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Abstract. In this paper, we propose a compact scheme to numerically study the cou-
pled stochastic nonlinear Schrödinger equations. We prove that the compact scheme
preserves the discrete stochastic multi-symplectic conservation law, discrete charge
conservation law and discrete energy evolution law almost surely. Numerical experi-
ments confirm well the theoretical analysis results. Furthermore, we present a detailed
numerical investigation of the optical phenomena based on the compact scheme. By
numerical experiments for various amplitudes of noise, we find that the noise acceler-
ates the oscillation of the soliton and leads to the decay of the solution amplitudes with
respect to time. In particular, if the noise is relatively strong, the soliton will be totally
destroyed. Meanwhile, we observe that the phase shift is sensibly modified by the
noise. Moreover, the numerical results present inelastic interaction which is different
from the deterministic case.
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1 Introduction

The propagation of optical solitons in a nonlinear dispersive optical fiber is governed by
the well-known coupled nonlinear Schrödinger (CNLS) equations of the form [5]
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iut+αuxx+
(

σ|u|2+β|v|2
)

u=0,

ivt+αvxx+
(

σ|v|2+β|u|2
)

v=0,
(1.1)

where u, v are complex amplitudes or envelops of two wave packets, α, σ and β are the
group velocity dispersion, selfphase modulation parameter and cross-modulation coeffi-
cient, respectively; x and t represent the spatial and temporal coordinates. Due to their
intrinsic stability, optical solitons have been proposed to use as information carrier for
the long-distance fiber optic communications and the optical signal processing. A major
limitation for the soliton applications is the multi-soliton evolution and interaction. To
understand the nature and consequence of soliton evolution and interaction, extensive
theoretical and experimental investigations have been carried out [4, 8, 10, 12–14].

In practical circumstances, stochasticity is common in optical soliton communica-
tions. Generally speaking, the stochasticity can be classified into two basic types: the
homogenous and nonhomogeneous [3]. For the homogenous case, stochasticity is pre-
sented in the input pulse with random initial values; for the nonhomogeneous case, due
to the factor such as the random perturbation of the dispersion term, which may be orig-
inated by random variation of the optical fiber parameters, etc. Indeed, [17] studies the
stability of solitons in a fiber with randomly oriented birefringence, and observes that
the soliton does not split even at high values of the average birefringence. Meanwhile,
in [16], a nonlinear optical fiber with random birefringence is modeled by a system of
NLS equations with stochastic coupling, and the effects of randomly varying birefrin-
gence on the dynamics of propagating optical pulses are analyzed. Recently, [15] inves-
tigates the dynamics of the bound vector solitons for the coupled nonlinear Schrödinger
equations with the random optical fiber parameters, and finds that soliton switching is
closely influenced by the amplitudes of stochastic perturbations. This paper is devoted to
the study of the influence of a noise term as the potential of CNLS equations on the prop-
agation and interaction of solitons. It may cause drastically changes of the qualitative
behavior of the solitons. The stochastic system of our interest is

idu+αuxxdt+
(

σ|u|2+β|v|2
)

udt= εu◦dW(t),

idv+αvxxdt+
(

σ|v|2+β|u|2
)

vdt= εv◦dW(t),
(1.2)

where ε is a nonnegative and real-valued constant which denotes the amplitude of the
noise. The ◦ in the right-hand side of (1.2) means that the product is of Stratonovich type,
and W denotes a real-valued space-time noise.

In this work, we use numerical simulations to study qualitatively the solutions of
(1.2). This leads to choose a method which allows high resolution, compactness and
economy. Furthermore, numerical methods preserving the structure characteristics of
equations should be much better in preservation of physical properties and long time
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simulation of coupled stochastic nonlinear Schrödinger (CSNLS) equations [6]. Thus, we
propose a compact scheme which, in the deterministic case, has shown to be suitable
for computing complicated coupled problem; for more details see [9, 11]. By theoretical
and numerical analysis, we show that the scheme can preserve the discrete stochastic
multi-symplectic conservation law, discrete charge conservation law and discrete energy
evolution law almost surely for arbitrary number of CSNLS equations. Numerical simu-
lations match the theoretical analysis results well and verify the efficiency of the scheme.

Besides, we also present a detailed numerical investigation of some optical phenom-
ena in the framework of CSNLS equations based on the compact scheme. By choosing
different initial data and various amplitudes of noise, it is observed that the noise intro-
duces the oscillation to the profiles and could create new waves. The interaction of the
soliton and waves generated by the noise leads to the decrease of the solution ampli-
tudes, and exhibits inelastic characteristic which is different from the deterministic case.
Besides, the noise changes the position of the peak. In particular, the phenomena of phase
shift are more significant in the long propagation interval or with large noise amplitude.
Furthermore, we also consider the cases of three CSNLS (3-CSNLS) equations and four
CSNLS (4-CSNLS) equations and find that they are more sensitive to the perturbation of
noise than that of two coupled case.

The rest of this paper is organized as follows. In Section 2, we present some geometric
and physical properties about CSNLS equations. It is shown that the phase flow of equa-
tions preserves the stochastic multi-symplectic structure in phase space, and possesses
charge conservation law and energy evolution law. In Section 3, we propose a compact
scheme and show that the scheme preserves the discrete stochastic multi-symplectic con-
servation law, discrete charge conservation law and discrete energy evolution law almost
surely. In Section 4, numerical experiments with different initial values, coefficients and
scales of noise are performed to discuss the effects of random potential on the evolution
of a single soliton, the interaction of multi-solitons and the splitting of a profile into more
solitons. Finally, concluding remarks are presented in Section 5.

2 Preliminary results

2.1 Stochastic framework

Let (Ω,F ,P) be the probability space with filtration {Ft}0≤t≤T and let {βk}k∈N be a se-
quence of independent Brownian motions associated to this filtration. Given {ek}k∈N an
orthonormal basis of L2(R;R) (the space of real-valued square integrable functions on
R), and a linear operator φ on L2(R;R), then process

W(t,x,ω)=
∞

∑
k=0

βk(t,ω)φek(x), 0≤ t≤T, x∈R, ω∈Ω (2.1)

is a Wiener process on L2(R;R), with covariance operator φφ∗. Furthermore, we assume
that φ ∈ HS(L2(R;R), H1(R;R)) throughout this paper, where H1(R;R) represents the
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Sobolev space and HS(U,V) denotes the space of all Hilbert-Schmidt operators from the
separable Hilbert space U to another separable Hilbert space V with the norm given by

‖Q‖HS(U,V)=
(

∑
m∈N

‖Q fm‖2
V

) 1
2
, ∀ Q∈HS(U,V)

with { fm}m∈N being an orthonormal basis of U.
We will use the equivalent Itô equations of (1.2). Defining the function

Fφ(x)=
∞

∑
k=0

(φek(x))2, x∈R, (2.2)

which is independent of the basis {ek}k∈N, the equivalent Itô equations could be written
as

idu+αuxxdt+
(

σ|u|2+β|v|2
)

udt+i
ε2

2
uFφdt= εudW(t),

idv+αvxxdt+
(

σ|v|2+β|u|2
)

vdt+i
ε2

2
vFφdt= εvdW(t).

(2.3)

2.2 Stochastic multi-symplectic formulation of the CSNLS equations

One of the inherent canonical properties of Hamiltonian system is the symplecticity or
multi-symplecticity of its flow. The analysis of multi-symplecticity of stochastic Hamil-
tonian partial differential equations is presented in [7] for instance. In this part, we will
focus on the multi-symplectic property of CSNLS equations (1.2).

Assume that u(x,t)=r1(x,t)+is1(x,t), v(x,t)=r2(x,t)+is2(x,t), where r1, s1, r2, s2 are
real-valued functions. By introducing additional auxiliary variables p1 = α ∂r1

∂x , q1 = α ∂s1
∂x ,

p2=α ∂r2
∂x , q2=α ∂s2

∂x and defining z=(r1,s1,r2,s2,p1,q1,p2,q2)T, Eqs. (1.2) can be rewritten as
a system of stochastic Hamiltonian partial differential equations

Kdzt+Lzxdt=∇zS1(z)dt+∇zS2(z)◦dW, z∈R
8, (2.4)

where

S1(z)=
σ

4

[

(r2
1+s2

1)
2+(r2

2+s2
2)

2
]

+
β

2
(r2

1+s2
1)(r

2
2+s2

2)+
1

2α

(

p2
1+q2

1+p2
2+q2

2

)

,

S2(z)=− ε

2

(

r2
1+s2

1+r2
2+s2

2

)

,

and

K=








J 0 0 0

0 J 0 0

0 0 0 0

0 0 0 0








8×8

, L=








0 0 −I 0

0 0 0 −I

I 0 0 0

0 I 0 0








8×8

,
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where I is 2×2 identity matrix and

J=

(

0 1

−1 0

)

,

with 0 means the number zero and 0 means matrix zero.
Similarly to the proof of Theorem 2.2 in [7], we can obtain the following result.

Theorem 2.1. The system (2.4) possesses the stochastic multi-symplectic conservation law locally

dtω(x,t)+∂xκ(x,t)=0, (2.5)

i.e.,
∫ x1

x0

ω(x,t1)dx+
∫ t1

t0

κ(x1,t)dt=
∫ x1

x0

ω(x,t0)dx+
∫ t1

t0

κ(x0,t)dt,

where ω = 1
2dz∧Kdz, κ = 1

2dz∧Ldz are the differential 2-forms associated with the two skew-
symmetric matrices K and L, respectively, the notation ∧ means the wedge product, and (x0,x1)×
(t0,t1) is the local definition domain of z(x,t).

2.3 Conservation laws

As is well known, the deterministic CNLS equations (1.1) have some invariants. These
invariants are important criteria in measuring whether a numerical method is good or
not. Similarly, we can also obtain several conservative properties for CSNLS equations
(1.2). These are stated in the following theorems.

Theorem 2.2. The CSNLS equations (1.2) possess the charge conservation laws almost surely
∫

R

|u(x,t)|2dx=
∫

R

|u(x,0)|2dx,
∫

R

|v(x,t)|2dx=
∫

R

|v(x,0)|2dx. (2.6)

Proof. The proof is based on the application of Itô formula to functional Q(u)=
∫

R
|u|2dx.

Since Q(u) is Fréchet derivable, the derivatives of Q(u) along direction ψ and (ψ,φ) are
as follows:

DQ(u)(ψ)=2Re

∫

R

uψ̄dx, D2Q(u)(ψ,φ)=2Re

∫

R

ψφ̄dx.

From Itô formula, we have
∫

R

|u(t)|2dx=
∫

R

|u(0)|2dx+
∫ t

0
DQ(u(s))(du)+

1

2

∫ t

0
Tr
[

D2Q(u)
(
−iεuφ

)(
−iεuφ

)∗]
ds

=
∫

R

|u(0)|2dx+2
∫ t

0
Re
∫

R

u
(

−iαūxx−i(σ|u|2+β|v|2)ū− ε2

2
ūFφ

)

dxds

+2
∫ t

0
Re
∫

R

u(iεū)dxdW(s)+
∫ t

0
Re
∫

R
∑

m∈N

ε2|u|2(φem)
2dxds

=
∫

R

|u(0)|2dx.
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The proof for Q(v) is similar and thus we finish the proof.

Remark 2.1. From the charge conservation laws (2.6), it is obvious that the system (1.2)
conserves the total charge almost surely

∫

R

(

|u(x,t)|2+|v(x,t)|2
)

dx=
∫

R

(

|u(x,0)|2+|v(x,0)|2
)

dx. (2.7)

We now state the energy evolution law for CSNLS equations (1.2). To this end, we
define the energy

H(u,v)=
∫

R

[σ

4
(|u|4+|v|4)− α

2
(|ux|2+|vx|2)+

β

2
|u|2|v|2

]

dx. (2.8)

Theorem 2.3. The CSNLS equations (1.2) have the following global energy evolution law almost
surely,

H(u,v)=H(u0,v0)−αε
∫ t

0
Im

∫

R

(

uūx+vv̄x

)

d(∇W(s))dx

− α

2
ε2

∞

∑
k=1

∫ t

0

∫

R

(

|u|2+|v|2
)

|∇φek|2dxds, (2.9)

where Im, Re are the imaginary and real parts of a complex-valued function, respectively.

Proof. To investigate the evolution relationship of the energy. We will apply Itô formula
to the Hamiltonian H(u,v). It is easy to verify that,

DuH(u,v)(ψ)=Re

(∫

R

(σ|u|2+β|v|2)ūψdx−α
∫

R

ūxψxdx
)

,

DvH(u,v)(ψ)=Re

(∫

R

(σ|v|2+β|u|2)v̄ψdx−α
∫

R

v̄xψxdx
)

,

D2
u,uH(u,v)(ψ,φ)=Re

(∫

R

(σ|u|2+β|v|2)ψ̄φdx−α
∫

R

ψ̄xφxdx
)

+2σ
∫

R

Re(ūψ)Re(ūφ)dx,

D2
v,vH(u,v)(ψ,φ)=Re

(∫

R

(σ|v|2+β|u|2)ψ̄φdx−α
∫

R

ψ̄xφxdx
)

+2σ
∫

R

Re(v̄ψ)Re(v̄φ)dx,

D2
u,vH(u,v)(ψ,φ)=2β

∫

R

Re(ūψ)Re(v̄φ)dx,

(2.10)

where DuH(u,v)(ψ), D2
u,vH(u,v)(ψ,φ) denote the first Fréchet derivative with respect to

component u along direction ψ and the second Fréchet derivative with respect to compo-
nents u,v along direction (ψ,φ), respectively.
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Based on the system (2.3), the Itô formula for H(u,v) leads to

dH(u,v)=DuH(u)(du)+DvH(v)(dv)

+
1

2
D2

u,uH(u)(du,du)+D2
u,vH(u,v)(du,dv)+

1

2
D2

v,vH(v)(dv,dv)

=−αεIm
∫

R

(

uūx+vv̄x

)

d(∇W(t))dx

+
α

2
ε2
Re

∫

R

(

ūx∇(uFφ)+ v̄x∇(vFφ)
)

dxdt
︸ ︷︷ ︸

A

− α

2
ε2

∞

∑
k=1

Re

∫

R

(

|∇(uφek)|2+|∇(vφek)|2
)

dx

︸ ︷︷ ︸

B

dt. (2.11)

After some simple algebraic manipulations, exploiting the definition of Fφ and inte-
gration by parts, we arrive at

A=Re

∫

R

(|ux|2+|vx|2)Fφdxdt+2
∞

∑
k=1

Re

∫

R

(uūx+vv̄x)(φek)∇(φek)dxdt,

and

B=Re

∫

R

(|ux|2+|vx|2)Fφdxdt+2
∞

∑
k=1

Re

∫

R

(uūx+vv̄x)(φek)∇(φek)dxdt

+
∞

∑
k=1

∫

R

(

|u|2+|v|2
)

|∇φek|2dxdt.

Substituting the above equations into (2.11) and integrating the equation from 0 to t
in temporal direction leads to (2.9). Thus the proof is finished.

Remark 2.2. It follows from the proofs of Theorem 2.2 and Theorem 2.3, we can conclude
that the charge conservation law and energy evolution law still hold for arbitrary number
of CSNLS equations by some minor modifications.

3 A compact scheme for the CSNLS equations

We now propose the numerical scheme which we will use to simulate our stochastic
equations (1.2) and, finally, we will state three conservation law theorems for this scheme.

The compact scheme which proposed in this paper behaves well: on one hand, it does
not introduce any numerical dissipation and can simulate some important phenomena
such as the evolution of a single soliton, the interaction of multi-solitons or the splitting of
a profile into more solitons. On the other hand, it approximates to derivatives with fewer
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nodes and of higher accuracy, which is implemented by solving a tri-diagonal or a pent-
diagonal linear algebraic system. The numerical experiments confirm all nice properties
of the scheme. For more merits of the compact scheme in deterministic case, see [9, 11].

For simplicity, only homogeneous boundary condition is considered. The algorithms
and conclusions described in this paper can be easily extended to the case of periodic
boundary condition.

3.1 A compact scheme

Since storage of the solution requires to get a system of finite size, it seems natural to
work on a bounded computational domain [a, b]. We introduce a uniform grid (xj,tn)∈
[a,b]×[0,T] with mesh length h in the spatial direction and mesh length τ in the temporal
direction, with j= 0,1,··· , J+1, n= 0,1,··· ,N+1. The approximate value of the function
u(x,t) at the mesh point (xj,tn) is denoted by un

j . For convenience, we introduce the

following operators

δtu
n
j =

un+1
j −un

j

τ
, δxun

j =
un

j+1−un
j

h
, δxx̄un

j =
un

j+1−2un
j +un

j−1

h2

and two tridiagonal matrices

H=
1

12










10 1
1 10 1

. . .
. . .

. . .

1 10 1
1 10










J×J

, D=










2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2










J×J

.

With the definition of the above difference operators and matrices, the compact scheme
for Eqs. (1.2) reads

iδtu
n+αH−1δxx̄un+ 1

2 +
(

σ|un+ 1
2 |2+β|vn+ 1

2 |2
)

un+ 1
2 =

ε

τ
un+ 1

2 ∆Wn,

iδtv
n+αH−1δxx̄vn+ 1

2 +
(

σ|vn+ 1
2 |2+β|un+ 1

2 |2
)

vn+ 1
2 =

ε

τ
vn+ 1

2 ∆Wn,
(3.1)

where

u
n+ 1

2

j =
un+1

j +un
j

2
, un+ 1

2 =
[

u
n+ 1

2
1 ,u

n+ 1
2

2 ,··· ,un+ 1
2

J

]T
,

|un+ 1
2 |2vn+ 1

2 =
[

|un+ 1
2

1 |2v
n+ 1

2
1 , |un+ 1

2
2 |2v

n+ 1
2

2 , ··· , |un+ 1
2

J |2v
n+ 1

2
J

]T
,

and

un+ 1
2 ∆Wn =

[

u
n+ 1

2
1 ∆Wn

1 , u
n+ 1

2
2 ∆Wn

2 , ··· , u
n+ 1

2
J ∆Wn

J

]T
.
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The random term can be simulated by

∆Wn
j =

1

h

√

2

b−a

M

∑
m=1

∫ xj+1

xj

sin
(mπ(x−a)

b−a

)

dx
(

βm(tn+1)−βm(tn)
)

, (3.2)

here, (βm(tn+1)−βm(tn))/
√

τ are independent random variables with N (0,1) distribu-
tion.

Remark 3.1. In order to analyze the discrete stochastic multi-symplectic property, we
rewrite the difference operator δxx̄ into the following form

δxx̄un+ 1
2 =−D

h2
un+ 1

2 . (3.3)

Remark 3.2. It is easy to verify that H and D are two symmetric and positive definite
matrices.

Remark 3.3. In the case of periodic boundary condition, matrices H and D become

H=
1

12










10 1 1
1 10 1

. . .
. . .

. . .

1 10 1
1 1 10










J×J

, D=










2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2










J×J

.

Furthermore, properties in Section 3 still hold for periodic boundary condition.

3.2 Properties of the compact scheme

In this subsection, we will analyze theoretically the discrete conservation properties for
our compact scheme (3.1). Fist of all, we introduce two useful lemmas.

Lemma 3.1. For symmetric and positive definite matrices H and D, there exist unique symmetric

and positive definite matrices H
1
2 and D 1

2 , such that H =(H
1
2 )2, D=(D 1

2 )2. Furthermore, we

have HD=DH, HD 1
2 =D 1

2 H.

Now the following lemma is obtained directly.

Lemma 3.2. For symmetric and positive definite matrix H, we have

−〈Hδxx̄un+ 1
2 , un+ 1

2 〉≥0, (3.4)

and

−2Re〈Hδxx̄un+ 1
2 , un+1−un〉= |H 1

2 un+1|21−|H 1
2 un|21, (3.5)

with

〈un, vn〉=h
J

∑
j=1

un
j v̄n

j , |un|21=h
J

∑
j=1

|D 1
2 un

j |2.



102 C. Chen et al. / Commun. Comput. Phys., 21 (2017), pp. 93-125

3.2.1 Discrete stochastic multi-symplectic conservation law

Based on Lemma 3.1 and introducing new variables a=D 1
2 s1, b=D 1

2 r1, c=D 1
2 s2, d=D 1

2 r2,
the compact scheme (3.1) can be written as the following first-order system

δtr
n
1−

α

h2
H−1D 1

2 an+ 1
2 +(σ|un+ 1

2 |2+β|vn+ 1
2 |2)sn+ 1

2
1 =

ε

τ
s

n+ 1
2

1 ∆Wn,

D 1
2 s

n+ 1
2

1 =an+ 1
2 ,

−δts
n
1−

α

h2
H−1D 1

2 bn+ 1
2 +(σ|un+ 1

2 |2+β|vn+ 1
2 |2)rn+ 1

2
1 =

ε

τ
r

n+ 1
2

1 ∆Wn,

D 1
2 r

n+ 1
2

1 =bn+ 1
2 ,

δtr
n
2−

α

h2
H−1D 1

2 cn+ 1
2 +(σ|vn+ 1

2 |2+β|un+ 1
2 |2)sn+ 1

2
2 =

ε

τ
s

n+ 1
2

2 ∆Wn,

D 1
2 s

n+ 1
2

2 =cn+ 1
2 ,

−δts
n
2−

α

h2
H−1D 1

2 dn+ 1
2 +(σ|vn+ 1

2 |2+β|un+ 1
2 |2)rn+ 1

2
2 =

ε

τ
r

n+ 1
2

2 ∆Wn,

D 1
2 r

n+ 1
2

2 =dn+ 1
2 .

(3.6)

Let Z=(rT
1 ,sT

1 ,rT
2 ,sT

2 ,aT,bT,cT,dT)T, we can write Eqs. (3.6) into stochastic multi-symplectic
framework

KδtZ
n+

1

h2
LDZn+ 1

2 =∇ZS̃1(Z
n+ 1

2 )+∇ZS̃2(Z
n+ 1

2 )
∆Wn

τ
, Z∈R

8J , (3.7)

where

S̃1(Z)=
σ

4

[

(|r1|2+|s1|2)2+(|r2|2+|s2|2)2
]

+
β

2
(|r1|2+|s1|2)(|r2|2+|s2|2)

+
α

2

(

aT H−1a+bT H−1b+cT H−1c+dT H−1d
)

,

S̃2(Z)=− ε

2

(

|r1|2+|s1|2+|r2|2+|s2|2
)

,

and

K=

(
Æ 0

0 0

)

8J×8J

, L=

(
0 −Œ

Œ 0

)

8J×8J

, D=






D 1
2

. . .

D 1
2






8J×8J

with

Æ=







0 I 0 0

−I 0 0 0

0 0 0 I
0 0 −I 0







4J×4J

, Œ=







0 −αH−1 0 0

−αH−1 0 0 0

0 0 0 −αH−1

0 0 −αH−1 0







4J×4J

.
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The variational equation for Eq. (3.7) reads

KδtdZn+
1

h2
LDdZn+ 1

2 =∇2
ZS̃1(Z

n+ 1
2 )dZn+ 1

2 +∇2
ZS̃2(Z

n+ 1
2 )dZn+ 1

2
∆Wn

τ
. (3.8)

Taking the wedge product with dZn+ 1
2 , we can obtain

dZn+1∧KdZn+1−dZn∧KdZn

2τ
+

1

h2
dZn+ 1

2 ∧LDdZn+ 1
2 =0,

where we use dZn+ 1
2 = 1

2

(
dZn+1+dZn

)
and the following properties of differential 2-

forms: let ξ,η be n-dimensional differential 1-forms and M be an n×n matrix, we have

ξ∧Mη=MTξ∧η, ξ∧η=−η∧ξ.

Consequently, one obtains the following theorem:

Theorem 3.1. The compact scheme (3.1) has the following discrete stochastic multi-symplectic
conservation law almost surely

ωn+1−ωn

τ
+

1

h2
dZn+ 1

2 ∧LDdZn+ 1
2 =0, (3.9)

where ωn = 1
2dZn∧KdZn.

3.2.2 Discrete charge conservation law

Next, we are interested in the discrete charge conservation law for the compact scheme
(3.1).

Theorem 3.2. Under the homogeneous boundary condition, the compact scheme (3.1) possesses
the discrete charge conservation law almost surely, i.e.,

h
J

∑
j=1

|un+1
j |2=h

J

∑
j=1

|un
j |2, h

J

∑
j=1

|vn+1
j |2=h

J

∑
j=1

|vn
j |2. (3.10)

Proof. We multiply both sides of the first equation of system (3.1) by 2ūn+ 1
2 , which is the

conjugate of 2un+ 1
2 , and taking the imaginary part, it yields

Re〈δtu
n,2un+ 1

2 〉+αIm〈H−1δxx̄un+ 1
2 ,2un+ 1

2 〉=0, (3.11)

where the equality is due to the real-valued of Wiener process W(t).

It follows from Lemma 3.2, we have 〈H−1δxx̄un+ 1
2 ,2un+ 1

2 〉 ∈R. Combining all these
equalities and the definition of differential operators, we can get the first result of (3.10).
Analogously, one can get the result of v. Thus the proof is finished.

Remark 3.4. Theorem 3.2 implies that the compact scheme (3.1) is unitary. It also implies
that the compact scheme maintains the total charge conservation, that is,

h
J

∑
j=1

(

|un+1
j |2+|vn+1

j |2
)

=h
J

∑
j=1

(

|un
j |2+|vn

j |2
)

.
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3.2.3 Discrete energy evolution law

The next result concerns the error estimation of the discrete global energy of the compact
scheme.

Theorem 3.3. Under the homogeneous boundary condition, the compact scheme (3.1) has the
following recursion of discrete global energy conservation law, i.e.,

Hn+1=Hn+
εh

2τ

J

∑
j=1

(

|un+1
j |2+|vn+1

j |2−|un
j |2−|vn

j |2
)

∆Wn
j . (3.12)

Here, the discrete global energy of the scheme (3.1) at time tn is defined as

Hn =−α

2

(

|H− 1
2 un|21+|H− 1

2 vn|21
)

+
hσ

4

J

∑
j=1

(

|un
j |4+|vn

j |4
)

+
hβ

2

J

∑
j=1

|un
j |2|vn

j |2.

Proof. Multiplying both sides of Eqs. (3.1) by τδtū
n, τδtv̄

n, then taking the real part, by
Lemma 3.2, it yields

− α

2

(

|H− 1
2 un+1|21−|H− 1

2 un|21
)

+
hσ

4

J

∑
j=1

(

|un+1
j |4−|un

j |4
)

+
hβ

4

J

∑
j=1

(

|un+1
j |2−|un

j |2
)(

|vn+1
j |2+|vn

j |2
)

=
hε

2τ

J

∑
j=1

(

|un+1
j |2−|un

j |2
)

∆Wn
j , (3.13)

and

− α

2

(

|H− 1
2 vn+1|21−|H− 1

2 vn|21
)

+
hσ

4

J

∑
j=1

(

|vn+1
j |4−|vn

j |4
)

+
hβ

4

J

∑
j=1

(

|vn+1
j |2−|vn

j |2
)(

|un+1
j |2+|un

j |2
)

=
hε

2τ

J

∑
j=1

(

|vn+1
j |2−|vn

j |2
)

∆Wn
j . (3.14)

Since,

(

|un+1
j |2−|un

j |2
)(

|vn+1
j |2+|vn

j |2
)

+
(

|vn+1
j |2−|vn

j |2
)(

|un+1
j |2+|un

j |2
)

=2
(

|un+1
j |2|vn+1

j |2−|un
j |2|vn

j |2
)

,

and adding (3.13) to (3.14), we then have the transformation of the global energy (3.12).
Thus the proof is finished.
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4 Results and discussion

In this section, we will present some detailed numerical investigations of CSNLS equa-
tions based on the compact scheme. In particular, we will focus on the conservation laws
and the random potential effects on solitons. Furthermore, we check the temporal accu-
racy by fixing the space step sufficiently small such that errors stemming from the spatial
approximation are negligible.

4.1 Evolution of a single soliton

In order to investigate the influence on the evolution of a single soliton in the presence of
a random potential, we choose a soliton profile as the initial data to solve Eqs. (1.2),

u(x,0)=

√

2γ

1+β
sech(

√

2γx)exp(icx),

v(x,0)=−
√

2γ

1+β
sech(

√

2γx)exp(icx),

(4.1)

where γ, β and c are constants. In this subsection, we choose parameters as α=0.5, σ=
1, β=2/3, γ=1, c=1.

In the following experiments, we take the temporal step-size τ = 0.01, the spatial
meshgrid-size h=0.1, and the time interval [0,100], the numerical spatial domain [a,b]=
[−20, 100].

As is stated in Theorem 3.2, the compact scheme (3.1) could preserve the discrete
charge conservation law almost surely. We consider this phenomenon numerically in
Fig. 1, where the left one shows the evolution of the discrete charge conservation law and
the right one is about the global error in the case of ε=0.01, 0.05 and 0.10. Although differ-
ent sizes of noise are chosen, the figures of the discrete charge conservation law remain to
be horizontal lines approximately, and the global residuals of the discrete charge conser-
vation law all reach the magnitude of 10−11 for various ε. We observe a good agreement
with the theoretical result.

Remark 4.1. According to Theorem 2.3, the averaged energy E(H(u,v)) of the CSNLS
equations (1.2) satisfies the following equality:

E(H(u,v))=E(H(u0,v0))−
α

2
ε2

E

∞

∑
k=1

∫ t

0

∫

R

(

|u|2+|v|2
)

|∇φek|2dxds. (4.2)

It can be easily observed from (4.2) that, the averaged energy E(H(u,v)) follows a
dissipative evolution law. This phenomena is reflected in Fig. 2, where the evolution of
the averaged discrete energy decays linearly over 100 trajectories, and so is the discrete
energy for one trajectory with various ε.
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Figure 1: Evolution of the discrete charge conservation law (left), and the global errors of the discrete charge
conservation law (right), as ε=0.01, 0.05, 0.10.
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Figure 2: Evolution of average discrete energy along 100 trajectories and discrete energy over one trajectory as
ε=0.01, 0.05, 0.10.

We run the following experiments with different amplitudes of noise for the compo-
nent u. Fig. 3 plots the influence of noise on the soliton profile at different instants in the
case of ε=0.01, where the red and green lines represent two samples of the profiles, and
the black line denotes the profile for the deterministic problem. It seems that the soliton
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Figure 3: Shift of profiles of |u| at different time with ε=0.01.

does not seem to be strongly perturbed in the short propagation interval. When the time
becomes larger, we can see a significant shift of the profiles, but the shape of the profile
does not present obvious changes. Taking path 1 (the red line of the plot) as an example,
we see that at t=20, the shape of the soliton profile does not present obvious change; at
t= 40, the position of the peak is around x = 37; at t= 60, it is around x = 55; at t= 80,
the position of the peak is about at x= 73. Moreover, we could observe a slight modifi-
cation of amplitudes of profiles in the presence of noise. And the noise may introduce
oscillations to the profiles of the soliton, and the amplitude of oscillations is negligible if
compared with the amplitudes of the soliton.

In order to further investigate the profiles of the soliton under the influence of noise,
we increase the amplitude of the noise to ε=0.05, 0.10. In Fig. 4, with ε=0.05, we see that,
indeed, the noise introduces much stronger perturbations and the phase shift is sensibly
modified by the noise. Furthermore, the amplitude of the soliton decays with respect
to time. However, we can see that the soliton is not totally destroyed. The evolution of
the soliton in the case of ε= 0.10 is shown in Fig. 5 at t = 20, 40, 60 and 80. Under the
influence of big sizes of noise, the amplitude of soliton is much smaller than that in the
deterministic case; see the case of t=20, but we can still identify the shape of the soliton.
For large t=40, 60, 80, we can no longer recognize the soliton and it is totally destroyed.
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Figure 4: Shift of profiles of |u| at different time with ε=0.05.
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Figure 5: Shift of profiles of |u| at different time with ε=0.10.
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The above phenomena are similar to the observations in [2] that the small noise does not
perturb the soliton strongly and does not prevent the propagation while high level noise
could destroy the wave. It indicates that the noise introduces oscillations to the profiles
and could create new waves, and these waves interact with the original solitary wave,
which is inelastic interactions, leading to the decrease of the amplitude of the profile, i.e.,
the decay of the solitary wave.

4.2 Collision of two solitons

The next step is to simulate the collision of two solitons. The initial data are

u(x,0)=

√

2α1

1+β
sech(

√

2γx)exp(ic1x)+

√

2α2

1+β
sech(

√
2α1(x−x0))exp(ic2(x−δ)),

and

v(x,0)=−
√

2α1

1+β
sech(

√

2γx)exp(ic1x)−
√

2α2

1+β
sech(

√
2α1(x−x0))exp(ic2(x−δ)),

where a=−20, b=150, T=60, α=0.5, β=2/3, γ=1 α1=1, α2=0.5, c1=2, c2=0.5, δ=30.

Since the module of u is identical to v, we only provide surfaces of |u|. The intensity
profiles and contours of solitons with various sizes of noise ε = 0.01, 0.05, 0.10 for one
trajectory are shown in Figs. 6-7. When the noise amplitude is small, ε=0.01, the soliton
does not seem to be strongly perturbed. However, when the noise amplitude becomes
larger, ε=0.05, we observe that the noise introduces much stronger perturbations. Their
amplitudes become smaller. In particular, when ε=0.10, the soliton is almost collapsed.
These observations recover some of those in Subsection 4.1. We pay more attention to the
case ε=0.10. At the beginning there are two solitons with different amplitudes, and let us
label the one with bigger amplitude Soliton-I and the other one Soliton-II. As we can see
from the right bottom figure in Fig. 7, the evolution of Soliton-II almost stops after their
interaction while Soliton-I propagates for much longer time. It seems that the soliton with
larger amplitude may propagate for longer time.

We focus on the interaction of solitons in this subsection, as we can see from the initial
data that it is composed by two profiles of solitons. In Figs. 8-10, we plot the interaction
profiles at time t= 0, 15, 21 and 60 for different sizes of noise ε= 0.01, 0.05, 0.10. From
Fig. 8 with ε=0.01, we notice that the influence of noise imposed on the solitons is almost
ignorable in short time interval, e.g., [0,21]. When time increases to t = 60, there is an
apparent shift of solitons similar to the case of the evolution of a single soliton. And we
can see that the noise introduces some oscillations to the solitons, especially to Soliton-II;
it can be seen again in the case ε= 0.05 (Fig. 9) that Soliton-II is about to be covered by
waves introduced by the noise while the shape of Soliton-I could still be identified at time
t=60 with damped amplitude. In the case ε=0.10, the oscillation generated by the noise
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Figure 6: Intensity profiles of solitons along one trajectory.
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Figure 7: Intensity contours of two solitons along one trajectory.
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Figure 8: Collision of two solitons along one trajectory with ε=0.01.
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Figure 9: Collision of two solitons along one trajectory with ε=0.05.
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Figure 10: Collision of two solitons along one trajectory with ε=0.10.

is much stronger and it accelerates the decay of the soliton amplitude; we can no longer
identify the shape of Soliton-I at the time t=60.

From these figures, we can observe that an elastic (i.e., shape unchanging) soliton col-
lision between two solitons is illustrated in the deterministic case. However, when the
noise amplitude increases, the figures present inelastic interaction (i.e., shaping chang-
ing) with a significant shift of the peak. And the elasticity property of the collision is
destroyed by the noise. We may then say that the noise is responsible for the possible
destruction of the soliton.

4.3 Reflexionless potential case

To study the influence of noise on the splitting of a profile into more solitons, the third
test we performed is the evolution of the following initial values

u(x,0)=
√

2r1sech
(

r1x+
1

2
D0

)

exp(iV0x/4),

v(x,0)=
√

2r2sech
(

r2x+
1

2
D0

)

exp(−iV0x/4),
(4.3)
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Figure 11: Splitting of the reflexionless potential profile for ε=0.01 (Left: |u|; Right: |v|).

where r1, r2, D0 and V0 are constants. We choose the following parameters:

a=−100, b=100, T=100, α=1, σ=1,

β=2/3, r1= r2=1, D0=25, V0=1.20757148.

As is shown in [1], the inverse scattering method shows that this profile splits into
several solitary waves with no dispersive tail. The evolutions of |u| and |v|, the contours
and the maximum modules are shown in Fig. 11. From this figure, we may make a rough
guess that for deterministic CNLS equations (1.1), the time of creation of new waves for
components u and v is about t=19, and the modulus of u and v equal to |u|= |v|=1.0632.
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Figure 12: Maximum modules of u with different sizes of noise ε=0.01, 0.05, 0.10.

We are also interested in the behavior of the maximum modules of components u and
v. Fig. 12 plots the maximum modules of u for different amplitudes of noise. The black
line represents the averaged value over 100 trajectories, the red lines are five samples,
and the blue one is for deterministic case. For the case ε= 0.01, the behavior of the av-
eraged value is close to but is smoother than that of deterministic case. As the increase
of the amplitude of noise (ε=0.05 or 0.10), the behavior of the averaged value separates
from the deterministic one, and shows us a smooth and steady decrease. The larger the
amplitude of noise is, the smaller the averaged value at the final time t=100 be.

4.4 Random effect to N-coupled case

In this subsection, we will numerically investigate the random effect to the soliton evolu-
tion or interactions in the case of N-coupled stochastic nonlinear Schrödinger equations.
In particular, we will focus on the case of N=3 and N=4, respectively.

4.4.1 System of three coupled stochastic NLS equations

Consider the following system of three coupled stochastic NLS equations (see [5] for the
deterministic system):
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idut+kuxxdt+(σ|u|2+β|v|2+σ|w|2)udt= εu◦dW(t),

idvt+kvxxdt+(β|u|2+σ|v|2+β|w|2)vdt= εv◦dW(t),

idwt+kwxxdt+(σ|u|2+β|v|2+σ|w|2)wdt= εw◦dW(t),

(4.4)

together with initial data:

u(x,0)= a0[1−ξcos(lx)],

v(x,0)=b0[1−ξcos(l(x+θ))],

w(x,0)= c0[1−ξcos(lx)],

where k=1, σ=1, β=1, a0=0.3, b0=0.3, c0=0.3, ξ=0.1, l=0.5, θ=0.
In this experiment, the space-time domain [0,8π]×[0,100] is divided with h=π/100

and τ=0.01. The surface and contour plots of the wave solutions via the compact scheme
(3.1) with various sizes of noise are shown in Fig. 13. Note that in the case of three
coupled equations we choose the value of ε smaller than that of two coupled case, since
for ε=0.03 the shape of soliton is hardly to be recognized; see the bottom figures in Fig. 13.
In the deterministic case (ε=0), we can see that the soliton waves show periodic behavior.
However, we observe that in the case ε=0.005, the peaks of |u|+|v|+|w| have shifted and
the periodic behavior of soliton waves has disappeared even though the shape of soliton
is easy to recognize. Moreover, it presents more peaks in the considered domain than the
deterministic case. For ε=0.01, the shape of solitons could still be identified, but there are
more oscillations in the solitons and more peaks than the deterministic case. At ε=0.03,
it is hard for us to recognize the shape of solitons and it is almost destroyed. It seems that
the solitons of three coupled equations are more sensitive to the perturbation of noise
than that of the two coupled case.

4.4.2 System of four coupled stochastic NLS equations

To investigate the interaction scenarios of four solitons with different wave amplitudes,
different velocities and different sizes of noise, we consider the following coupled system

idut+kuxxdt+[σ|u|2+β(|v|2+|p|2+|q|2)]udt= εu◦dW(t),

idvt+kvxxdt+[σ|v|2+β(|u|2+|p|2+|q|2)]vdt= εv◦dW(t),

idpt+kpxxdt+[σ|p|2+β(|u|2+|v|2+|q|2)]pdt= εp◦dW(t),

idqt+kqxxdt+[σ|q|2+β(|u|2+|v|2+|p|2)]qdt= εq◦dW(t),

(4.5)

together with the initial conditions:

u(x,0)=
√

2r1sech(r1x+x10)e
iv1x,

v(x,0)=
√

2r2sech(r2x−x10)e
−iv2x,

p(x,0)=
√

2r3sech(r3x+x30)e
iv3x,

q(x,0)=
√

2r4sech(r4x−x30)e
−iv4x.
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Figure 13: The surface and contour plots of interaction scenario of |u|+ |v|+ |w| with ε= 0.005, 0.01, 0.03,
respectively.
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In the following numerical computations we choose k=1, σ=1, r1 = r2 =1, r3 = r4 =
1.4, v1=v2=η/8, v3=v4=η/4, T=100, a=−50, b=50, h=1/12, τ=0.01 and the initial
position parameters x10=10 and x30=40.

In the first test we select the control parameters β = 1 and η = 1 such that the four
profiles in the initial data will keep their own propagation after interaction with each
other in the deterministic case. We present the interaction scenario of four solitons with
different amplitudes of noise ε= 0.01, 0.03, 0.05 in Fig. 14 with the help of surfaces and
contour plots. It can be observed that the four solitons march with their own velocities
and shapes before their collision. They will not meet at the same time. However, from the
contours we see that the velocities, amplitudes and shapes of the solitons have changed
due to the existence of noise. In addition, we can observe that the propagation directions
of the four solitons have changed which are effected by the noise. This phenomenon will
have an influence on the interaction of solitons, e.g., the position and time where and
when solitons collide with each other. The amplitudes of the pulses at different time t
are depicted in Figs. 15-17. From these figures, we recover the observation that the small
noise does not introduce too much influence on the soliton in the short time interval while
for longer time or for stronger noise, the inelastic interaction between solitons and waves
generated by the noise leads to strong perturbation, and could even destroy solitons.

For the second test we choose the parameters β=0.25, η=0.8 such that the four profiles
in the initial data will fuse into a single soliton after their collision in the deterministic
case. We present the fusion scenario of four solitons at different sizes ε of noise in Fig. 18.
From this figure, we see that the noise does not change the intrinsic fusion character of
solitons, but the noise has an influence on the direction of each soliton, which affects the
fusion order of solitons.

We select the parameters β= 2, η = 1.6 in the third set of computations so that new
waves will be created after their collision of four profiles in the initial data in the deter-
ministic case (Fig. 19), which is the result of the large value of β and moderate collision
velocity. We present the creation scenario of four solitons, respectively, with different
sizes of noise ε= 0.01, 0.03 and 0.05 in Figs. 20-22. From Fig. 20, we observe that the ef-
fect on components p and q is stronger than that on u, v for small noise ε= 0.01. As the
increase of amplitude of noise, the influence of noise on the soliton gets significant.

4.5 Mean-square convergence order

We investigate the convergence order in temporal direction of the proposed compact
scheme for two coupled stochastic NLS equations in this experiment. Define

eu
∆t :=

(

E‖u(·,T)−uT(·)‖2
L2

) 1
2
, ev

∆t :=
(

E‖v(·,T)−vT(·)‖2
L2

) 1
2
,

let σ = 1, α = 1, [xL,xR] = [−1,1], ∆x = 1
200 , T = 1

4 and u|t=0 = sin(πx), v|t=0 = sin(πx),
and plot eu

∆t, ev
∆t against ∆t on a log-log scale with various combinations of (β, ε) for the

truncated number of Wiener process 1≤ M ≤ 8 of Eq. (2.1), respectively. Although we
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Figure 14: The surface and contour plots of interaction scenario of |u|+ |v|+ |p|+ |q| with ε=0.01, 0.03, 0.05,
respectively.
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Figure 15: Collision of four solitons along one trajectory with ε=0.01.
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Figure 16: Collision of four solitons along one trajectory with ε=0.03.
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Figure 17: Collision of four solitons along one trajectory with ε=0.05.
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Figure 18: Fusion scenario of |u|+ |v|+ |p|+ |q| with ε=0.01, 0.03, 0.05.
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Figure 19: Creation scenario of |u|, |v|, |p| and |q| in the deterministic case.
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Figure 20: Creation scenario of |u|, |v|, |p| and |q| with ε=0.01.



122 C. Chen et al. / Commun. Comput. Phys., 21 (2017), pp. 93-125

Space x

T
im

e 
t

ε=0.03 |u|

−40 −30 −20 −10 0 10 20 30 40
0

5

10

15

20

25

30

35

40

45

Space x

T
im

e 
t

ε=0.03 |v|

−40 −30 −20 −10 0 10 20 30 40
0

5

10

15

20

25

30

35

40

45

Space x

T
im

e 
t

ε=0.03 |p|

−40 −30 −20 −10 0 10 20 30 40
0

5

10

15

20

25

30

35

40

45

Space x

T
im

e 
t

ε=0.03 |q|

−40 −30 −20 −10 0 10 20 30 40
0

5

10

15

20

25

30

35

40

45

Figure 21: Creation scenario of |u|, |v|, |p| and |q| with ε=0.03.
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Figure 22: Creation scenario of |u|, |v|, |p| and |q| with ε=0.05.
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Figure 23: Rates of convergence for the deterministic case with β=0 and β=2/3, respectively.
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Figure 24: Mean square error versus time steps with β=0 and β=2/3 for 1≤M≤8, respectively.

do not know the explicit form of the solution to (1.2), we take the compact scheme with
the very small time stepsize ∆t=2−14 as a reference solution. We then compare it to the
compact scheme evaluated with time steps (21∆t,23∆t,25∆t,27∆t) in order to estimate the
rate of convergence.

We consider ε = 0 first: Fig. 23 shows order 2 for the L
2-error of the compact for

different sizes of β.

The observations are different in the stochastic case (ε=
√

2) where different sorts of
Wiener processes depending on M are used. Fig. 24 presents the mean-square conver-
gence order for the L

2-error with various sizes of β. And 200 realizations are chosen
to approximate the expectations. As is displayed in Fig. 24, the strong order of conver-
gence drops from approximately 1 to 0.5 for values 1 to 8 of M. It is an interesting and
open problem to investigate theoretically the convergence order of the proposed compact
scheme.
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5 Conclusions

In this paper, we propose a compact scheme to the coupled stochastic nonlinear
Schrödinger equations. We prove that the compact scheme preserves the discrete stochas-
tic multi-symplectic conservation law, discrete charge conservation law and discrete en-
ergy evolution law almost surely. Numerical experiments confirm well the theoretical
analysis results. Moreover, we have performed a detailed numerical investigation of the
effect of a random potential on the evolutions and interactions of solitons in this paper.
Especially, we have studied the evolution of a single soliton, collision of multi-solitons
and the splitting of a profile into more solitons with different amplitudes of noise. Of
physical and optical interest, relevant properties of soliton interactions in the systems of
3-CSNLS and 4-CSNLS have been analyzed and graphically discussed.

The compact scheme which is proposed in this paper has lots of merits. However,
in the stochastic situation, the solution is not expected to be smooth either in space or in
time. Therefore, studying the convergence of the compact scheme for CSNLS equations
is of great mathematical interest. We have studied the convergence order in temporal
direction of the proposed compact scheme numerically. And it is an interesting open
problem to study theoretically the convergence order of the compact scheme.
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