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Abstract. In this paper, we propose a new two-level preconditioned C-G method
which uses the quadratic smoothing and the linear correction in distorted but topo-
logically structured grid. The CPU time of this method is less than that of the
multigrid preconditioned C-G method (MGCG) using the quadratic element, but
their accuracy is almost the same. Numerical experiments and eigenvalue analysis
are given and the results show that the proposed two-level preconditioned method
is efficient.
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1 Introduction

The multigrid scheme has been widely used to solve the partial differential equations.
In the sixties Fedorenko [1, 2] developed the first multigrid scheme for approximat-
ing the solution of the Poisson equation in a unit square. Since then, other mathe-
maticians extended his idea to general elliptic boundary value problems with vari-
able coefficients; see, e.g., [3]. However, the full efficiency of the multigrid approach
was realized after the works of Brandt [4, 5] and Hackbusch [6]. These authors also
introduced multigrid methods for nonlinear problems such as the multigrid full ap-
proximation storage (FAS) scheme [5, 7]. Another achievement in the formulation of
multigrid methods was the full multigrid (FMG) scheme [5, 7], based on the combi-
nation of nested iteration techniques and multigrid methods. Multigrid algorithms
are now applied to a wide range of problems, primarily to solve linear and nonlinear
boundary value problems. A multigrid preconditioned conjugate gradient (MGCG)
method has been put forward by Tatebe in [11], which used the multigrid method as
a preconditioner for CG method and has a good convergence rate even for the prob-
lems on which the standard multigrid method does not converge efficiently. On the
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other hand, Bank and Douglas [16] treated the conjugate gradient method as a relax-
ation method of the multigrid method. Braess [12] considered these two combinations
and reported the conjugate gradient method with a multigrid preconditioning is effec-
tive for elasticity problems. Then Tatebe and Oyanagi considered a parallelization of
the MGCG method and proposed an efficient parallel MGCG method on distributed
memory machines [15]. A class of usefull of solvers based on the multigrid strategy are
algebraic multigrid (AMG) methods [8] that resemble the geometric multigrid process
utilizing only information contained in the algebraic system to be solved. It is noted
that S. Shu et al proposed an algebraic multigrid method for higher order finite ele-
ment discretizations [13], who also studied AMG method for finite element systems
on criss-cross grids [14].

In this paper, we study an efficient multigrid method which can be used in dis-
torted but topologically structured grid. We utilize iterative grid redistribution method,
proposed by Ren and Wang in [10], to generate mesh which concentrates in the region
where solution has large variation. A quadratic finite element method and a linear fi-
nite element method are both employed to discretize the equation and MGCG method
is used to solve the discretized system Au = b. The result of using quadratic element
is more accurate than that of using linear element, while the former costs more CPU
time than the latter. We would like to obtain the accuracy of using quadratic element
and cost less CPU time. We improve MGCG method and make it more efficient. Our
two-level method in the preconditioning step has several crucial parts: (1) take pre-
smoothing steps by Gauss-Seidel iteration in the quadratic finite element space; (2)
calculate the residue and restrict it on the linear finite element space; (3) use the V-
cycle multigrid scheme to solve Au = r (r is the residue); (4) prolongate the solution
from the linear element space to the quadratic element space; (5) take post-smoothing
steps by Gauss-Seidel iteration in the quadratic element space. The above is different
from current MGCG method and will be shown very useful.

In the following, the multigrid preconditioned conjugate gradient method and our
new two-level preconditioned C-G method are described in Sections 2 and 3. The
efficiency of the two-level method are verified by numerical examples given in Section
4. In Section 5, eigenvalue analysis is presented, which explains why our two-level
method is efficient. When the two-level method is used as a preconditioner of the
conjugate gradient method, it becomes quite an effective and desirable preconditioner
of the conjugate gradient method.

2 Multigrid preconditioned C-G method

The MGCG method is a PCG method that uses the multigrid method as a precondi-
tioner. When a target linear equation is

Llx = f,
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iteration of the MGCG method is described in Program 1. Let an initially approximate
vector be x0 and an initial residual

r0 = f − Llx0.

Equation

Llh̃
0
= r0,

is approximately solved by the multigrid method and we set an initial direction vector

p0 = h̃
0
.

The loop of Program 1 is iterated until convergence.
In Program 1, (2.4) is the part of a multigrid preconditioning. Program 2 is the

procedure of multigrid method implementation . The function shown in Program 2
is recursively defined, where a sequence of coefficient matrices is {Li}(0 ≤ i ≤ l), µ1
and µ2 are the numbers of pre- and post-smoothing iterations respectively. Multigrid
cycle depends on γ, µ1 and µ2 in Program 2. When γ = 1 and µ1 = µ2 ̸= 0, it is
called V-cycle multigrid method. When γ = 2 and µ1 = µ2 ̸= 0, it is called W-cycle
multigrid method. When γ = 1 and µ1 = 0, µ2 ̸= 0, it is called the sawtooth cycle.
These cycles are depicted in Fig. 1. Popular multigrid cycles are V-cycle of γ = 1 and
µ1 = µ2 = 1 and W-cycle of γ = 2 and µ1 = µ2 = 2. We use V-cycle in this paper.

Program 1. Iteration of the MGCG method.
i = 0;
while (! convergence)
{

αi = (h̃
i
, ri)/(pi, Llp

i); (2.1)

xi+1 = xi + αip
i; (2.2)

ri+1 = ri − αiLlp
i; (2.3)

convergence test;
Relax

Llh̃
i+1

= ri+1, (2.4)

using the Multigrid method

βi = (h̃
i+1

, ri+1)/(h̃
i
, ri);

pi+1 = h̃
i+1

+ βip
i;

i ++;

}
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Figure 1: Multigrid cycle.

A transfer operation of vectors on a grid level i to vectors on a grid level i − 1 is
called restriction, and an inverse operator is called prolongation. The matrices that
represent the operations of restriction and prolongation are written as r and p respec-
tively. The author of [11] proved that the multigrid method is a mathematically valid
preconditioner of the PCG method if the following relation:

r = bpT, µ1 = µ2 ̸= 0,

where b is a scalar constant, is satisfied and if the pre- and post-smoothings are iden-
tical and symmetric methods. There are many smoothing methods. In this paper, we
use symmetric Gauss-Seidel iteration method to do smoothing.

Program 2. The multigrid method.
Vector MG (Ll , f, x, γ, µ1, µ2);
{
if (l == coarsest-level) Solve Llx = f;
else {

x = pre-smoothing(Ll , f, x, µ1);
d = restrict(f− Llx);
ν = initial x;
repeat(γ) ν = MG(Ll−1, d, ν, γ, µ1, µ2)

x = x + prolongate(ν);
x = post-smoothing(Ll , f, x, µ2);
}

return x;
}

3 Two-level preconditioned C-G method

Consider the finite element discretization of Poisson equation, the target linear equa-
tion is Qx = fq, where Q is the coefficient matrix corresponding to quadratic finite ele-
ment. Similarly for linear element discretization, the target equation is Lx = fl , where
L is the coefficient matrix corresponding to linear finite element. MGCG method is
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used to solve such two linear equations. It is well known that numerical solution
of quadratic element discretization is more accurate than that of linear element dis-
cretization, however using quadratic element costs more CPU time and more C-G
iterations than using linear element. In order to obtain the accuracy of quadratic ele-
ment discretization and cost less CPU time than that of quadratic element discretiza-
tion, we introduce a two-level method which combines linear element and quadratic
element together and makes the most of the advantage of these two discretization. In
our paper, we use the triangle element for discretization.

3.1 Quadratic pre-smoothing

Consider the discretized equation Qx = fq, suppose we obtain xi+1 and ri+1 by (2.2)
and (2.3) in Program 1 after i iterations. Equation Qhi+1 = ri+1 is solved by a few
steps of Gauss-Seidel iterations and approximate result h̃i+1 is obtained, therefore the
high frequency components are suppressed efficiently. A version of the Gauss-Seidel
iteration that can be used for preconditioning of the C-G method is following:

For j from 1 to n, do
x(i+

1
2 )

j = − 1
Qjj

[
∑
l<j

Qjl x
(i+ 1

2 )
l + ∑

l>j
Qjl x

(i)
l

]
+

1
Qjj

fq j,

end do
For j from n to 1 by −1, do

x(i+1)
j = − 1

Qjj

[
∑
l<j

Qjl x
(i+ 1

2 )
l + ∑

l>j
Qjl x

(i+1)
l

]
+

1
Qjj

fq j.

end do

3.2 Linear correction

We calculate the residual wq = ri+1 −Qh̃i+1 and restrict wq on the linear finite element
space by wl = I l

qwq, where I l
q : Vq → Vl is the restriction operator from quadratic

element space Vq to linear element space Vl . We use ψ
j
l to denote the nodal basis

function of point j corresponding to linear element and ψ
j
q to denote the nodal basis

function of point j corresponding to quadratic element. Then

ψ
j
l = ψ

j
q +

1
2

ψq1 +
1
2

ψq2 +
1
2

ψq3 +
1
2

ψq4 +
1
2

ψq5 +
1
2

ψq6,

where ψq1, ψq2, ψq3, ψq4, ψq5, ψq6 are respectively nodal basis of effective points
{1, 2, 3, 4, 5, 6} in the Lagrangian quadratic element . Therefore

wj
l = wj

q +
1
2

wq1 +
1
2

wq2 +
1
2

wq3 +
1
2

wq4 +
1
2

wq5 +
1
2

wq6.
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The restriction operator I l
q can be written in stencil notation as

0
1
2

1
2

1
2

1
1
2

1
2

1
2

0

 .

Equation Lvl = wl is solved by V-cycle multigrid method and we get the approximate
solution ṽl in the linear element space. Next we prolongate ṽl from linear element
space to quadratic element space by ṽq = Iq

l ṽl , where Iq
l : Vl → Vq is prolongation

operator. Iq
l can be obtained by Iq

l = (I l
q)

T. Therefore the approximation h̃i+1 can be
updated:

h̃i+1 = h̃i+1 + ṽq.

3.3 Quadratic post-smoothing

In the same way as in Section 3.1, we start from h̃i+1, which is obtained from Section
3.2, and use a few steps of Gauss-Seidel iterations to update h̃i+1. Go back to the
MGCG program, we compute βi, pi+1 and do the iteration until convergence. This
two-level method is shown in Program 3.

Program 3. Two-level preconditioned C-G method.

i = 0;
while (! convergence){

αi = (h̃
i
, ri)/(pi, Qpi);

xi+1 = xi + αip
i;

ri+1 = ri − αiQpi;
convergence test;

h̃
i+1

= quadratic pre-smoothing(Q, ri+1, h̃
i+1

, µ), µ is the number of Gauss-Seidel iterations

wl = restrict(ri+1 − Qh̃
i+1

), from quadratic element to linear element

ṽl = multigrid V-cycle(L, wl)

h̃
i+1

= h̃
i+1

+ prolongate(ṽl), from linear element to quadratic element

h̃
i+1

= quadratic post-smoothing(Q, ri+1, h̃
i+1

, µ)

βi = (h̃
i+1

, ri+1)/(h̃
i
, ri);

pi+1 = h̃
i+1

+ βip
i;

i ++;
}



244 Q. L. He / Adv. Appl. Math. Mech., 4 (2012), pp. 238-249

During the PCG procedure, we use the symmetric Gauss-Seidel method which
is a superposition of a forward Gauss-Seidel iteration and a backward Gauss-Seidel
iteration. A matrix form of symmetric Gauss-Seidel method corresponding to Qx = f
is

xk+1 = B−1(B − Q)xk + B−1f,

where Q is symmetric and positive definite and B is also symmetric. Let

H = B−1(B − Q), R =
m−1

∑
i=0

HiB−1.

The precondition matrix M of the two-level preconditioned method can be written as

M = HmR + R + Hm Iq
l M̃l I l

q(HT)m. (3.1)

The matrix M̃l of the V-cycle multigrid method has been proved to be symmetric and
positive definite (see [11]). It is easy to obtain that MT = M and M is positive definite
by Theorem 2 in [11].

4 Numerical experiments

Consider the two dimensional Poisson equation with Dirichlet boundary condition:

△u = f in Ω = [−1, 1]× [−1, 1], (4.1a)
u = g on ∂Ω. (4.1b)

For some f , the solution may has large variation in some region. During our numeri-
cal tests, the iterative grid redistribution method proposed in [10] is used to generate
adaptive grid, which is important for solving equation whose solution has large vari-
ation in a local region.

Example 4.1. The exact solution is taken as u = 5.0e−250.0(x2+y2). It is clear that mesh
in Fig. 2 is concentrate at the origin. We divide each quadrilateral into two triangles
and use triangle element for the discretization.

Example 4.2. The exact solution is u = e−8.0(4.0x2+9.0y2−1)2
, the corresponding grid

distribution is shown in Fig. 3.

Example 4.3. The exact solution is u = e−100.0(y−x2+0.5)2
and grid distribution is shown

in Fig. 4.

To compare MGCG method based on quadratic element and our two level precon-
ditioned method, we use them to solve Poisson equation (4.1). The error distribution
e = |u − uh| is displayed in Figs. 2 , 3 and 4 respectively for different examples, where
u is the exact solution and uh is the numerical solution. The results shown in these
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Figure 2: For Example 4.1 in distorted and structured grid, error distributions of two-level preconditioned
method (left); MGCG based on quadratic element (right).

Figure 3: For Example 4.2 in distorted and structured grid, error distributions of two-level preconditioned
method (left); MGCG based on quadratic element (right).

Figure 4: For Example 4.3 in distorted and structured grid, error distributions of two-level preconditioned
method (left); MGCG based on quadratic element (right).

figures suggest that the accuracy of the two-level preconditioned method is almost
the same as that of MGCG based on quadratic element. We report both C-G iteration
numbers and CPU time of these two methods in Table 1 and Table 2. The convergence
stopping criterion is ∥ r ∥/∥ r0 ∥ < 1.0−6. We implement 5 Gauss-Seidel iterations
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Table 1: The number of C-G iteration comparison.

Method 322 grid 642 1282 2562

Example 4.1 MGCG based on quadratic element 9 12 16 19
Two-level preconditioned method 5 7 8 10

Example 4.2 MGCG based on quadratic element 11 16 19 21
Two-level preconditioned method 6 8 9 10

Example 4.3 MGCG based on quadratic element 15 20 23 23
Two-level preconditioned method 10 13 15 15

Table 2: The CPU time comparison.

Method 322 grid 642 1282 2562

Example 4.1 MGCG based on quadratic element 0.06 0.33 1.77 8.33
Two-level preconditioned method 0.03 0.21 1.02 4.88

Example 4.2 MGCG based on quadratic element 0.07 0.40 1.84 8.16
Two-level preconditioned method 0.03 0.21 1.05 4.52

Example 4.3 MGCG based on quadratic element 0.08 0.52 2.39 9.79
Two-level preconditioned method 0.06 0.34 1.68 6.59

during the process of quadratic pre-smoothing and post-smoothing in the two-level
preconditioned method. Table 1 and Table 2 suggest that the two-level preconditioned
method is more efficient than the other one. Firstly, the number of the C-G iterations
is much reduced. Secondly, the CPU time is much less than that of MGCG using the
quadratic finite element.

5 Eigenvalue analysis

In order to further investigate the efficiency of the two-level preconditioned method,
we compare the eigenvalue distribution of coefficient matrix before and after precon-
ditioning. The iteration number of C-G method depends upon the initial vector, the
distribution of eigenvalues of coefficient matrix and the right-hand term. Let us con-
sider Example 4.1 in Section 4, with grids points of 16 × 16 in computational domain.
The condition number of the coefficient matrix corresponding to quadratic element
discretization is 5020.3.

A matrix after the preconditioning is calculated as follows. The precondition ma-
trix M of the two-level method is defined in Eq. (3.1), then eigenvalues of the matrix
MQ is investigated, where Q is the coefficient matrix corresponding to quadratic ele-
ment discretization. On the other hand the precondition matrix using MGCG method
is calculated in [11] as follows:

M0 = L−1
0 or R0,

Mi = HmRi + Ri + Hm pMi−1r(HT)m, i ≥ 1.

This preconditioner is called V-cycle multigrid preconditioner, where i is the level
number of multigrid method, H and Ri are the similar matrices as in (3.1), r and p are
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Figure 5: For Example 4.1, eigenvalue distribution before preconditioning (left); eigenvalue distribution after
preconditioning (right).

restriction and prolongation matrix respectively.
The eigenvalue distribution of the coefficient matrix before preconditioning of Ex-

ample 4.1 is shown in Fig. 5(left). The horizontal x axis represents the order of the
eigenvalues and the vertical y axis represents the eigenvalues. This y axis behaves in
an exp scale. The eigenvalue distribution of the coefficient matrix after precondition-
ing is shown in Fig. 5(right). This y axis is in a linear scale. In order to do comparison,
preconditioning is carried out by the two-level preconditioned method and MGCG
method using quadratic element discretization.

The eigenvalue distribution of the two-level preconditioned matrix is effective for
the C-G method as the following observations:

1. Almost all eigenvalues are clustered around 1 and a few eigenvalues are scattered between 1
and 0.

2. The smallest eigenvalue is larger than that of the MGCG method with quadratic element
discretization.

3. Condition number is decreased.

The first item is no problem for the conjugate gradient method since each eigenvector
included in residual vector corresponding to these scattered eigenvalues is vanished in
each C-G iteration. All these characteristics are desirable to accelerate the convergence
of the conjugate gradient method. From Fig. 5, it is clear that the multigrid precondi-
tioner is very useful for the C-G method. But if we compare two-level preconditioned
method and MGCG method, the condition number of the former is smaller than that
of the latter. Therefore our two-level preconditioner for the conjugate gradient method
is more efficient, especially for cases when grid distribution is not uniform and has a
large concentration.

6 Conclusions

We have proposed a two-level preconditioned conjugate gradient method in distorted
and structured grid. It is an improvement of C-G method with multigrid precon-
ditioner. The main idea of this two-level preconditioned method is using quadratic
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smoothing and linear correction. It converges after very few iterations and saves much
CPU time. The accuracy is almost the same as that of MGCG based on quadratic finite
element. Numerical experiments are presented to show that the two-level precondi-
tioned method is an efficient method. Finally eigenvalue analysis is given in order to
further investigate the effect of this method. It concludes that the two-level precondi-
tioner is an excellent preconditioner and it improves the number of the C-G iterations
remarkably.
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