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Abstract. Here we investigate the kinematic transports of the defects in the nematic
liquid crystal system by numerical experiments. The model is a shear flow case of the
viscoelastic continuum model simplified from the Ericksen-Leslie system. The numeri-
cal experiments are carried out by using a difference method. Based on these numerical
experiments we find some interesting and important relationships between the kine-
matic transports and the characteristics of the flow. We present the development and
interaction of the defects. These results are partly consistent with the observation from
the experiments. Thus this scheme illustrates, to some extent, the kinematic effects of
the defects.
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1 Introduction

The molecules of nematic liquid crystals have long-range orientational order and can
be easily aligned by external forces. This will result in defects, textures and other im-
portant phenomena, e.g. disclination [4, 6, 10, 13, 32]. Many efforts have been made on
theories to explore the liquid dynamics, such as Ericksen-Leslie (EL) theory [8,10], tensor
models [1, 24, 25], hard-rod models [6, 10, 12], capillary models [28, 30, 33, 34] and so on.
Recently, many mathematicians are absorbed in investigating the solutions of these theo-
retical models, including the numerical simulations [7, 9, 17, 19, 20, 22, 23, 26, 36, 37, 39–41]
and theoretical analysis [16, 18, 21] and references therein.

∗Corresponding author. Email addresses: ruichenbnu@gmail.com (R. Chen), bao@cz3.nus.edu.sg (W. Z.
Bao), hzhang@bnu.edu.cn (H. Zhang)

http://www.global-sci.com/ 234 c©2016 Global-Science Press



R. Chen, W. Z. Bao and H. Zhang / Commun. Comput. Phys., 20 (2016), pp. 234-249 235

Defects are classified in terms of strength (S) and dimensionality (D). The strength
captures the degree of rotational discontinuity when encircling the defect, whereas the
dimension refers to points (D=0), lines (D=1) and walls (D=2) [13,14,27]. Disclinations
are line defects with D=1 and disclination ends cannot be found in the bulk. The strength
of a disclination line is defined by a sign (+,−) and a magnitude (1/2,1,3/2,2,··· ). The
sign indicates the direction of rotation and the magnitude is the amount of rotation. The
defects with s=±1/2 or s=±1 has a singular core.

Toch et al. [35], showed that back-flow, the coupling between the order parameter
and the velocity fields, has a significant effect on the motion of defects in nematic liquid
crystals. In particular the defect speed can depend strongly on the topological strength
in two dimensions and on the sense of rotation of the director about the core in three
dimensions. They also considered that the annihilation of a pair of defects of strength s=
±1/2 and found that back-flow can change the speed of defects by up to ∼100%. Rey et
al. [11,29,31] investigated the interaction of defects with different strength and compared
them with the experiments. Here we study the interaction of defects immersing the fluids
and find some interesting and important relationships between the kinematic transports
and the characteristics of the flow.

In the Ericksen-Leslie (EL) theory, a vector field d is used to depict the alignment of
the molecules and also to represent the direction of preferred orientation of the molecules
in the neighbourhood of any point. The evolution of d expresses the kinematic motions.
By the Ericksen and Leslie theory, the model is derived as the following nonlinear cou-
pled system for nematic liquid crystals in fluid field [19, 21]:

ut+(u·∇)u+∇p=µ△u+λ∇·σ, (1.1)

∇·u=0, (1.2)

σ=(∇d)T∇d+β(△d−f(d))dT+(β+1)d(△d−f(d))T , (1.3)

dt+(u·∇)d+Dβ(u)d=γ(△d−f(d)). (1.4)

Here u denotes the velocity of the nematic liquid crystals fluid, p the pressure, d the
orientation of the molecules, u,d : Ω×R

+ → R
3,p : Ω×R

+ → R,Ω ⊂ R
2. x ∈ Ω is the

Eulerian coordinate. µ,λ and γ are positive constants. In Eq.(1.4) f(d)=(4/ε2)(|d|2−1)d
can be treated as a penalty function to approximate the constraint |d|= 1 which is due
to the molecules being of similar size for small ε. The corresponding energy density
is F(d) = (1/ε2)(|d|2−1)2 and it is obvious f(d) is the gradient of ∇F(d). We define
Dβ(u)=β∇u+(1+β)(∇u)T for β∈R. Hence, it can be rewritten as

Dβ(u)=−
∇u−(∇u)T

2
−(−2β−1)

∇u+(∇u)T

2
. (1.5)

The parameter β depends on the shape of the molecules. In Eq. (1.4), the kinematic trans-
port of d is D

Dt d= dt+(u·∇)d+Dβ(u)d. When the size of the molecules is small com-
pared with the scale of the macroscopic fluid, d is just transported by the flow trajectory.
Then the kinematic transport of d is D

Dt d=dt+(u·∇)d without the effect term Dβ(u)d of
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stretch on d [16–18,20,22,23]. When the size of the molecules are big enough, the effect of
stretch on d must be taken into account. In the big molecule case, the parameter relating
to the shape of molecules is important. In the original EL theory, this parameter is called
tumbling parameter. Effect of different values of tumbling parameter and Ericksen num-
ber on spatial development of director orientation in pressure-driven channel flow was
investigated by Chono et al. in [3]. The parameter −2β−1 in Eq. (1.5) is called the reactive
parameter, or tumbling parameter in EL theory [15]. For nematic LC composed of rod-like
molecules, we have β<−0.5 while for those composed of disc-like molecules, β>−0.5.
In [19,20] β is confined within the interval [−1,0]. Actually β can take any real value and
the nematic LC is tumbling as |2β+1|<1 while it is flow-aligning as |2β+1|>1 [11,28]. This
is due to the fact that β also depends on the second and fourth moments of the distribu-
tion of molecules about the nematic director and this dependence can not be predicted
by EL theory itself. When the nematic LC is flow-aligning, it has steady state in a simple
shear flow, and there will be a flow-aligning angle related to β.

From the viewpoint of mathematician, the disclination lines and defects are singular
solutions. For the above system with the suitable boundary condition we can verify it to
satisfy some energy relation. So the physical singularities we are seeking/tracking are
those energetically admissible ones. A C0 finite element scheme is used to simulate the
kinematic effects in [19]. A number of hydrodynamical liquid crystal examples were com-
puted to demonstrate the effects of the parameters and the performance of the method.
Later we developed the modified Crank-Nicolson finite difference scheme for the pla-
nar pressure driven flow where the direction of the molecules is constrained in the shear
plane. This scheme satisfies a discrete energy relation in [40]. It is observed numerically
that the direction of the molecules will tumble from the boundary layer and later on the
inner layer with a much longer time period. It implies that the viscosity of flow plays the
role of an accelerator in the whole complex fluids. Comparing these results with the the-
oretical analysis, it illustrates that the gradient of the velocity has directly impact on the
tumbling phenomena. In [41], we applied an accurate and efficient Legendre-Galerkin
method to investigate the effects of kinematic transports by numerical experiments and
some theoretical analysis. The scheme also keeps the energy relation in discrete form.
Consequently, for the system with steady state solutions, the number of spatial rotations
is determined by the shape parameter of molecules β and the shear rate of the initial data.
Theoretical analysis was made to explain the results. Moreover, in [41], the authors veri-
fied the relationship between the tumbling period and two important parameters for the
tumbling flow. Flow-aligning nematic LCs were also concerned.

Now we will investigate numerically the kinematic effects of the defects in nematic
liquid crystal dynamics for the simplified three dimensional flow case. Here a finite dif-
ference method in 2D Eulerian space was designed to approximate the simplified 3D
model more specifically. We adopt a semi-implicit scheme which is implicit on linear
terms and explicit on nonlinear terms. The scheme is high efficient although it does
not preserve discrete energy relation. We also obtain similar numerical results compar-
ing with the ones solved by the scheme preserving the discrete energy relation. Here
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we present a number of examples that show the dynamics and interaction of defects
with different strength. The numerical tests imply that the defects subjected to strength
|s|=1 are stable and the system will be developed into a new stable defects with strength
s
′
(=ΣN

i=1si) as the initial defects with strength si (i=1,··· ,N) are given. These phenomena
were observed in [4,10] for 2D case. Here we show that there also exist this law in simple
3D case. Especially, we can see the fact that the annihilation time of the opposite defects is
longer as the shear rate of back-flow is larger, when the four defects with s=1 distribute
isometrically around a center defect with s =−1. We hope this phenomena happen in
physical experiment in the future. But it is regretted that we have not found the experi-
ment results for 3D case. Therefore, This implies that the model from the Ericksen-Leslie
theory can also describe the kinematic effect of the defects.

This paper is organized as follows. We first introduce the simple case of the full model
in Section 2 and derive the semi-implicit scheme of finite difference method in Section
3. Then in Section 4 numerical tests and discussions are given. Finally, we draw some
conclusions and remarks.

2 Model for the simple case

In this section, we first show the energy relation for the full model with certain boundary
conditions (B.C.). Then we will give the simple case of Eqs. (1.1)-(1.4) with the initial
value and boundary condition.

Here we will investigate the system (1.1)-(1.4) with the following B.C. of u

u·n=0,
∂u

∂n
=gu, on ∂Ω, (2.1)

where n denotes the outer normal vector on the boundary and gu is a given vector. These
mean that there is a rotation flow on the boundary. In the following we can see that this
may push the liquid crystal particles to produce defects.

For the direction of d, the Robin boundary condition is used as follows

∂d

∂n
=−

2

δ
(d−d0), on ∂Ω. (2.2)

Actually under this choice of B.C., one term called anchoring energy is added into the
total energy. The parameter δ> 0 reflects the strength of the anchoring. We believe that
this is more reasonable than fixing d on the boundary. Because this Robin B.C. means
the balance between the anchoring force and the other external force on the boundary. In
this sense we say it is better than the strong anchoring condition. In the following simple
model, the B.C. (2.8) and (2.9) satisfy the above B.C. (2.1) and (2.2). In [41], Zhang et al.
has proved that the system (1.1)-(1.4) with (2.1) and (2.2) satisfies the following energy
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relation [41]

d

dt

(1

2
||u||2L2(Ω)+

λ

2
||∇d||2L2(Ω)+λ

∫

Ω
F(d)dx+

λ

δ

∫

∂Ω
|d−d0|

2dS
)

=−
(

µ||∇u||2L2(Ω)+
λ

γ
||dt+(u·∇d)d+Dβ(u)d||

2
L2(Ω)

)

+
∫

∂Ω
(gu ·u)dS+

∫

∂Ω
(σ1 : u⊗n)dS, (2.3)

where σ1=β(∆d−f(d))dT+(β+1)d(∆d−f(d))T. The energy relation plays an important
role in both theoretical analysis [21] and numerical simulation [19,40]. We will derive the
energy function in the discrete form from the energy relation (2.3) in Section 3.

Next we will present the main role in this work which is a simple case of the above
full system. Now we also use a simplified 3D model, assuming that u= (0,v(z,x),0)T ,
p= p(z,x), d= (0,d2(z,x),d3(z,x))T, (z,x)∈Ω= [−1,1]×[−1,1] as shown in Fig. 1. It is
obvious to see that there are two variables z,x in this model. In fact, it is the simple three
dimensional case since the full 3D model is very difficult. Here we choose the initial
value v0(z,x) = ξz, ξ is a constant to be the shear velocity which depends on z and is
independent of x.

From Fig. 1 we can see that the direction d(z,x) is in the y-z plane. Here we can
see that it looks like a “rice field” of the (x,z) plane. And d is a piece of rice growing
on this field. In order to plot and view the direction d of every point in the z-x plane
conveniently, we can change the order of d as d̂ = (d2(z,x),0,d3(z,x))T. For this shear
flow case, the full model can be simplified as follows

vt =µ△v+λτz, (2.4)

τ=βd3(△d2− f2)+(β+1)d2(△d3− f3), (2.5)

d2t+βd3vz =γ(△d2− f2), (2.6)

d3t+(1+β)d2vz =γ(△d3− f3), (2.7)
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✲ (0,v(z,x),0)T

Figure 1: ”1+2” model, ”1” denotes one component v of the velocity u, and ”2” denotes two components of
the director d.
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where fi =(4/ε2)(d2
2+d2

3−1)di, v0= ξz,d0
2,d0

3 and the boundary conditions:

∂v

∂z

∣

∣

∣

z=±1
= ξ,

∂v

∂x

∣

∣

∣

x=±1
=0, (2.8)

∂di

∂n
=−

2

δ
(di−d0

i ), i=2,3 on ∂Ω. (2.9)

The parameters included in this system are µ,λ,γ,ε and β,ξ. In Section 4 we will
discuss the impact of the shape parameter β of molecular and the shear rate ξ.

3 Numerical method

This section mainly focuses on the numerical approximation. In order to obtain the high
efficient computation, we choose difference schemes comparing with the method in [19].
For the space discretization we adopt the semi-implicit scheme and use the forward dif-
ference scheme for the time discretization:

d2
n+1
j,i −d2

n
j,i

dt
+βd3

n
ji

δ0zvn
j,i

2h
=γ

(

δ2
z d2

n+1
j,i +δ2

xd2
n+1
j,i

h2
− f2

n
j,i

)

, (3.1)

d3
n+1
j,i −d3

n
j,i

dt
+(1+β)d2

n
j,i

δ0zvn
j,i

2h
=γ

(

δ2
z d3

n+1
j,i +δ2

xd3
n+1
j,i

h2
− f3

n
j,i

)

, (3.2)

τn
j,i =βd3

n
j,i

1

γ

(

d2
n+1
j,i −d2

n
j,i

dt
+βd3

n
j,i

δ0zvn
j,i

2h

)

+(β+1)d2
n
j,i

1

γ

(

d3
n+1
j,i −d3

n
j,i

dt
+(1+β)d2

n
j,i

δ0zvn
j,i

2h

)

, (3.3)

vn+1
j,i −vn

j,i

dt
=µ

(

δ2
z vn+1

j,i +δ2
xvn+1

j,i

h2

)

+λ
δ0zτn

ji

2h
, (3.4)

where δ0zvn
j,i = vn

j,i+1−vn
j,i−1, δ2

z dj,i = dj,i+1+dj,i−1−2dj,i, δ2
xdj,i = dj+1,i+dj−1,i−2dj,i, fk

n
j,i =

(4/ε2)[(d2
n
j,i)

2+(d3
n
j,i)

2−1]dk
n
j,i, k=2,3, h=2/M. We discrete the domain Ω by M×M and

we use a uniform grid. In Eq. (3.3) we have replaced γ(∆d−f(d)) with dt+(u·∇)d+
Dβ(u)d according to Eq. (1.4) to reduce the order of derivatives. The discretization of the
boundary conditions are determined below

dk
n+1
j,M −dk

n+1
j,M−1

h
=−

2

δ
(dk

n+1
j,M −dk

0
j,M), (3.5)

dk
n+1
j,1 −dk

n+1
j,0

h
=

2

δ
(dk

n+1
j,0 −dk

0
j,0), (3.6)
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dk
n+1
M,i −dk

n+1
M−1,i

h
=−

2

δ
(dk

n+1
M,i −dk

0
M,i), (3.7)

dk
n+1
1,i −dk

n+1
0,i

h
=

2

δ
(dk

n+1
0,i −dk

0
0,i), (3.8)

vn+1
j,M −vn+1

j,M−1

h
= ξ,

vn+1
j,1 −vn+1

j,0

h
= ξ, (3.9)

vn+1
M,i =vn+1

M−1,i, vn+1
0,i =vn+1

1,i . (3.10)

In [40] Zhang and Bai used the modified Crank-Nicolson scheme for preserving the dis-
crete energy relation and dealt with the nonlinear terms with the fix point iteration. Now,
the semi-implicit scheme we used is more efficient although it does not preserve discrete
energy relation. After computing and comparing these two schemes we conclude that
these two numerical results are similar. Thus we persist on adopting the semi-implicit
scheme for high efficient computation. Later we define a discrete energy function corre-
sponding the energy law in Eq. (2.3) as follows

En =
1

2
||vn ||2L2(Ω)+

λ

2 ∑
i=2,3

||∇dn
i ||

2
L2(Ω)

+λ
∫

Ω
F(dn

2 ,dn
3)dx+

λ

δ

(

∑
i=2,3

∫

∂Ω
(dn

i (x)−d0
i (x))2dx

)

, (3.11)

where F(dn
2 ,dn

3)= 1/(ε2)(dn2
2 +dn2

3 −1)2. We will calculate it to verify the stability of nu-
merical solution in the following numerical simulations.

4 Numerical tests and discussion

In this section we will calculate a number of numerical examples to show the relation of
the critical parameters and the kinematic effects of the defect. All the results are carried
out with C++ and all the figures are drawn by MATLAB and TECPLOT.

4.1 Parameters

The relationship of the key parameters have been explored in our previous paper [41] for
the simplest case with one variable. Here we concern with the case with two variables
and choose the difference scheme instead of the spectral method in [41]. So we expect
to verify again the relationship of the key parameters of the shear rate ξ and the shape
parameter β. We set the mesh grid as M×M=40×40 and the time step dt=1×10−4. We
mainly focus on the impact of β and ξ. The other parameters are set to be: γ= 1, µ= 1,
λ=1, ε=0.1, δ=5×10−5.

Set β=−0.5, ξ=10,30,40,50 and initial values to be

v0(z,x)= ξz, d0
2(z,x)=−1, d0

3(z,x)=0, (z,x)∈ [−1,1]×[−1,1]. (4.1)
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Figure 2: β=−0.5, energy function with different ξ.

The numerical result of the energy function Eq. (3.11) is given in Fig. 2. We can see that
the system goes to steady state as ξ =10,30 and periodic oscillation as ξ =40,50. In fact,
the steady state of the molecules is the tumbling found in [40,41] for ξ=40,50. While the
steady state is flow-aligning for ξ=10,30 in [41]. This shows that there is competition of
the force between the flow and the interaction among particles.

It also suggests us that the shear rate ξ cannot be chosen too large when we investigate
the interaction of defect. A large shear rate will break the stability of system.

Now we investigate the impact on system with different β. We fix the shear rate ξ=30
and the initial values are the same as Eq. (4.1). We compute the energy of the solutions for
the different shape parameter β=−0.1,−0.2,−0.3,−0.4,−0.6,−0.7,−0.8,−0.9 respectively
as shown in Fig. 3. In all the simulations the system go to steady states finally when ξ is
fixed. Thus we can draw the conclusion that the steady state of the system only depends
on the shear rate ξ while the total energy in steady states depends on both ξ and β. We
can also see from Fig. 3 that the energy in steady states as β∼−1 is smaller than that as
β∼0. These results are consistent with the results in [41] by using the spectral method.
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Figure 3: ξ=30, energy function with different β.

4.2 Defects

In this section we will simulate the kinematic transport of the defects. The strength of a
disclination is denoted by a parameter s as in [4,13]. Now we take the components of the
unit director to be (cosφ,sinφ), where the director angle φ is concerned with the polar
angle α depicted in Fig. 4 satisfying the formula

φ= sα+c. (4.2)

Here α is determined by director orientation along the polar line (x-axis) and φ is deter-
mined by director end along the polar line (x-axis) and c is a constant. The director is on
the polar line as s=1, c=0 and on a circle as s=1, c= π

2 . One can refer to [4, 14] to find
out the detail about the reason why s is the strength of defect. Now from the experiments
there can be observed defects of strengths s =+ 1

2 ,− 1
2 ,+1,−1 [4, 10]. It is possible that

two neighbouring defects annihilate altogether or form a new defect. The correspond-
ing strength is s1+s2 =0 or s1+s2 = s′. Next we will simulate the kinematic transport of
several defects with different strengths and we will show the interaction of the defects.

✲x✟✟
✟✟

✟✟
✟✟
✟

  ✒ 
 ✒  ✒ 
 ✒  ✒ 
 ✒  ✒ 
 ✒  ✒ 
 ✒  ✒ 
 ✒

α

φ

Figure 4: φ= sα+c.
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Assume that N is the total number of defects and sj denotes the strength of the jth
defect and X=(z,x)∈Ω and X0

j =(z0
j ,x0

j ) denotes the jth singular point. Now we define

the complex function gs j
(X−X0

j ) similar to [2] as follows:

gs j
(X−X0

j )=‖X−X0
j ‖[cos(φj)+isin(φj)]= ||X−X0

j ||e
iφj , (4.3)

φj= sjαj+c, (4.4)

where αj is the argument of the vector X−X0
j and ‖X−X0

j ‖ denotes the Eulerian distance

from point X to X0. Multiply all these complex functions

g0(X)=















N

∏
j=1

gs j
(X−X0

j )

||X−X0
j ||

, X∈Ω\{X0
j , j=1,··· ,N},

0, X∈{X0
j , j=1,··· ,N},

(4.5)

thus we can get the initial value d0
2(X) and d0

3(X) from the complex function g0(X) as
follows

d0
2(X)= Im(g0(X)), d0

3(X)=Re(g0(X)). (4.6)

In the following we will give a number of numerical examples to show the kinematic
effects of the defect.

case 1:

(a) N=2, X0
1 =(−0.2,0), X0

2 =(0.2,0), s1= s2=1, ξ=3;

(b) N=2, X0
1 =(−0.85,0), X0

2 =(0.85,0), s1 =1, s2 =−1, ξ=3;

case 2:

(a) N=3, X0
1 =(−0.2,0), X0

2 =(0,0), X0
3 =(0.2,0), s1= s2= s3=1, ξ=3;

(b) N=3, X0
1 =(−0.85,0), X0

2 =(0,0), X0
3 =(0.85,0), s1= s3 =1, s2 =−1, ξ=3;

case 3:

(a) N=5, X0
1 =(−0.2,0), X0

2 =(0,0.2), X0
3 =(0.2,0), X0

4 =(0,−0.2), X0
0 =(0,0), s0= s1= s2=

s3= s4=1, ξ=3;

(b) N=5, X0
1 =(−0.4,0), X0

2 =(0,0.4), X0
3 =(0.4,0), X0

4 =(0,−0.4), X0
0 =(0,0), s1= s2= s3=

s4=1, s0=−1, ξ=3.

Here the parameter β=−0.5 is fixed in all the cases.
From Fig. 5 and Fig. 6, we know that two defects with the same strength +1 and +1

will repel each other and are rotating in the area. While the defects with +1 and −1
will attract each other until they annihilate. It happens between t= 1.5 to t= 2. This is
consistent with result in [5]. We also see that both of the cases go to steady state. From
Fig. 6 the energy will rapidly decrease when the defects with +1 and −1 collide.

From Figs. 7-8 we know that as time goes on, three defects of the same strength will
repel until the system goes to steady state. We also find that the defect with +1 in the
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Figure 5: case1-(a).
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Figure 6: Left: case1-(b); right: energy function.
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Figure 7: case2-(a).
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Figure 8: Left: case2-(b); right: energy function.
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Figure 9: case3-(a).

center of the region will move towards to the boundary of the region from Fig. 7. We
can draw a conclusion that the energy of defects nearby the boundary is less than one in
the center of the region by the energy function from Fig. 8. A defect with negative sign
strength will attract one of the others positive defects, which occurs at the time t= 1 in
Fig. 8. The right part of Fig. 8 shows that the energy of case 2 ends with steady state.

In the case 3 the defects of the same strength repel each other and turn in the area
from Fig. 9. Similarly, if the strength of the center defect is opposite to others and the
other four defects are distributed symmetrically, the center defect with −1 will attract
one of the remaining defects with +1 from Fig. 10, and annihilate at the time t=3. At last
there are only three defects with strength +1. All the systems also go to steady state from
Fig. 10. If we increase the shear rate ξ = 10,30,50, we can see that the annihilation time
is longer along the addition of ξ from the development of energy in Fig. 11. Here we see
that the energy is oscillation for the large shear rate in Fig. 11, which is consistent with
the result in Fig. 2 since there is tumbling.
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Figure 10: Left: case3-(b); right: energy function.

0 5 10 15 20
114

116

118

120

122

124

126

128

130

132

134

t

E

 

 
ξ=10

0 5 10 15 20
640

660

680

700

720

740

760

780

800

820

840

t

E

 

 
ξ=30

0 5 10 15 20
1700

1800

1900

2000

2100

2200

2300

t

E

 

 

ξ=50

Figure 11: case3-(b), left: ξ=10; middle: ξ=30; right: ξ=50.
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Figure 12: Left (up: s=+ 1
2 ; down: s=− 1

2 ); right: energy function.

In the following we will simulate the defects with strength s=± 1
2 and see how the

defects interact in the system. From Fig. 12 we know that the defect of strength |s|= 1
2

will move to the boundary of the area and then the system is stable.
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Figure 13: Left (up: s1 = s2=+ 1
2 ; down: s1 =+ 1

2 , s2=− 1
2 ); right: energy function.

From Fig. 13 we see that the defect with strength s =+ 1
2 will attract another defect

with strength s =+ 1
2 to form a new defect of strength s =+1. While there will be no

defect if one defect with strength s =+ 1
2 and the other defect with strength s =− 1

2 are
given at the beginning.

Remark 4.1. Here we also change the boundary condition of the vector d as the Dirichlet
or Neumann boundary condition to test. It is found that there does not appear defect
when the initial value has no defect. So the emergence of defect is not caused by the
boundary condition in this case.

5 Conclusions and remarks

In this paper we applied the simplified three dimensional model to investigate the kine-
matic effect of the defect of the nematic liquid crystals fluid. A finite difference method
is adopted to simulate the simplified model. We did some numerical tests to investigate
the impact of the shape parameter β and the back-flow ξ. If the back-flow is strong, there
is a tumbling of the molecular. Then we mainly did some numerical tests to explore the
interaction of defects with different strength. The tests tell us that the strength of defects
satisfies the law ΣN

i=1si = s
′

if there are many defects with different strength. Moreover,
the interaction of these defects is not caused by the boundary conditions.
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