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Abstract. This paper studies a system of semi-linear fractional diffusion equations
which arise in competitive predator-prey models by replacing the second-order deriva-
tives in the spatial variables with fractional derivatives of order less than two. Moving
finite element methods are proposed to solve the system of fractional diffusion equa-
tions and the convergence rates of the methods are proved. Numerical examples are
carried out to confirm the theoretical findings. Some applications in anomalous diffu-
sive Lotka-Volterra and Michaelis-Menten-Holling predator-prey models are studied.
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1 Introduction

In this paper, we consider a system of semi-linear fractional diffusion equations of the
following form

92 Py
ut—le:fl(u,v)—l—hl(x,t), (1.1a)
92 P2y
Ut—gzm:fz(u,v)+h2(x,t), (11b)
u(x,0)=¢(x), u(a,t)=u(b,t)=0, (1.1c)
v(x,0)=9(x), v(a,t)=0(b,t)=0, (1.1d)

for (x,t) e x T with Q=(a,b), T=(0,T), where the functions f; and h;, positive constants
Z; fori=1,2, and ¢, ¢ are given, and assume that f; (i=1,2) satisfy the following mixed
local Lipschitz conditions

|fi(uq,u2) — fi(v1,02)| < L(|ug —v1|+|uz—02|), i=1,2, (1.2)
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for all uy, up, v1, v2 € ® CIR, where L is positive constant, and the space fractional deriva-
tives are defined by

0?Piu(x,t)

525 =DlpaD: " +0.0, " Du(x 1), (13)

where D denotes a single partial derivative, ;D, Pi and «Dy, i represent left and right
Riemann-Liouville fractional integral operators, 0 < ;<1 (i=1,2), p and g are two con-
stants satisfying that 0<p,g <1, p+g=1.

The above model has many applications in population growth modeling (see e.g., [1,
2,4,5,26]). Baeumer et al. [1, 2] studied the anomalous diffusion (fractional diffusion)
population growth model for single specie. For competitive predator-prey models, the
standard second-order diffusion models have been well studied (see e.g., [4,5,26]); how-
ever the studies on anomalous diffusion models are not many in the literature (we are
only aware that Yu, Deng and Wu [47] studied the finite difference methods for the com-
petitive predator-prey models with anomalous diffusion).

More specifically, the anomalous diffusion (fractional diffusion) predator-prey mod-
els studied in this paper include Lotka-Volterra and Michaelis-Menten-Holling types. Let
u and v denote the population densities of prey and predator, respectively, ; (i=1,2) the
coefficients of dispersion. If h;(x,t) =0 for i =1,2, then the system is closed, i.e., # and v
will develop freely, without influence from outside.

The competitive Lotka-Volterra models are described as follows. Let

a11u-+ar0
filwo)=nu(1- g2, (142)

B _ Anv+anu
fz(u,v)—rzv(l % ) (1.4b)

where constants 1, 7, are inherent per-capita growth rates, constants Kj, K5 are the car-
rying capacities, constants constants a1y, ap1 represent the effect of the two species on
each other, constants a1, ay> are self-interacting factors for the two species. Then sys-
tem (1.1a)-(1.1b) with (1.4a) and (1.4b) characterizes the well-known competitive Lotka-
Volterra models (see e.g., [4]).

The Michaelis-Menten-Holling predator-prey model is a kind of ratio-dependent type
predator-prey models. It is characterized by system (1.1a)-(1.1b) with the following
Michaelis-Menten type functional response

filwo) =ru(1-g— 17, (152
fa(u,0) ZU(—Q(UH Kzzfu), (1.5b)

where dy, dy, k, K, and r are positive constants. Here, Q(v) denotes a mortality function of
predator, and r and K the prey growth rate with intrinsic growth rate and the carrying ca-
pacity in the absence of predation, respectively, while d, d», and x are model-dependent



J.T.Ma and Z. Q. Zhou / Adv. Appl. Math. Mech., 8 (2016), pp. 911-931 913

constants. The Michaelis-Menten-Holling predator-prey model was first introduced and
intensively studied by Cavani and Farkas [5], where they analyzed the existence result
and stability of pattern formations. Kovécs et al. [26] have achieved a qualitative behav-
ior of the ratio-dependent predator-prey system.

In this paper, we propose a moving finite element method to solve a system of frac-
tional differential equations arising in the anomalous diffusion predator-prey models. We
extend the convergence analysis of moving mesh finite element methods for linear single
fractional differential equation in Ma et al. [34] to a system of two semi-linear fractional
differential equations and apply the methods to the anomalous diffusion predator-prey
models.

To be more instructive, we give a brief review of the numerical methods for frac-
tional differential equations. In the history, the numerical methods on fixed mesh
for fractional differential equations have been received a lot of studies (see e.g., [6—
8,10, 18, 19, 21-23, 37, 38, 40-43, 46, 48, 51, 52], which focus on finite difference meth-
ods; [9,13-17, 24, 27,28, 36, 39,49, 50] on Galerkin methods or finite element methods.)
However, there are not many references on developing moving mesh methods for frac-
tional differential equations. Ma and Jiang [33] developed moving mesh collocation
methods to solve nonlinear time fractional partial differential equations with blowup
solutions; however the analysis was not provided by the paper. Although moving mesh
methods have been well developed (see e.g., the books [20,44]), the convergence analy-
ses have not been fully understood, hitherto having only focused on integer differential
equations (see e.g., [3,11,12,29-32,35]). Jiang and Ma [25] analyzed moving mesh finite
element methods for a linear single time fractional partial differential equation.

The remaining parts of the paper are arranged as follows. In Section 2, the moving
finite element methods are introduced and the convergence rates are analyzed. In Sec-
tion 3, a variety of numerical examples are provided to verify the convergence rates and
applications in the predator-prey models are given. In the final section, conclusions are
provided.

Throughout the paper, we use notation g1 < g2 and g1 2 g2 to denote g1 < Cg» and
81> Cgy, respectively, where C is a generic positive constant independent of any functions
and numerical discretization parameters.

2 Moving finite element methods and convergence analysis

Define left Riemann-Liouville fractional integral as

1)/x(x—§)‘7_1u(§)d§, x>a, 0>0, 2.1)

an_”u(x):W

where a €R or a= —o0, and right Riemann-Liouville fractional integral as

1

«Dy u(x) = m

/ o) (@) dE, x<b, >0, 2.2)
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where b € R or b= +oco. The Caputo left and right fractional derivatives are defined by,
respectively,

«Diu(x)=,D;7D"u(x), T=n—y, n—1<u<n, (2.3a)
ngu(x) =D, "D"u(x), c=n—H, n—1<u<n. (2.3b)

Define three functional spaces | ﬁo(ﬂ), ] IP{‘/O(Q), HE(Q), >0 as the closures of C(Q)
under the respective norms

1/2
H”H}" (H”H "‘HaDgcl”H%ZQ)) ’ (2.4a)
1/2
leell ) = ([l 2y + 1x Dy ulliz i) (2.4b)
1/2
] 2y 2= (el 2 ey + e M F (@) 172 ) (2.4c)

where F(i1) denotes the Fourier transform of #, il is the extension of u by zero outside of
Q.
Define a bilinear form, fori=1,2,

Bi(u,w) ::p<aD;ﬁiDu,Dw> +q<xD;ﬁ"Du,Dw>
:p<aD;ﬁ"/2Du,x D;ﬁ"/sz> +q<xD;ﬁi/2Du,a D;ﬁ"/sz>
=p( D¥uxDyw)-+q( DyuaDiw), (2.5)

where (-,-) denotes the duality pairing of H *(Q) and Hy'(Q), a;:=1—8,/2 (i=1,2), the
derivation of the last two identities can be seen from [13]. The bilinear form B;(-,-) satis-
fies the following coercive and continuous properties over space Hy'(Q) (see e.g., [13]),
fori=1,2,
Bi(u,u) 2 [|tl|3es ) Vu e Hy'(Q), (2.6a)
|Bi(u,0)| S [l i o [0l e ) Vu,v € Hy'(Q). (2.6b)

The variational form for the system (1.1a)-(1.1b) with conditions (1.1c) and (1.1d) is de-
fined as: Find u € Hy'(Q)) and v e Hy?(Q2) such that

(ut,w)+ 21 By (u,w) = (f1(u,0),w)+ (h1 (x,t),w), Ywe Hy' (Q)), (2.7a)

(vr,w)+ DBy (v,w) = (f2(u,0),w)+ (ha(x,t),w), Yw e Hy*(Q)), (2.7b)

(u(x,0),w) = (¢(x),w), Vw € Hy' (Q0), (2.7¢)

(v(x,0),w) = (p(x),w), Vw € Hy*(Q), (2.7d)
where (-,-) denotes L? inner product.

Define a temporal mesh
O=to<ti < - <ty=T
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and
Aty =t,—t,_1, n=1,---,M.

Define spatial mesh (moving mesh) at time t,,, n=0,1,---,M,
O=xf <xf<---<xfy=1, n=0,1,--,M,

and
O = (xt_,xp), hi=xt—x}_,, k=1,---,N.

Define finite element spaces V! C Hg i(Q) fori=1,2, on the above moving mesh as

V?::{veHgf(Q)mco(Q):v

P, }
gy € Pm—1

where P, denotes the space of polynomials of degree less than or equal to m —1.
Then the moving finite element method for the proposed problems is defined as: Find
U"eVi CHy'(Q), V"eVi C Hy*(Q)), for n=1,---,M, such that

(ungynl,w)+@131(U”,w):(f1(U”,V”),w)+(h1(x,tn),w), YweV,  (2.8a)
(Vo )+ 2BV ) = (U, V)0) + (a( ) 0), VeVl (@8
(U°w) = (g(x),w), YweV?,  (2.80)
(VO w) = (p(x),w), vweVd,  (2.8d)

where U" 1 € V! is the projection of U™ from V!~ to V}, V=1 €V} is the projection of
V=1 from V3! to V4, which are defined by

(LNI”’l,w) = (U”’l,w), Yw eV, (2.9a)
(V'Lw)= (V"1 w), YweVy. (2.9b)

To do the convergence analysis, we borrow from [34] the fractional Ritz projection oper-
ator, fori=1,2, '
R}: Hy'(Q)) — V!
defined via, for u € Hy'(Q)),
Bi(u—Riu,w)=0, YweV: (2.10)

For the equi-distribution principle moving mesh defined by [34], assuming u € Hy'(Q))
NH7(Q)) (a; <7;<m), we have the following estimation for the fractional Ritz projection
operator defined by (2.10)

[l —Riul| 1200y SN |Jul s ). (2.11)

see [34] for the proof.
We shall use the following Gronwall-inequality.
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Lemma 2.1. Let At, >0and ¢y, pn, Xn >0, for 1 <n <m, with p,At, <1/2 and p =max, ;.
Then, if

(1 _PnAtn)Xn <At,Cn+ (1 +PnAtn)Xn—1/

there exists a positive constant C,, such that

max Xn <Cu {X0+ iCnAtn}/

O<nzm n=1

where

140, i
Cn= Hl znAtn <Cexp( ZpHAtn> <Cexp(coT),

where ¢ and C are some positive constants.

Proof. The proof is provided by Bank and Santos [3]. O

Theorem 2.1. For problem (1.1a)-(1.1d) with solutions ue Hy' (Q)NH(Q) (a1 <7y1) and ve
Hy*(Q)NH™(Q) (a2 <12), the moving finite element methods (2.8¢)-(2.8d) have the following
error estimation: form=1,---,M,

Jaoto) U2y + [0 )=V e
tm m+1
SN [lolln o+l + [} el o+ 3 uCta )l o

m+1

N2 [l )+ ol i o f/WMndHZW o) e |

+ T ZAfn [leeee Cotn) [l 2y + o8 Cot) 2] -

n=1

Here N is the number of the spatial mesh points and T,,:=maXo<,<m{ Aty } is the time mesh size
and satisfies LT, <1/2 where L is the Lipschitz constant in (1.2).

Proof. Define the local truncation errors as

‘Iil(x) — u(xrtn) Zzl(xrtn—l) —ut(x,tn),
T3 (x) = (x’tn)Atn(x'tn_l) —vi(x,t,),

where u(x,t) and v(x,t) are the exact solutions of (1.1a)-(1.1d). Moreover, we have the
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identity
<M(-,tn);;’:1(',tn1),w>+@1Bl(u(_,tn),w)
=(f1(u(-tn),v(-tn)),w)+ (b (x,ty),w)+(T7,w), YweVy, (2.12a)
(U(-,tn)gfn(',tn1),w>+92B2(U("tn),w)
=(fa(u(-,tn),v(-,tn)),w)+ (ha(x,t,),w)+(T5,w), YweVs. (2.12b)
Let
el =u(-t,)—U", & =u(-t,)-U",
ey =0v(-,t,)—V", Egzv(-,tn)—V”.

Then subtracting (2.8a) by (2.12a) and subtracting (2.8b) by (2.12b) give the error equa-
tions

sn—1

eil_el n
(Ttn/w) +91B1 (el,ZU)
= (Al ) — AUV, w) + (T, w), VweVy, (2.13a)
( At, )+9232(e2' )
= (fa(u(-tn),0(tn)) — (U, V"), w) +(T3,w), Vw e Vj. (2.13b)
Define
ol =Rlu(-t,)-U", el =Riu(-ty)—u(-t,),
o :=R2v(-t,) - V", €l:=R20(-t,)—v(-t,),

where R/, (i=1,2) are the fractional Ritz projection operators defined by (2.10). Then
el =0/ —el, i=12.
Using (2.10), we re-write the error equations (2.13a) and (2.13b) as

(o7, w )+-@1Atn31 (o7, w)

= (e =€l w) + (o7 7 w) — (e =& w)
+At (A (u(tn),o( 1) — AUV, W)+ Aty (T}, w), YweV], (2.14a)

(03, )+-%AtnBz(U§,W)
=(e3 )+ (o Lw) = (5 =& w)
+At (Fo(u(- tn),0( 1)) — fo (U™, V™) ,w) + Aty (T4, w), Yw €V}, (2.14b)
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Using (2.9a) and (2.9b), we derive that

(effl_gil‘*llw):(ﬁf*l_uffllw):(), Vwe\?]i, j=1,-,n, (2.15a)
(e =& w)= (Vi —vitlw) =0, YweV,, j=1,-,n. (2.15b)

Therefore, choosing w=¢7' in (2.14a) and w =0} in (2.14b) gives that

(07,0 )+91Afn31(01 ,07)

= (&7 o)+ (o707

+Afn(f1( (tn),0(tn)) — (U™, V), 00) + At (T7,07), (2.16a)
(08,00)+ DAt Bo(0F,0%)
=(e5—e5 1,o3) + (5, 03)

+ At (f2(ul/tn),0(-tn)) — 2(U",V7),09) + Atn (T3,07 ). (2.16b)

Using Cauchy-Schwartz inequality, conditions (1.2) and triangle inequality, we obtain
that

(A ()0 k) = AU V), 00)]

<A o) 0 Ct)) = AUV 2yl 2

LI ba) =U")+ (0o tn) = V™) 2 7 | 200

<L) =U") 20+ 1@ ) = V") 1200y | 1o 200

<L 07 ll 20+ e 12+ 1103 120y + 1B 2o ot N2 2.17)

and similarly

(£ (- ), 0(- 1)) — fo (U, V7),08) |
<L llof 2y + € 120+ 1108 120y + €5 120y | 13 2 (2.18)

Consequently, using (2.17), (2.18), (2.6a) and Cauchy-Schwartz inequality, we derive from
(2.16a) and (2.16b) that

(1=LAty) |07 [ 12(0r)
<[lef e M2y + otz ()
+LAfn[||€?HL2(Q)+||U§||L2 ezl ]+Afn||7ﬁ||L2 (2.19a)
(1=LAt) |03 || 2 ()
<|le5 —e5 M2y +1107 ey

Lt [0 2y + €8l 200 + 14 iz + At T3 2. (219b)
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Denote
An:= |} =l 7200y + Atul|TT ([ 12(0) + LAt [l €] | 2(00) + €5 ]2
By:=l€; =3~ lli2(0) + Atull T3 1120y + LAt [ll€] | 200y + €5 2|
Then adding together inequalities (2.19a) and (2.19b) gives that
(1=2LAt)[[lef [ 2o+ 102 [ 2(0)]

< [H‘T?JHLZ(Q)*‘H‘TfleLZ )] +(Au+By)
A,+B,

<(1+2L00) [0 20y + 102~ iz(oy] 0t =
n

Applying Lemma 2.1 (Gronwall-inequality) to (2.21) gives that

m
o (1071101631200 | S [Pz + I iz | + X (An B,
Since

(U°,w) = (p,w) = (u(x,0),w), weV! (see(2.7c), (2.8¢)),
(VO w) = (p,w) = (v(x,0),w), weVi (see(2.7d), (2.8d)),

we have, fori=1,2,
-V =e?=0,
and thus ¢}/ = e?. Therefore it follows from (2.11) that

lo? 12 () + 1021l 20

<[le?lr20) + €3]l r2()
SNl )+ N2l o |
Moreover from (2.11), we estimate that
et ll 2+ €8 oy S [Nl ) + N2 lfol oz e

Using

919

(2.20a)
(2.20b)

(2.21)

(2.22)

(2.23)

(2.24)

el —el =Ry (e tn) —10( tu-1)) = (u( tn) = ()] (Ry = Ry )1 (- b)),

we have

e} —€f Ml 2
IRy (- ) = (e tn1)) = (- tn) = (- tn1)) 1200y
(R =Ry ) u (- 1) 20

(2.25)
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Using (2.11) we estimate
IRz (1 (- ) =1 (st 1)) = (0 ) =21 (- 1) 1200

/t11
1

1‘l

N [ g (Q)dt, 2.26)

n—1

<N™™M

and

IRy =Ry, )u(ta1) 12
<[ tn—1) = Ruu (o tu) iz () + 11 (o tn-1) =Ry g1 (- ta—1) |12
SNT[u( te1) [5m )- (227)

Therefore combining (2.26) and (2.27) with (2.25) gives that

b
||€?—€T71||L2(Q)§N7%/t el gm (ydt+N""u (- t—1) [ - (2.28)

n—1

Similarly we can obtain that

tn
e et 2oy SN [ orllaodt+ N oC ta) gy (229

n—1

Furthermore using Taylor’s theorem we can estimate that
177 | 2(0) SAtullueeCotn) l2) 152 M 2q) S Atallow (- tn) [l 12(q)- (2.30)
Consequently using (2.24), (2.28), (2.29) and (2.30), we obtain that

m m+1
3 (At B) SN [l st [l o i+ 3 1) i)
n=1

- m+1
N ol + ot lirngo it X ot tun) s

T Y Db (e (o) 200y + 08 (o) [l 1200y ) - (2.31)
n=1

Finally incorporating (2.24), (2.22), (2.23) and (2.31) into the following inequality
le1"[[r2) + €3 12y < ll€r’ |2y + €2 ([ 2y + o1 ([ 2 ) 102" [l 2 ()

completes the proof of this theorem. O
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3 Numerical examples and applications

In this section, we shall implement moving finite element methods (2.8c)-(2.8d) for the
proposed problem (1.1a)-(1.1d) to verify the convergence rates and apply to the predator-
prey models. To this end, we propose the following iteration algorithm to solve a system
of nonlinear algebraic equations arising in moving finite element methods (2.8c)-(2.8d).

Algorithm 1 (Iteration Algorithm for Nonlinear Equations). Solve the nonlinear equa-
tions at time level ¢, as follows:

1. Set starting values for iterations (U™ © =" and [V"](© =V where U" ! and
V=1 are the projections defined by (2.9a) and (2.9b).

2. Set £ =0 and small value of the error tolerance Tol.
fori=0,1,---,
solve the following linearized problem

<[un](i+1) _C[n—l
Aty

= (AU, VDD w0) + (I (x b)), VweVy,

<[vn](i+l)_‘7n—1
At

= (A(UMY, V)] D,w) + (ha(x,t),w),  VYweVs.

)+ 2B (U] w)

)+ 2B (V"] w)

if [|[U] D) — (U] 9| () < Tol and || [V = [V O] 2 < Tol
{=i+1; break;
end

3. Output U" = [U"]) and V" =[V"] (),

We use the first two examples to verify the convergence rates of finite element meth-
ods (2.8a)-(2.8d) for (1.1a)-(1.1d).

In the following computations, the temporal meshes are taken as t, =nT/M, n =
0,1,---,M and the space nodes are generated by de Boor’s moving mesh algorithm (see
e.g., [20,34]). The moving mesh monitor functions are taken as

Or/ouN2 (9v\2] 1-0r/0%u\2 [0%v\27 ¥

et ={1+3((5) + () = [GG) +(52) 1)
where parameters 0 <60 <1 and y >0 are adjusted to generate good moving meshes, =0
represents fixed mesh and y >0 moving mesh. We use the central difference methods

to discretize the first and second order derivatives involved in p(x,t) and use uniform
spatial meshes at the initial time level in the computations.
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The rates of the convergence are computed by the following formula

log(||Error on finer grid||;2(q) /||Error on coarse grid|| ()

Rate for space = log(Number of finer grid/Number of coarse grid)

log(||Error on finer grid||;2(q)/[|Error on coarse grid||;2(q))

Rate for time =
ate for time log(Number of finer grid /Number of coarse grid)

The iteration algorithm is applied to solve the nonlinear FEM equations with Tol=10"1°.

Example 3.1. In order to estimate the convergence rates, we construct an analytic solution
to the model (1.1a)-(1.1b) for x € ):=(0,1) as follows

u(x,t)=(t"+c)x™(1—x)", (3.1a)
o(x,t)=(t"4+c)x™(1—x)", (3.1b)
where 0 >1, ¢ >0, and m;, n; € Z and m; >2, n; >2,i=1,2. Functions h;(x,t), i=1,2 in
(1.1a)-(1.1b) are given by
hi(x,t) =t L™ (1—x)™ — p&y (x,£;2— Bi,mi,n;)
—qG2(x,t;2—Bi,my,n;) — fi((x, t;my,ny),m(x,t;ma,nz)),

where
nooo o T(14m) -
' e j T Sl ML DAL B
& (xt;B,m,n) = (t +C>;)C”( 1 T(1tm+tj—p)
I"(m+]+1) '
e =1y TPy -
(x t ﬁ - n) t +C ch r(m+] 1) (x,2 ﬁ/m—‘f_] 2)/

j=0

50— Dk g (DR
F(x;B,k) =D, xk—g(k_i)!r(1+ﬁ+i)’

n(x,t;mmn) =" +c)x™(1—x)",

and functions f;(u,v) (i=1,2) are taken as (1.4a) and (1.4b) for Lotka-Volterra model, or
as (1.5a) and (1.5b) for Michaelis-Menten-Holling model.

For Lotka-Volterra model (1.4a)-(1.4b), we take the parameters as
Yi=Ki=ri=1=a;=1, i,j=12.
The parameters in (3.1a) and (3.1b) are taken as
c=2, m=8, my=6, ni=npy=4.

Table 1 illustrates the convergence rates of the finite element methods on uniform spatial
meshes with N 41 mesh nodes for different values of p, g and ;.
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Table 1: Convergence rates for Example 3.1 for Lotka-Volterra model with different p,q and B;, i=1,2.

Rates in space Rates in time
(T=0.01, c=1000, M =40) (T=1,c=0, N=32)
N  Errofu Rate Err of v Rate M  Errofu Rate Err of v Rate
p=1,4q=0,p1=038, =09
8 2.1613e-4 3.5788 2.5587e-4 3.3490 8 1.3195e-5 0.9661 3.5333e-5 0.9703
16 1.8087e-5 3.4137 2.511le-5 3.7172 16 6.7544e-6 0.9776 1.8033e-5 0.9831
24 45316e-6 3.6703 5.5627e-6 3.9385 24 4.5439%e-6 0.9806 1.2104e-5 0.9870
32 1.5764e-6 3.7543 1.7914e-6 3.9895 32 3.4269e-6 09811 9.1126e-6 0.9885
40 6.8211e-7 3.8114 7.354%e-7 3.9534 40 2.7531e-6 0.9805 7.3088e-6 0.9889
48 3.4045e-7 3.8219 3.5771e-7 3.9072 48 2.3024e-6 09794 6.1029e-6 0.9889
56 1.8888e-7 3.8022 1.9586e-7 3.9085 56 1.9797e-6 09780 5.2399e-6 0.9886
64 1.1368e-7 — 1.1622e-7 — 64 1.7373e-6 — 4.5919e-6 —
p=0.5,4=0.5,p5,=0.1, B=0.2
8 1.7780e-4 3.7311 2.2556e-4 3.6212 8 3.1720e-6 0.9954 1.0304e-5 0.9938
16 1.3389e-5 3.6591 1.8330e-5 3.8432 16 1.5910e-6 0.9980 5.1743e-6 0.9973
24 3.0368e-6 3.8283 3.8585e-6 3.9278 24 1.0615e-6 0.9987 3.4533e-6 0.9982
32 1.0095e-6 3.8996 1.2464e-6 3.9604 32 7.964le-7 09990 25912e-6 0.9987
40 4.2286e-7 3.9347 5.1507e-7 3.9751 40 6.3726e-7 09991 2.0736e-6 0.9989
48 2.0636e-7 3.9477 2.4952e-7 3.9674 48 5.3113e-7 0.9992 1.7283e-6 0.9991
56 1.1229e-7 3.9701 1.3536e-7 3.9957 56 4.5530e-7 0.9993 1.4816e-6 0.9992
64 6.6087e-8 — 7.9391e-8 — 64 3.9843e-7 — 1.2965e-6 —
p=0,9=1,51=038, =02

8 1.8694e-4 3.5526 2.5525e-4 3.6038 8 9.0860e-6 0.9828 1.0587e-5 0.9932
16 1.5931e-5 3.8356 2.0993e-5 4.0560 16 4.5972e-6 0.9907 5.3183e-6 0.9969
24 3.3637e-6 4.0272 4.0536e-6 4.0978 24 3.0763e-6 0.9936 3.5498e-6 0.9981
32 1.0560e-6 4.0786 1.2470e-6 4.0546 32 2.3115e-6 0.9951 2.6638e-6 0.9986
40 4.2501e-7 4.0788 5.0458e-7 3.9097 40 1.8512e-6 0.9960 2.1317e-6 0.9989
48 2.0203e-7 3.9724 2.4737e-7 3.8998 48 1.5437e-6 0.9966 1.7767e-6 0.9991
56 1.0951e-7 3.8317 1.3560e-7 3.6375 56 1.3239e-6 09971 1.5231e-6 0.9992
64 6.5657e-8 — 8.3430e-8 — 64 1.1588e-6 — 1.3329e-6 —

For Michaelis-Menten-Holling model (1.5a)-(1.5b), we take

_ y+ov

Qlo)= 140’

and
vy=01, 6=02, r=01, dy=d,=01 K=10, x=10, p1=0.8, p»=0.2.

Table 2 gives the convergence rates of the finite element methods on uniform meshes.
We can see from both Table 1 and Table 2 that the convergence rates are about 4 in
space and 1 in time.
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Table 2: Convergence rates for Example 3.1 for Michaelis-Menten-Holling model.

p=0.5,4=05,51=08, f=0.2
Rates in space Rates in time
(T=0.01, c=1000, M =40) (T=1,c=0, N=32)

N  Errofu Rate Err of v Rate M  Errofu Rate Err of v Rate
8 1.7339e-4 3.7944 22557e-4 3.6212 8 1.6025e-5 0.9769 9.7194e-6 0.9946
16 1.2496e-5 3.7106 1.8331e-5 3.8431 16 8.1419e-6 0.9866 4.8776e-6 0.9977
24 2.7756e-6 3.8834 3.8586e-6 3.9278 24 5.4574e-6 09905 3.2547e-6 0.9985
32 9.0815e-7 3.9553 1.2465e-6 3.9604 32 4.1043e-6 0.9926 2.4420e-6 0.9989
40 3.7570e-7 3.9894 5.1509e-7 3.9751 40 3.2888e-6 0.9939 1.9541e-6 0.9991
48 1.8153e-7 3.9782 2.4953e-7 3.9672 48 2.7437e-6 09948 1.6287e-6 0.9992
56 9.8315e-8 4.0360 1.3537e-7 3.9960 56 2.3536e-6 0.9955 1.3962e-6 0.9992
64 5.7354e-8 — 7.9394e-8 — 64 2.0606e-6 — 1.2217e-6 —

Example 3.2. Let m; € Z and m; > 2,
(x,mA) = xrtm 0<x<1/2,
TEETA)ZA htbm_ (ox —1)MHm 1/2<x<1,

I"(1+At—|—m)x“"]
T(1+At+m—a)l

a1 (x, EmA0) = A [Alogx—

F(1+At+m)(x—1/2)_"‘}

F(1+At+m—u) ’
. _ | silx,t;m A ), 0<x<1/2,

‘:(x,t,m,)\,tx)—{ (v, mA0)—go(x,t,mAn), 1/2<x<1,

g (x,t;m,A) = (2x — 1)+ [Alog(2x -1)—

and f;(u,v) be defined by (1.4a) and (1.4b) for Lotka-Volterra model, or defined by (1.5a)
and (1.5b) for Michaelis-Menten-Holling model, and

hi(x,t) =¢(x,t;m;, A1, 2—Bi) — fi(y(x,t;m1,A1),n(x,t;ma,A2)).
Then we can verify that
u(x,t)=n(x,t;my,A), o(xt)=n(x,tmy,A\),
are the solutions to the model (1.1a)-(1.1b) with p=1, g=0 for x€ Q:=(0,1).

We draw the exact solution in Fig. 1 which shows that the solution has developing sin-
gularity. Therefore, this is a good example to compare the performance of fixed meshes
and moving meshes for the finite element methods.

Table 3 and Table 4 give the errors and convergence rates of the finite element methods
on fixed and moving meshes. The results show that both the moving mesh methods and
fixed mesh methods have convergence rate 1 in time and about 4 in space. Moreover, the
error for moving meshes is smaller than that for fixed meshes.
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Table 3: Convergence rate in time for Example 3.2 for Lotka-Volterra model.

B1=038,pr=09,T=1, m =7, mp=8,
)Ll =12, )Lz =10, ri =0.1, .@i =1
Fixed mesh Moving mesh
(N=64) (=09, u=0.01, N=16)

M  Errofu Rate Errof v Rate Err of u Rate Errof v Rate
8 1.4713e-3 1.0322 1.3032e-3 1.0122 1.4578e-3 1.0491 1.3083e-3 1.0402
16 7.1941e-4 1.0365 6.4610e-4 1.0280 7.0449e-4 1.0550 6.3621e-4 1.0469
24 4.7255e-4 1.0384 4.2585e-4 1.0325 4.5929e-4 1.0610 4.1613e-4 1.0721
32 3.505le-4 1.0411 3.1642e-4 1.0353 3.3847e-4 1.0515 3.0569e-4 1.0478
40 2.7784e-4 1.0444 2.5115e-4 1.0379 2.6768e-4 1.0828 2.4196e-4 1.1130
48 2.2967e-4 1.0479 2.0784e-4 1.0405 2.1972¢-4 1.0672 1.9751e-4 1.0576
56 1.9541e-4 1.0514 1.7704e-4 1.0431 1.8639¢-4 1.0849 1.6780e-4 1.1059
64 1.6981e-4 — 1.5402e-4 — 1.6125e-4 — 1.4476e-4 —

Table 4: Convergence rate in space for Example 3.2 for Lotka-Volterra model.

B1=038,pr=09,T=1,m =7, mp=8,
)\1 =12, )\2 =10, ri =0.1, @i =1.
Fixed mesh Moving mesh
(M =500) (M=500,0=0.9, p=0.01)

N  Errofu Rate Errof v Rate Err of u Rate Errof v Rate
8 2.6411e-2 27944 2.7095e-2 29162 2.2435e-2 3.1471 2.2793e-2 3.2865
12 8.5055e-3 3.2228 8.3058e-3 3.3379 6.2625e-3 3.5435 6.0127e-3 3.6801
16 3.3655e-3 3.4682 3.1793e-3 3.5681 2.2595e-3 3.7786 2.0858e-3 3.9058
20 1.5522e-3 3.6259 1.4339e-3 3.7107 9.7237e-4 3.9813 8.7249e-4 4.0636
24 8.0140e-4 3.7432 7.2899%e-4 3.8145 4.7052e-4 4.0562 4.1591e-4 4.1143
28 4.5004e-4 3.8437 4.0490e-4 3.9025 2.5178e-4 4.0827 2.2057e-4 4.1305
32 2.6936e-4 — 2.4045e-4 — 1.4597e-4 — 1.2706e-4 —

To better compare the performance of uniform mesh and moving mesh, we draw
Fig. 2 and Fig. 3 for the exact solutions and computational solutions. These two figures
(Fig. 2 and Fig. 3) further show that the moving mesh outperforms fixed mesh in the
example.

Example 3.3. For the Michaelis-Menten-Holling predator-prey model (1.5a)-(1.5b), we set

hi(x,t)=0 (i=1,2), u(x,0) =0(x,0) =sin(ntx), Q(v) = 7110;)”, v=0.05,6=05,r=1,d,=1.1,

dy=1,K=x=1, p=q=0.5, 2, =0.005, Z, =0.05, T =30.

It has much difficulty to study the stability properties of the equilibrium solutions in
a fractional diffusion model, we apply our moving mesh FEM to simulate the evolution
of the predator and prey. Figs. 4 and 5 give the solutions with various dispersion order
Bi, i=1,2. We observe that the solutions u(x,t) and v(x,t) tend to be positive nontrivial
equilibrium as time approaches to infinity. But the shapes of equilibrium for # and v are
very different. Fig. 6 describes different shapes of stable solutions with various B;, i=1,2.
Fig. 7 describes different shapes of stable solutions with fixed d, =1 and various d;.
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Shapes of u at different time Shapes of v at different time
0.4 0.4
——t=0.00 ——t=0.00
0.3 —=—1t=0.83 0.3 —=—1t=0.83
——t=1.76 ——t=1.76
F t=2.50 = t=2.50
% 0.2 =333 x 02 — — —t=3.33
=1 : =1
t=4.17 t=4.17
0.1 — — t=5.00 0.1 —— t=5.00
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Figure 1: Exact solutions for Example 3.2 with T=5, A; =12, A, =10, m| =my =4.

Fixed mesh(N = 16, t = 2.5) Fixed mesh(N = 16, t = 2.5)
0.3 0.3
—e— FEM solution —e— FEM solution
0.2 Exact solution 0.2 Exact solution
= 0.1 > 01
0 0
-0.1 -0.1
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
Fixed mesh(N = 16, t = 5) Fixed mesh(N = 16, t = 5)
0.3 0.3
0.2 FEM solution 0.2 FEM solution
Exact solution Exact solution
0.1 f 0.1
>

i %&4
-0.1 hhd -0.1
-0.2 -0.2
o o02 04 06 08 1 o 02 04 06 08 1
X X

Figure 2: Computational solutions using fixed meshes for Example 3.2 with A1 =12, A, =10, m; =my=4. Other
parameters are taken as in Table 4.
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Moving mesh(N =8, t=2.5) Moving mesh(N =8, t = 2.5)
o - FEM solution o - - FEM solution
0.2 Exact solution 0.2 Exact solution
S >
0.1 0.1
0 0
0 0.2 0.4 0.6 0.8 1 o] 0.2 0.4 0.6 0.8 1
X X
Moving mesh(N =8, t =5) Moving mesh(N =8, t =5)
o - FEM solution o -+ FEM solution
0.2 Exact solution 0.2 Exact solution
> >
0.1 0.1
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
Moving mesh trajectory(N = 8)
5 T T T
4
3k
2L
1k
0 | L ]
0 0.1 0.2 0.3 0.4 .

X

Figure 3: The upper four figures: Computational solutions using moving mesh for Example 3.2 with A; =12,
Ay =10, my=mp =4 and §=0.9, 4 =0.05 in the monitor function. Other parameters are taken as in Table 4.
The bottom figure: Moving mesh trajectory.

Shapes of u at different time Shapes of v at different time
0.8 0.6
0.6
> 04 F— >

- - t=14
0.2 - - —t=20
t=30

(o] -0.2

(¢} 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X x
Evolution of u Evolution of v

u(x,t)

time 0 o x

Figure 4: Evolution of solutions for Example 3.3 with B;=0.1 and p=0.06, 8 =0.9 in the monitor function.
Upper left: Shapes of u at different time. Upper right: Shapes of v at different time. Lower left: Evolution of
u from t=0 to t=30. Lower right: Evolution of v from t=0 to t=230.
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Shapes of u at different time Shapes of v at different time
1
t=7
— — t=14 0.8

X

Evolution of u

v(x,t)

time 0 0 X

Figure 5: Evolution of solutions for Example 3.3 with ; =0.8 and ;1 =0.06, 8 =0.9 in the monitor function.
Upper left: Shapes of u at different time. Upper right: Shapes of v at different time. Lower left: Evolution of
u from t=0 to t=30. Lower right: Evolution of v from t=0 to t=230.

Shapes of stable solution u Shapes of stable solution v

o8l ——=—— =01 - o8l — = p-o01 4
——=——p=o03 ——=——p=o03
— = p=o0s5 ——=—— B=o0s5
0.7 ————— p=o0.7 - o7}k ————— p=07 4

B=09 —  «  p=o09

Figure 6: Different shapes of stable solutions with various B; for Example 3.3 and #=0.06, 0=0.9 in the monitor
function.

4 Conclusions

In this paper we studied moving finite element methods for a system of semi-linear frac-
tional diffusion equations which arise in competitive predator-prey models by replacing
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Shapes of stable solution u Shapes of stable solution v

° d, =08 ° d, =08

1r & - 1r . -

08F = _ocowocweooeoecoo B osf g
_ o.6er sp o - -6 o el

oal 1 e JUPCR ek RN o.al

o2t

o o

o 0.2 0.4 o.6 0.8 1 o 0.2 0.4 o.e 0.8 1
x x

Figure 7: Different shapes of stable solutions with various d; for Example 3.3 and 4 =0.06, 6=0.9 in the monitor
function.

the second-order derivatives in the spatial variables with fractional derivatives of order
less than two. The convergence rates of the methods were proved and verified by a va-
riety of numerical examples. Applications in anomalous diffusive Lotka-Volterra and
Michaelis-Menten-Holling predator-prey models were also studied.
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