that computational efforts are not wasted for
computation of almost canceling contributions more than needed for the chosen target
accuracy.

Now, Eq. (2.3) gives numerically useful approximation, which can be further simpli-
fied by neglecting the last term, cubic in ∆t, for short enough time steps. Thus, we arrive
at the symmetrized Trotter kernel [12, 13]

K(xb,xa;∆t)≈
[ m

2πih̄∆t

]D/2
exp

[

i

h̄
(

m

2∆t
(xb−xa)

2−∆t

2
(V(xa)+V(xb))

]

, (2.8)

where D is the dimensionality of space.
This propagator can also be found from the hamiltonian formulation [4]. For a time

independent hamiltonian H=T+V, where T and V are the kinetic and potential energies,
the propagator can be written as [4]

K(xb,xa;∆t)=
〈

xb|exp
[

− i

h̄
H∆t

]

|xa

〉

=
〈

xb|exp
[

− i

h̄
(T+V)∆t

]

|xa

〉

, (2.9)

where ∆t= tb−ta. Now, by using the Zassenhaus formula [4, 22]

exp
[

− i

h̄
(T+V)∆t

]

=exp

[

− i∆t

h̄
T

]

exp

[

− i∆t

h̄
V

]

×exp

{(

i∆t

h̄

)2 [T,V]

2

}

O
{

1+

(

i∆t

h̄

)3}

(2.10)
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and by neglecting factors which approach one in the second order or higher in ∆t, as ∆t→
0, and using the path integral formulation, we arrive at the approximation (2.8). Thus,
this approximation is accurate almost to the second order in ∆t for a smooth potential
with [T,V]→ 0 as ∆x → 0 or ∆t → 0. In fact, this is what the kernel in Eq. (2.3) also
suggests.

Clearly, in numerical approaches it is the kinetic energy part, which brings in the
challenges as ∆t→ 0, but as pointed out above, already, the resulting large momentum
– short wave length oscillations of the propagator interfere destructively and should be
damped out without wasting computational efforts. The potential energy part behaves
the opposite way with respect to the time step, and becomes laborious only in case of
large potential gradient at possible singularities in the potential function.

We consider and test the Trotter kernel Eq. (2.8) against the exact kernels Eqs. (2.3)
and (2.5) in numerical simulations of one-dimensional harmonic oscillator (ODHO) and
quantum well (QW), both in stationary eigenstates and wave packet propagation.

3 Numerical evaluation of propagation and expectation values

Numerical evaluation of the integral Eq. (2.2) is the core problem, here. For that, we

span grids ga = {xai}Na
i=1 and gb = {xb j}Nb

j=1 for wave functions at a and b. It is practical

to define the grid density profiles or distribution functions ga(x) and gb(x), as (possibly
normalized) inverse average grid spacing. With small enough time step ∆t we can as-
sume the same restricted space Ω for both ψa and ψb, and for simple cases, also the same
grid g=ga=gb with the same size N=Na =Nb.

The simplest equally spaced regular grid, i.e., with g constant, between end points
may generate fake constructive diffraction patterns. This is the diffraction grating effect,
which can be removed out by increasing the grid size N. Usually, a better choice is some
other regular distribution of g, like gaussian or some other, related to the probability
density or (the absolute value of) the wave function, itself.

Of course, Monte Carlo grids with given distributions g serve well, if smooth and
sizable enough. There are methods for the analysis of ”smoothness” of the distribution,
such as Kolmogorov-Smirnov test [21]. In fact, with the increasing number of dimensions
Monte Carlo grids may remain as the only practical choice. Further smoothing and av-
eraging out accumulative errors is attained with a continuous random change of the MC
grids, within the predefined density profiles. For restricted range of dynamics, it may be
practical to use identical distributions, i.e., ga(x)= gb(x), but ga 6=gb.

Ongoing random evolution of {xi}Ni
i=1 also means sampling of continuous space, in-

stead of a discrete grid. This evolution can be adapted to follow the time evolution of
the wave function or some related distributions like the absolute value or the probability
distribution of the wave function, i.e., g(x,t)∝ |ψ(x,t)|n , n=1 or 2, for example.

The distribution function g(x) appears as an inbuilt weight factor in the integration of
Eq. (2.2). In the one-dimensional space it is straightforward to write g(x)=dG(x)/dx, in
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terms of the cumulative distribution function G. Thus, Eq. (2.2) becomes in form ψ(b)=
∫ 1

0
K(b,a)ψ(a) g−1

a (a)dGa. For propagation over the time interval ∆t= tb−ta with ta =0,
numerical calculation can be carried out as

ψ(xj,∆t)=
∫ 1

0
K(xj,∆t;xi,0)

ψ(xi,0)

ga(xi)
dGa(xi)

≈
Na

∑
i=1

K(xj,xi;∆t)ψ(xi,0)

ga(xi)
. (3.1)

Hence, it seems obvious that ψ(a) should decay faster than ga in order to avoid nu-
merical instabilities. For real ψ(a) or for its absolute value this can be easily established,
whereas for the two parts of complex ψ(a) this can be expected to be more tricky. The
phase factor of calculated ψ(b) relates to the ”local total energy”, and therefore, it serves
as a good indicator of numerical stability. Therefore, it seems possible to find phase factor
based algorithms for stabilization of propagation and for removing numerical errors.

In principle, the distribution ga(x) needs not to be known analytically, if ga(xi) can
be evaluated from the wave function, for example. Furthermore, negative sign can be
assigned to ga(x) at some range of x, if relevant for some reason.

Monte Carlo evaluation of expectation values of local operators, like the multiplica-
tive potential V(x), at time ta, can be done with

〈V〉=
∫ 1

0

ψ⋆(xi,t)V(xi)ψ(xi,t)

g(xi)
dG(xi)≈

N

∑
i=1

V(xi)|ψ(xi,t)|2
g(xi)

, (3.2)

where the operator can be time dependent, too.
Similarly, we calculate the total energy from

〈E〉≈
N

∑
i=1

EL(xi)|ψ(xi,t)|2
g(xi)

, (3.3)

where the local energy is evaluated from the increase in wave function phase −∆φ(x)
within a time step ∆t as EL(x)=−∆φ(x)h̄/∆t. Then, the kinetic energy 〈T〉 can be evalu-
ated from 〈E〉= 〈T〉+〈V〉.

4 One-dimensional harmonic oscillator and quantum well

We first consider the one-dimensional harmonic oscillator (ODHO), i.e., a particle in the
potential of Eq. (2.4) with f (t)≡0. Thus, we have the time-independent potential

V(x)=
1

2
mω2x2. (4.1)

We choose the parameters describing an electron in an atom size ”quantum dot” to maxi-
mize the quantum effects and challenge for simulation of dynamics. We use atomic units,
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where h̄=4πε0 = e=m= a0 =1, the last three being the charge, mass and Bohr radius of
the electron. This leads to the atomic unit energy of Hartree, Ha = h̄2/(ma2

0)≈27.211384
eV, which also defines the unit of the potential in Eq. (4.1). The atomic time unit becomes
as t0=(ma2

0)/h̄≈24.18884×10−18 s ≈24 as.
Now, by substituting m=1 and ω=0.1 (= h̄ω), we have the corresponding eigenen-

ergies Eν with equal contributions from kinetic and potential energies and eigenstates
ψν(x)=(2ν ν!/σ0)−1/2π−1/4Hν(x/σ0)exp(−x2/2σ2

0 ), where Hν are Hermite polynomials

and σ0=
√

h̄/mω≈3.16. For the ground state we have ψ0(x)=π−1/4σ−1/2
0 exp(−x2/2σ2

0 )
and E0=0.050. Thus, E1=0.150.

The one-dimensional quantum well (QW) or ”particle in a box”

V(x)=

{

0 for|x|< L/2,

∞ otherwise,
and (4.2)

with L = 20 is also used as a test case, where relevant. Here, we have the free particle
eigenstates with energies Eν =

1
2 k2, where k=2π/λ and νλ/2= L. Thus, E1 =

1
2(π/L)2≈

0.01234 and E2=2(π/L)2≈0.04935.

5 Coherent dynamics

5.1 Stationary states

First, we searched for numerical parameters, which keep the eigenstates stationary with
an acceptable accuracy. The three lowest eigenstates of ODHO (h̄ω=0.1), Eq. (4.1), turn
out to remain stable in a simulation with an even spaced grid of size N = 103 in the
domain −12<x<12 with the time step ∆t=1. The potential energy expectation value (3.2)

fluctuates around the time average 〈V0〉=0.02503 with a standard deviation σ≈3×10−5,

and correspondingly, the total energy (3.3) becomes as 〈E0〉= 0.05002 with σ≈ 4×10−9.
Thus, a small grid related error remains.

We find that the time step should be small enough (∆tmax ≈ 4) to justify the Trotter
approximation, Eq. (2.8), for ODHO. Shortening the time step calls for more accurate grid
due to increasing kinetic energy, i.e., oscillatory nature of the exponential in Eq. (2.8). The
potential energy contribution to phase oscillations is roughly two orders of magnitude
less. In general, we found the maximum time step and even grid size proportion to be
related roughly as ∆tmax×N≥103 for the Trotter kernel, Eq. (2.8).

The exact kernel Eqs. (2.5)–(2.6) of ODHO, however, allows unlimited time step and
the accuracy depends on the grid, only. Even so, the time steps of a multiple of half
oscillation period can not be used, because sin(ωt) in the denominator causes divergence
of both (2.5) and (2.6). With other time steps 1≤∆t≤500 and N=103 the potential energy

keeps correct in 5 digits. The total energy 〈E0〉 becomes evaluated with same accuracy.
For the QW with constant potential the Trotter kernel is nearly exact [4]. However,

numerical accuracy suffers from inaccurate description of discontinuities of the potential
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function Eq. (4.2) at |x| = L/2. Thus, the accuracy is limited by the grid spacing ∆x.
Obviously for this reason, we found the time propagation to be somewhat unpredictable.

For this case, we found that the Monte Carlo grid with a constant distribution function
solves the problem. Time evolution of the grid, with g(x)= constant, samples the space
continuously. We found the grid size N = 103 sufficient for a stable simulation of the

ground state in a QW L = 20 with the total energy 〈E0〉 accurate in a few digits, for a
few steps, already. Obviously, other non divergent but adapted distributions g(x) will
perform even better.

5.2 Wave packet propagation

Next, we consider real time evolution of gaussian wave packet oscillation in the harmonic
potential (ODHO), above. As a test case we use the Glauber state, also called coherent or
quasi-classical state, because of classical like oscillation retaining the wave packet shape
rigid. In fact, the width of the Glauber state gaussian is that of the ground state, in the

present case ψ(x) = π−1/4σ−1/2
0 exp(−x2/2σ2

0 ). The oscillation frequency is, of course,
ω=0.1 and period T=2π/ω≈62.83, for any oscillation amplitude A.

With the Trotter kernel and grid size N=104 the time step dependence is small. With
A=

√
20 and starting from rest, the total energy is that of the first excited state, see Fig. 1.

Both ∆t=2π/60 and ∆t=2π/200, and wave packet propagation of one period leads to
potential energy error of −0.0027, only. With the exact kernel, Eqs. (2.5)–(2.6), arbitrarily
long time steps can be taken, except those, for which sin(ω∆t)≈0, as pointed out above.

!"
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Figure 1: The ODHO potential and the starting Glauber state (full curves). Dashed curves show the two other
extreme phases of oscillation. Horizontal lines indicate the ground and the first excited state energies.
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6 Incoherent dynamics

6.1 Stationary state search

With the path-integral approach, simulation of stationary eigenstates is no more trivial
than that of explicitly time dependent wave functions. In both cases full propagation in
the whole space needs to be similarly considered within each time interval. This points
to the inherent nonlocality of the wave function and quantum phenomena, in general.

An arbitrary pure quantum state can be expanded as a superposition of stationary
eigenstates as Ψ = ∑k ckψk and its time evolution in ∆t is ∆Ψ = ∑k exp(−iEk∆t)ckψk =

∑k[cos(Ek∆t)−isin(Ek∆t)]ckψk. By using the small angle approximation for short enough
∆t, this can be written as ∆Ψ≈∑k[1−(Ek∆t)2/2−i(Ek∆t)]ckψk.

Consider now stepwise decoherence of the wave function in each time step, that is
driven by removal of the small imaginary part. Such incoherent time evolution,

∆Ψ(∆t)=∑
k

[1−(Ek∆t)2/2)]ckψk, (6.1)

converges to quantum Zeno propagation at the limit ∆t → 0, if the eigenstate is real.
However, with a finite but short enough ∆t it increases the contribution of the eigenstate
with smallest absolute eigenvalue with respect to the chosen reference energy, if Ek∆t≪1
for all k. At the end, this state dominates and contributions from the other states die out.

This is what we call incoherent propagation, here, and demonstrate the respective
time evolution in ODHO with the Trotter propagator in evenly spaced grid, see Fig. 2.
Incoherent evolution depends on the initial state as shown. In case where the ground
state ψ0 contribution is initially considerable, c0 6=0, the convergence is fast. However, in

!!
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"#"$!

"#"%!

"#"&!

"#"'!

"#(!

"! $""! %""! &""! '""! ("""! ($""!

V 

)*+,!-.,/-!

Figure 2: Incoherent evolution of the superposition states to the ground state. Dashed line starts from the
superposition of the ground and 3rd excited state, whereas the dash dotted line starts from the superposition
of the 1st and 2nd excited states. Solid lines show the potential energies of the ground and 1st excited states.
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case where initially c0 = 0, lowest of the states contributing to the initial wave function
is found. The ground state is found only after a small seed of ψ0 has been sown from
numerical errors in propagation.

By shifting the zero reference of ODHO close to the first excited state eigenvalue, in
Fig. 2, we find the incoherent propagation locking to the first excited state, similarly to
finding the ground state, above.

6.2 Ground state evaluation

Finally, we consider accurate evaluation of the ground state, or another stationary state,
after first finding it by the ”stationary state search” described in the previous section.
With the incoherent propagation in ODHO by using the Trotter propagator we found
accuracy of about five digits for the ground state energetics, independent of the grid size
(N=103 to 3×104) and accidentally with the time step ∆t≈0.3. Obviously, there remains
a systematic error due to the grid and propagator.

Therefore, we again employ the Monte Carlo grid to sample the continuous space.
We also simplify the propagation, Eq. (3.1), to increase accuracy in the spirit of diffusion
Monte Carlo (DMC) approach, where it is the distribution of walkers, which is the target
ground state wave function. This allows comparison of our approach to DMC, which is
known as a robust and accurate method for finding and evaluation of properties of the
ground state.

Close enough the ground state we set g(x)=ψ(x)≈ψ0(x), and consequently, approx-
imate Eqs. (2.2) and (3.1) for numerical Monte Carlo evaluation as

ψ(xj,∆t)=
∫

K(xj,∆t;xi,0)g(xi)dxi

=
∫ 1

0
K(xj,∆t;xi,0)dG(xi)≈

Na

∑
i=1

K(xj,xi;∆t), (6.2)

and therefore, {xi}Na
i=1 are random numbers from distribution g(x) with the cumulative

distribution function G(x), as discussed above. Thus, in practice we run incoherent prop-
agation

ψ(xb,∆t)=
∫

K(xb,∆t;xa,0)ψ(xa,0)dxa, (6.3)

without an explicit starting amplitude ψ(xa,0), but hidden in the walker distribution,
and assuming good convergence of the distribution to the ground state wave function.
To sample continuous space, Metropolis Monte Carlo (MMC) can be used to carry out
evolution of the walker distribution g(x), and if needed, stability can be increased by

using the ”time average” g(x) from a longer simulation and partly overlapping grids

ga={xai}Na

i=1 and gb ={xj}Nb

j=1, with Na =Nb =N.

It is worth noting that in a simulation, as described above, we have the ground state
wave function at each step both in the walker distribution g(x)=ψ(a) and evaluated from
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Table 1: Incoherent propagation in MC grid of the ODHO ground state with Trotter kernel. N is the grid size,
∆t the time step, ∆V the deviations of expectation values of the potential energy from its exact value 0.025000
and σ the standard deviation from long simulations.

N ∆t ∆V/10−6 σ/10−6

104 0.3 160 540

104 1 60 530

104 3 40 470

3×104 1 30 320

propagation as ψ(b). Though the latter is guiding the evolution of the former through
MMC, g(x) can be kept stable by settings of the MMC parameters, whereas the stability
of the evaluated amplitude ψ(b) depends primarily on the propagation parameters: grid
size and time step length. As a test case we present evaluation of the potential energy
from Eq. (3.2), which depends on both distributions.

To maximize variance (standard deviation) in this test, we use fully random and non
overlapping grids ga and gb from exact gaussian distribution to assess the statistical per-
formance of the Trotter kernel for evaluation of the ground state energetics of ODHO.
The obtained data from incoherent propagation is shown in Table 1 and Fig. 3.
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∆t = *% ∆t = ,%∆t = "#,%

Figure 3: Incoherent propagation in MC grid of the ODHO ground state with Trotter kernel. Deviations of
expectation values of the potential energy from its exact value 0.025 (dots) and standard deviations (bars)

shown (in au ×10−6) from long simulations, with time steps 0.3, 1 and 3, and grid sizes 104 (black fullsquare)

and 3×104 (blue fullcircle). The 2×SEM error bars are smaller than the square/circle size.

We find that accuracy of the achieved ground state energetics (∆V) and distribution
depends on the grid size and the time step. Note, that the ”error bars” (σ) do not describe
accuracy. Grid size dependence is as expected: larger grid increases accuracy. Time step
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dependence, however, is weak and longer step leads to higher accuracy. Overall, this is
what one can expect from the Trotter kernel.

The vertical bars in Fig. 3 describe simulation length independent standard deviation
σ arising from Monte Carlo sampling. It can be used to estimate the statistical accuracy
(precision) of evaluated expectation values in form of standard error of mean, SEM =
σ/

√
NMC, where NMC is the number of uncorrelated Monte Carlo steps. Usually, 2×SEM

limits ( 95% ) are assumed as a statistical error estimate. Thus, the longer the simulations,
the smaller the 2×SEM error bars become. The precision of the squares and the dot in
Fig. 3 is good enough to demonstrate the systematic error from Trotter approximation
and size of test grid sizes.

Finally, by using the Trotter kernel, we carried out a search of an electron in the
ground state of the two-dimensional quantum dot, 2DHO, with N=3×104 and ∆t=0.3.
For the expectation value of ∆V and σ (in units 10−6, cf. Table 1) we obtained −2000 and
600, respectively.

7 Conclusions

We have demonstrated the path integral approach to the time domain coherent quantum
dynamics with numerical simulations of simple one dimensional test cases, relevant as
quantum dot models. Generally, we find the PI approach more laborious as compared to
the conventional evaluation of the solution from the time dependent Schrödinger equa-
tion, as expected [1, 2].

With PI approach a regular periodic grid may give rise to diffraction patterns on the
evaluated amplitude, while Monte Carlo grids are free from such artifact. Also as usual,
with Monte Carlo technique for path sampling, the PI approach becomes more attractive
in case of complex geometry or increasing number of spatial dimensions.

The cases where the exact kernel is known are special. There, the time step length is
not limited, even in practice, which offers a huge advantage over the conventional sim-
ulation of single particle quantum dynamics. On the other hand, the straightforward
incorporation of many-body correlations presumes short time steps. Therefore, the Trot-
ter kernel, which becomes exact at the zero step length limit, becomes accurate enough
with practical time step lengths. However, shorter time steps require more dense grids,
as discussed above.

With the incoherent real time dynamics we have demonstrated a novel approach for
searching the stationary states and the ground state, in particular. Monte Carlo sam-
pling of the continuous space turns out to increase accuracy as compared to the use of a
regular discrete grid. The Monte Carlo version has further advantages, similar to the con-
ventional ”high accuracy” diffusion Monte Carlo method. Here, we have carried out the
first tests of the convergence and accuracy of the new method, which seems promising
with its novel features.
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