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Abstract. In this paper, we investigate the error estimates of mixed finite element
methods for optimal control problems governed by general elliptic equations. The
state and co-state are approximated by the lowest order Raviart-Thomas mixed finite
element spaces and the control variable is approximated by piecewise constant func-
tions. We derive L? and H~!-error estimates both for the control variable and the state
variables. Finally, a numerical example is given to demonstrate the theoretical results.
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1 Introduction

Optimal control problems have been widely met in all kinds of practical problems. It have
been widely studied and applied in the science and engineering numerical simulation.
The finite element method was undoubtedly the most widely used numerical method in
computing optimal control problems. There have been extensive studies in convergence
of the finite element approximation of optimal control problems. For the studies about
convergence and superconvergence of finite element approximations for optimal control
problems, see, for example, [1,5,9-11,13,15-19,21,22]. A systematic introduction of finite
element methods for PDEs and optimal control problems can be found in, for example, [7,
14].

However, compared with standard finite element methods, the mixed finite element
methods have many advantages. When the objective functional contains gradient of the
state variable, we will firstly choose the mixed finite element methods. Chen et al. have
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done some works on a priori error estimates and superconvergence properties of mixed
finite elements for optimal control problems, see, for example, [3,4, 6]. In [4], Chen used
the postprocessing projection operator, which was defined by Meyer and Résch (see [15])
to prove a quadratic superconvergence of the control by mixed finite element methods.
Recently, Chen et al. derived error estimates and superconvergence of mixed methods
for convex optimal control problems in [6]. However, in [6], the authors did not derived
a H™!-error estimates for the control variable and the state variables.

The goal of this paper is to derive the error estimates of mixed finite element approx-
imation for an elliptic control problem. Firstly, by use of the duality argument, we derive
the superconvergence property between average L? projection and the approximation of
the scalar function, the convergence order is }3 as that obtained in [6], which can be seen
as a special case of this paper. Then, based on these superconvergence results, we de-
rive L2 and H~!-error estimates for the optimal control problems. Finally, we present a
numerical experiment to demonstrate the practical side of the theoretical results.

We consider the following linear optimal control problems for the state variables p, y,
and the control u with a pointwise control constraint:

min {5 llp—pall*+5 Iy —valP + 5 1ulP } (1)
subject to the state equation
—div(aVy+by)+cy=u, x€Q, (1.2)

which can be written in the form of the first order system
divp+cy=u, p=—(aVy+by), x€Q, (1.3)
and the boundary condition
y=0, x€0dQ), (1.4)

where Q is a bounded domain in R?. U,; denotes the admissible set of the control vari-
able, defined by

Uyg={ucl?(Q): u>0, ae. in Q}. (1.5)

Moreover, we assume that 0 <ap<a<a’, ac W (Q), 0<ce W (Q), be (WL>(Q))?,
ya € HY(Q), p, € (HY(Q))?, and v is a fixed positive number. We also assume that the
following condition holds [8]:

b? <4(1—7)ac for some € (0,1). (1.6)

The plan of this paper is as follows. In Section 2, we construct the mixed finite ele-
ment approximation scheme for elliptic optimal control problem (1.1)-(1.4) and give its
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equivalent optimality conditions. The main results of this paper are stated in Section
3 and Section 4. In Section 3, we derive the superconvergence properties between the
average L? projection and the approximation of the scalar function, then we derive the
L?-error estimates for optimal control problem. Next, we derive the H-error estimates
for optimal control problem in Section 4. In Section 5, we present a numerical example to
demonstrate our theoretical results. In the last section, we briefly summarize the results
obtained and some possible future extensions.

In this paper, we adopt the standard notation W (Q)) for Sobolev spaces on () with
anorm ||- ||, given by [[o]l,p =Y ja|<m HD"‘UHZ(Q), a semi-norm |- |,,,, given by [o]}, , =
2|a|:mHD"‘vH€p(Q). We set Wy""(Q) = {v e W"P(Q) :v|yn =0}. For p=2, we denote

H™(Q) = W2(Q2), Hy () = Wg'(€), and |-l = |-z, |I-| = |- loz. In addition C
denotes a general positive constant independent of 11, where 1 is the spatial mesh-size for
the control and state discretization.

2 Mixed methods for optimal control problems

In this section, we shall construct mixed finite element approximation scheme of the con-
trol problem (1.1)-(1.4). For sake of simplicity, we assume that the domain (2 is a convex
polygon. Now, similar to [3,4], we introduce the following co-state elliptic equation

—div(a(Vz+p—p,))+b-(Vz+p—p,;)+cz=y—ys, x€Q, (2.1)
which can be written in the form of the first order system
divg—a 'b-q+cz=y—y;, q=-a(Vz+p—p,), x€Q, (2.2)
and the boundary condition
z=0, x€d. (2.3)
Next, we recall some results from [8].
Lemma 2.1 (see [8]). For every function € L*>(Q), let ¢ be the solution of
—div(aV+bp)+cp=1¢ in Q, ¢|3n=0, (2.4)
or
—div(aV¢)+b-Vo+cp=1p in Q, ¢|sn=0. (2.5)
Then (2.4) and (2.5) are solvable and that

1pll2 < Cllwl. (2:6)
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In this paper, we shall employ duality respect to H!(Q) in place of H}(Q); i.e., if
@€ L?(Q), then

lolli=llgl 1= sup PP
0#£pe H(Q) H’val

Nothing of interest would change if the usual dual space H~1(Q) = (H}(Q))* is used.
Let

V=H(div;Q)={ve (L*(Q))* divo e L*(Q)}, W=L*(Q). (2.7)

Leta=a"! and B=uab. We recast (1.1)-(1.4) as the following weak form: find (p,y,u) €
V x W x U,; such that

in d oo 12 Sy 12 2
min {5 lp—pal+5 ly—val >+ 5 1l }, (282)
(ap,v)—(y,divo)+(By,v) =0, YoeV, (2.8b)
(divp,w)+(cy,w) = (u,w), YweW. (2.8¢)

It follows from [14] that the optimal control problem (2.8a)-(2.8c) has a unique solution
(p,y,u), and that a triplet (p,y,u) is the solution of (2.8a)-(2.8¢c) if and only if there is a
co-state (gq,z) € VX W such that (p,y,q,z,u) satisfies the following optimality conditions:

(ap,v)—(y,divo)+(By,v) =0, VoeV, (2.9a)
(divp,w)+ (cy,w) = (u,w), YweW, (2.9b)
(aq,v)—(z,divo)=—(p—p,v), VoeV, (2.9¢)
(divg,w)—(B-q,w)+ (cz,w) = (y—yq,w), YweW, (2.9d)
(vu+z,ii—u) >0, Viie U, (2.9¢)

where (-,-) is the inner product of L?(Q).
The inequality (2.9e) can be expressed as

u=max{0,—z}/v. (2.10)

Let 7, denotes a regular triangulation of the polygonal domain (), it denotes the
diameter of T and h = max hy. Let V;, x W, C V x W denotes the lowest order Raviart-
Thomas mixed finite element space [8,20], namely,

VTET,, V(T)=Po(T)@span(xPy(T)), W(T)=Py(T),

where P,,(T) denotes polynomials of total degree at most n1, Po(T)=(Po(T))?, x=(x1,x2),
which is treated as a vector, and
Vy:={0, eVNTET,, v,|r€V(T)}, (2.11a)
Wh::{thW:VTE'ﬁZ, wh|TEW(T)}. (2.11b)
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And the approximated space of control is given by
Uy, :={ii, € Uyy:VT €Ty, tiy,|r = constant}. (2.12)

Before the mixed finite element scheme is given, we introduce two operators. Firstly, we
define the standard L?(Q)-projection [8] P,: W — W}, which satisfies: for any ¢ € W

(Ph¢_¢/wh) =0, vu)h €Wy, (213&)
¢ —Puspll 5,0 < CH'||¢]|1,5, s=0,1, 2<p<co, VoW (Q). (2.13b)

Next, recall the Fortin projection (see [2] and [8]) I'T,: V— V}, which satisfies: for any ge V

(div(Il,g—q),wy) =0, Yw, € Wy, (2.14a)
lg—1Tugllop < Chllqllip, 2<p<oco, vge (W (Q))?, (2.14b)
|div(g—TT,q)|| < Chl|/divq]|1, vdivg e H'(Q). (2.14¢)

We have the commuting diagram property
divoll, =P,odiv:V—W, and div(I-II,)VLW, (2.15)

where and after, I denote identity operator.
Then the mixed finite element discretization of (2.8a)-(2.8¢) is as follows: find (p;,,y,
up) € Vi, x Wy, x Uy, such that

min {31, = pall*+5 s —yal+ 5 sl . (216a)
(apy,on) — (yn,divoy) + (Byn,on) =0, Vo, €V, (2.16b)
(divp,, wy)+ (cyn,wy) = (up,wy), Ywy, € Wj,. (2.16¢)

The optimal control problem (2.16a)-(2.16¢) again has a unique solution (p,,,yp,uy), and
that a triplet (p;,,yn,uy) is the solution of (2.16a)-(2.16¢) if and only if there is a co-state
(q,,,2n) € Vi, x Wy, such that (p,,,yn,q,,,2n,un) satisfies the following optimality conditions:

(apy,on) — (yn,divoy) + (Byn,vn) =0, Yo, eVy, (2.17a)
(divpy,,wy) + (cyn,wy) = (up,wy), Y, € W, (2.17b)
(aqy,,on) — (zp,divoy) =—(p,— P 0n), Vo, eVy, (2.17¢)
(divey,wp) = (B pywn) + (czn,wn) = (Yn—Ya, Wn), Vwy, € W, (2.17d)
(vup+zp, i, —up) >0, Viiy, € U, (2.17¢)

Similar to (2.10), the control inequality (2.17e) can be expressed as

up=max{0,—z,}/v. (2.18)
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In the rest of the paper, we shall use some intermediate variables. For any control
function i € U,,4, we first define the state solution (p(i1),y(i),q(i),z(i1)) € (V x W)? asso-
ciated with # that satisfies

(ap(it),v)— (y(ii),divo)+(By(ii),v) =0, VoeV, (2.19a)
(divp(it),w)+ (cy(it),w) = (i1,w), YweW, (2.19b)
(aq(it),v)—(z(i1),divo) =—(p(id) —p,,v), VoeV, (2.19¢)
(divg (1)) — (B-(i) )+ (c2(i), ) = (y(@) —yaw),  VweW.  (219d)

Then, we define the discrete state solution (p, (i1),y,(#),q,,(i1),z, (i) ) € (V};, x W), )* associ-
ated with i that satisfies

(apy, (11),0) — (yn (i), divoy) + (Byn (i1),01) =0, (2.20a)
(divp, (i), wp) + (cyn (i), wn) = (@,wy), (2.20b)
(aqy,(11),00) — (2 (1), divoy) = — (p, (7) — p g on), (2.20c)
(diva, (@), wy) — (B~ q, (), wn) + (cz4 (), wp) = (yn (&) — ya,wn), (2.20d)

for any v, € Vj, and wy, € Wj,.
Thus, as we defined, the exact solution and its approximation can be written in the
following way:

y(u),q(u),z(u)),

(py.q,2)=(p(u),
= (P (un),yn(un), q, (un),zn (un)).

(ph’yh/thzh)

3 L2-error estimates

In this section, we will derive the L?-error estimates for the control variable and the state
variables.
Now, we are in the position of deriving the estimates for || P,y (uj,) —yy || and || Pyz (1)) —

ZhH'

Lemma 3.1. Let (p(up),y(upn),q(uy),z(uy)) € (VXW)? and (p,,,yn,q,,zn) € (Vi x Wy,)? be
the solutions of (2.19a)-(2.19d) and (2.20a)-(2.20d) with ii = uy, respectively. Assume that h is
sufficiently small, then we have

1Py (1) = yull+ 1| Pz () =z | < CH2 ([l + 1| Py =g |+ [lya |+ | pallr)- (3.1)

Proof. From Egs. (2.19a)-(2.19d) and (2.20a)-(2.20d), we can easily obtain the following
error equations

(a(p(un) —py)on) — (y(un) = yn,divoy) + (B(y(un) —yn),on) =0, (3.2a)
(div(p (un) —py) wn) + (c(y(un) —yn),wn) =0, (3.2b)
(a(q(un) —qy),on) — (z(up) —zn,divoy) = —(p(un) —pp,on), (3.2c)
(div(g(un) —q,),wn) — (B-(q(un) —qy),wn) + (c(z(un) —z1),wn) = (y(un) —yn,wp), (3.2d)
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for any v, € V), and wy, € Wj,.
As a result of (2.13a), we can rewrite (3.2a)-(3.2d) as

(a(p(un) = py),on) — (Puy(un) —yn,divoy) + (B(y(un) —yn),on) =0,
(div(p(un) —py) wn) + (c(y(un) —yn),wn) =0,

(a(q(un) —q3,),on) — (Puz(up) —zp,divoy) = —(p(un) — pp,on),
(div(q(un) —qy),wn) — (B-(q(un) —aqy,),wn) +(c(z(un) —zn), wp)
)= Yn,wn),

for any v, € Vy, and w, € Wy,.
For sake of simplicity, we now denote

T="Puy(un) —yn, e=Puz(up)—zp.

Then, we estimate (3.1) in Part I and Part II, respectively.
Part I. As we can see,

Iel=  sup E¥)
¢€L2( ), Pp#0 HlPH

(3.3a)
(3.3b)
(3.30)

(3.3d)

(3.4)

(3.5)

we then need to bound (7,¢) for ¢ € L?(Q)). Let ¢ € H*(Q)NH}(Q) be the solution of

(2.5). We can see from (2.14a) and (3.3a)

(7,9) =(t,—div(aV¢))+(T,b-V)+(T,c0)
=— (7, div(IT,(aVe)))+(T,b-V¢)+(T,c)
=—(a(p(up) —py) 11, (aV ) +(T,b- V) +(cT,9)
—(B(y(un) — Py (un)) 11, (aV @) — (BT 1L, (aV $)).

Note that
(div(p(un) —py), @)+ (a(p(un) —py),aV$) =0.
Thus, from (3.3b), (3.6) and (3.7), we derive

(T,) =(a(p(un) =p1,),aV o =11, (aV)) +(div (p (un) = p;) ¢ — Pug)
+ (c(y(un) = Pry(un)) ¢ — Pugp) — (c(y (up) — Puy (1)), )
+(BT,aVe—IT,(aVp))+(B(y(un) — Puy(un)),aVe—T1,(aV))
= (y(un) = Puy(un), b-V)+(cT,¢ = Pup).

From (2.14b), we have

(a(p(un) —py),aVe—114(aVp)) < Chllalloeollall1,e0 [ (un) = pyll- 1912

(3.6)

(3.7)

(3.8)

(3.9)
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Let i =uj, and w=divp(uy)+cy(uy) —uy in (2.19b), we can find that
divp(uy)+cy(uy,) —u,=0.
Similarly, by (2.13a) and (2.17b), it is easy to see that
divp, =uy— Pycyy,.
By (3.10), (3.11), (2.13a) and (2.13b), we have
(div(p(un) —py) ¢ = Pud)
=(Pucyn—cy(up),¢—Prg)
=(Py(cy(un)) —cy(un), ¢ — Pudp)
<C||Pu(cy(un)) —cy(un)||-[lo—Pug|
<Ch?|ell1,0[ly (un) I1 |91
Moreover, by (2.13b), we find that

(c(y(un) = Pu(y(un))),¢)
=(y(up) = Pu(y(up)),co)
<Clly(un) — Ppy(un) | -1llce|l1
<Ch||c|1,00[ly (un) 11 |11

and
(y(un) —Ppy(up),b-Vo)
<Clly(un) — Py (up) || -1[1b-Vlly
<CI?[b]|1,00 |y (1) |11 | 2-

For other terms on the right side of (3.8), using (2.13b) and (2.14b), we get

(c(y(un) = Pry (un)),p = Pup) < Ch2lc oo lly (un) 11111,
(BT,aVe—T1,(aVp)) <Chl|Bllocllallell Tl - 1912,

(B(y(un) = Puy(un)),aV§—T14(aV $)) < CH2[|Bllo,collall100 [y (1en) I1 1012,

(cT,¢—Pup) <Chiclloe0 1Tl [[#]l1-
For sufficiently small i, by (3.5), (3.8)-(3.9) and (3.12)-(3.15d), we derive

1Py (o) —yull < Chl| p () = py |+ CH2 ||y () |1

1057

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15a)
(3.15b)

(3.15¢)
(3.15d)

(3.16)

Choosing v, =IT,p(uy) —p,, in (3.3a) and wy, = Py (uy) —yy in (3.3b), respectively. Then

adding the two equations to get

(a(ILpp(un) —pp) Tup (un) — py)

=—(a(p(un) —Tup (un)), Lpp (un) —pp,) — (B (un) —yn) Tup (un) —py)

— (c(y(un) —yn), Puy(un) —yn)-

(3.17)
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Using (3.17), (2.13b), (2.14b) and the assumption on a, we find that

XL p (1) — pyll < Ch([ly (un) [l 41 (un) 1) +ClI Py () =y |- (3.18)

Substituting (3.18) into (3.16), using (2.14b), for sufficiently small /1, we have

[1Pyy () =yl < CH>(1ly () Il + Nl () ) - (3.19)
Part II. Since
le]| = sup —( .y) (3.20)
perz()pzo 1917

we then need to bound (e, ) for p € L?(Q). Let € H>(Q)NHJ () be the solution of (2.4).
From (2.14a) and (3.3c), we can see that

(e,p) =(e,—div(aVe))—(e,V- (b)) +(e,c)
=—(e,div(IT,(aV¢))) — (e, V- (b@)) +(ce,¢)
=—(a(q(un) —q,), 114 (aV)) — (e, V- (b¢))
—(p(un) = py 10, (aVe)) + (ce,9). (3.21)

Note that

(div(q(un) —aqy),¢) + (a(q(uy) —q,,),aVe) =0. (3.22)

Thus, from (3.3d), (3.21) and (3.22), we derive

(e,ip) =(a(q(un) —q,),aV P~ (aVP)) +(
+(ce,p—=Pugp) + (c(z(un) = Pu(2(un)
— (c(z(un) = Pu(z(un))),¢) = (T, Pugp
+(B-(q(un) —a,,), Pugp) — (e, V- (b9)

=:) I (3.23)

i=1

div(q(up) —q,,),0—Puop)
) ®—Prop)
(p(un)

)
)= (p(n) =p), I (aV )
)

Let ii =uj, and w=divq(uy,) — B-q(up)+cz(uy) —y(uy,)+yq in (2.19d), we can find that
divg(up) —B-q(up)+cz(un) =y (un) —ya- (3.24)
Similarly, by (2.13a) and (2.17d), it is easy to see that

divqh_Ph(ﬁ'qh)+Phczh :yh_Phyd- (325)
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By (2.13a)-(2.13b) and (3.24)-(3.25), we have

L=(B-q(un) —cz(up) +y(un) —ya,¢ — Puo)
—(Pu(B-qy,) — Puczin+yn—Prya, ¢ — Pugp)
=(B-q(un) —cz(un) +y(un) —Yya,¢ — Pug)
— (Pu(B-q(un)) — Pu(cz(un)) + Py (un) — Poya, ¢ — Pudp)
<CH* (|| Bll1,00 1 () 11 + el 00 12 () [l + 1yl + ly ) 1) @] (3.26)

Similar to the estimates (3.9), (3.13), (3.15a) and (3.15d), we estimate [, I3, I and [5 as
follows

L < Chllalloeolall1,eoll g (un) =g, 1l [10]]2, (3.27a)
I3 < Chl|cllocolell - 1], (3.27b)
I < Ch?|[cllo,co |z (un) |1 1111, (3.27¢)
I5 < CH?|lc]|1,00]| (1a1) ]| o)1 (3.27d)

For I, by use of (2.13a), we get
Ie=—(7,¢) <C|lz[|- (||l (3.28)
For I, from (2.13a), (2.14a)-(2.14b) and (3.3a), we have

I;=(p(un) = py,aVe—11,(aVe)) — (a(p(up) —p,),a* V)

=(p(un) = ppaVe—114(aVe)) +(a(p(un) = py) 11n(a*Vp) —a* V)
+(B(y(un) —yn) T (a>V ) —a>V @) + (y (un) — Pyy () ,ab- V)
+(t,ab-V¢) — (t,div(a*V¢))

<Chlall1,ollp () = py || | 9ll2+ChllallocollalF ool 2 (1) = 1 |- 012
+Chl|Bllocolallf ooy () =yl [ @1l24+Ch? ]l 1,00 1B ]l1,00 ly () 1|02
+Cllallo,00l[Bllo,0o I T 19111 +Cllalf I 71l - 0112

<Ch([lp(un) = pyll+ 1y () =y D 1@ ll2+CH2 [y (i) [ | @2 +CliT] - [ 9ll2. - (3:29)

Finally, for Ig and Iy, from (2.13a)-(2.14b), (3.3a) and (3.3c), we have

Is+Io=(B-(q(un) —q;,), Pup) — (¢, V- (b))
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=(a(q(un) —q,) +p(un) —py,bp—11,(bp)) + (q(un) — q,, B(Pup—§))
+(a(p(un) — py,) Iu(BP) — Bp) — (T,div(Be))
+ (B (un) —yu) T1(Bp) — Bp) + (y (uy) — Py (uy), B2p) + (T, B°9)
<Ch(|la|l1,00 lg (ur.) — qp,ll+ 1l p () — P ID 1B 11,00 | P11
+Ch|Blloeollg(tn) — g, || - 011 +Chl| ][ o,00 | B]|1,00 [l 2 (t21) — 21,11 - 1@ 11
+ClBllvcoll Tl 1l +ChlBllo,coll Bll1,co ly (1) — yull - [| o111
+CI2(| Bl colly () 1 19 1l +ClIBIIG o I Tl 0
<Ch(lq(un) —qpll+ | p (un) =yl + Ly Cun) =y D[ $1]2
+CH ||y (un) 1 llp [l +ClI |-l ll1- (3.30)

Substituting the estimates I;-Iy in (3.23), for sufficiently small /, by (3.20), we derive

1Puz (1) = zn|| <Ch([|q (un) — qp, |+ || p (un) = py |+ |y (un) — yll) +ClI ]|
+CH ([l () 1+ N1y Ceen) [+ 2 ) 1+ llyallo)- (3.31)
Next, using (2.14a), we rewrite (3.3¢)-(3.3d) as
(a(ITnq(un) —qy,),on) — (Puz(un) —zp,divoy)

= —(a(q(un) —Tpq(un)),on) — (p(un) —Typ (un),on)
— (Ipp(up) —py,on), Yo, €Vy, (3.32a)

(div(ILuq(un) —qy),wn)
=(B-(q(up) - Hh( n))swn)+(B-(Tng (un) —qy,),wp) — (c(Puz(up) —zp),wp)
—(c(z(up) — Pyz(uy)),wp) + (t,wy), Ywy, € W, (3.32b)
Similar to (3.18), we can get
11T () — g,
<C(I|Puz(un) —zull +1p (un) = pyll+ 171D+ Ch(llg (n) Il + 12 (un) 1) (3.33)

Substituting (3.33) into (3.31), using (2.13b), (2.14b) and (3.18)-(3.19), for sufficiently small
h, we have

1Pz () =z <CH2([lq (g 1+ N1y Gan) 1+ 1z o) 1+ 1yall2)

+Ch(l[p (un) = pyll+lly () =yl + M7 [)- (3.34)
Since the domain () is a convex polygon, using (2.6), we have
i Cotn) [+ G ) llx < Clly G ) |2 < Cllun || < CClJu |+ | Pt =z, (3.35)

and

g () [+ 11z Cn) [ <CCllp Gun) 1+ 12 () 2+ pall1)
<C(llpun) [+ [y ) [+ llyall + [ all)- (3.36)
Thus, using (3.19) and (3.34)-(3.36), we complete the proof. O
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In order to derive the main results, we need the following error estimates.
Lemma 3.2. Let (p(Pyu),y(Pyu),q(Pyu),z(Pyu)) and (p(u),y(u),q(u),z(u)) be the solutions
of (2.19a)-(2.19d) with @i = Pyu and il =u, respectively. Assume that u € H'(Q). Then we have
ly (1) =y (Puao) |+ || p (1) — p (Pyue) | < CI2, (3.37a)
I12() =2(Pya) || + |l g () — g (Pyue) || < Ch%. (3.37b)

Proof. First, we choose i = P,u and i = u in (2.19a)-(2.19b) respectively, then we obtain
the following error equations

(a(p(Pyu) = p(u)),0) = (y(Ppu) =y (u),divo) + (B(y(Pyu) —y(u)),0) =0,  (3.38a)
(div(p(Pyu)—p(u)),w)+ (c(y(Pyu) —y(u)),w) = (Pyu—u,w), (3.38b)
foranyveVand weW.
Setting v=p(Pyu)—p(u) and w=y(P,u)—y(u) in (3.38a) and (3.38b) respectively and
adding the two equations to get
(a(p(Pyu) =p(u)),p(Byrt) —p(u))+ (B(y(Part) —y(u)), p(Puut) — p(u))
+ (c(y(Pyu) —y(u)),y(Pyu) =y (u)) = (Pyrt =,y (Pyut) =y (u)). (3.39)
Then, we estimate the right side of (3.39). Note that p(Pyu)—p(u) = —(aV (y(P,u)—
y(10))+ B(y(Py)—y(1)), by (2:13b), we have

(P =1,y (Pyu) =y (u)) < C|[ Py —ul| 1 ly(Puse) —y () |12

<Ch?||ullx[|p (Pyu) —p(u) . (3.40)
It follows from (1.6), (3.39) and (3.40) that
lp(Pyu) —p(u) || <Ch?. (341)
Thus, we have
[y (Pue) =y ()| < Cllp(Pyut) — p(u)|| < CH. (3.42)

Next, from (2.19¢) and (2.19d), we have the following error equation
(a(q(Pute) — (1)), g (Pys) — g (1)) — (B- (g (Byu) — g (1)) 2(Pyae) —=(u))
+ (c(z(Pyu) —z(u)),z(Pyu) —z(u))
=—(p(Pout) = p(u),q(Pyut) —q(u)) + (y(Pou) —y(u),z(Pyut) —2(u)). (3.43)
Using (1.6) and (3.41)-(3.43), we can see that
lz(Pyut) =2z (u) ||+ |l g (Pyu) — g (u)]]
<C(lp(Purt) = p () |+ |y (Pyue) =y (u)|]) < Ch?. (3.44)
Therefore Lemma 3.2 is proved from (3.41)-(3.42) and (3.44). O
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Now, we will discuss the superconvergence property for the control variable. Let
Ot = {UT:TcQ, u(x)|T>0},
= {UT:TCQ, u(x)|TEO},
Q" =0\(Q"uQ’).

It is easy to check that the three parts do not intersect on each other, and Q=Q+tuUQUQ .
In this paper we assume that u and 7, are regular such that meas(Q~) < Ch (see [15]).

Lemma 3.3. Let u be the solution of (2.9a)-(2.9e) and uy, be the solution of (2.17a)-(2.17e)
respectively. Assume that all the assumptions in Lemma 3.1 and Lemma 3.2 are valid and u,z €
WL*(Q)). Then, we have

|| Py — || < Ch2. (3.45)

Proof. We choose il =uy, in (2.9e) and i), = P,u in (2.17e) to get the following two inequal-
ities:

(vu+z,up,—u)>0, (3.46)
and
(vup+zp, Pou—uy,) >0. (3.47)

Note that uj, —u=uj — Pyu+Pyu—u. Adding the two inequalities (3.46) and (3.47), we
have
(vup+zp—vu—z,Pou—uy)+ (vu+z,Pou—u) >0 (3.48)

Thus, by (3.48) and (2.13a), we find that

V| Py — 1y ||> = (P — 1y, Pyt —uy)
=v(Pyu—u,Pyu—up)+v(u—uy, Pyu—uy)
<(zp—2z,Ppu—uy)+(vu+z,Pyu—u)
=(zp— Puz(uy,), Pyu—uy)+ (vu+z,Pyu—u)
+ (2(Pyu) —z(u), Py —up) + (2(up) —2(Pput), Pyt —uy,). (3.49)

By Lemma 3.1 and Lemma 3.2, we find that
(zj,— Pyz(uy,), Pyu—uy,) gCh4+z||Phu—uh|\2+Ch2HPhu—uhH2, (3.50)
and

(z(Pyu) —z(u),Pyu—uy,) < Ch*+ g || Py —up 2. (3.51)
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For the second term at the right side of (3.49), by Theorem 5.1 in [6], we have
(vu+z,Phu—u)§Ch3(||u||ioo+||z|\ioo). (3.52)
For the last term at the right side of (3.49), it is easy to see that
(z(up) = z(Py), Pyt —up) = = ||y (un) =y (Pyu) |2 = | p (up) = p(Pyut) |* < 0. (3.53)
Combining (3.49)-(3.53), for sufficiently small /1, we derive (3.45). O

Now, we can derive the L2-error estimates for the control variable and the state vari-
ables.

Theorem 3.1. Let u and uy, be the solutions of (2.9a)-(2.9e) and (2.17a)-(2.17e) respectively.
Assume that all the assumptions in Lemma 3.3 are valid. Then we have

|| —uy|| < Ch. (3.54)
Proof. Using (2.13b) and Lemma 3.3, it is easy to see that

([t — g, || <[J1e— Pya]| + | Pyt — |
<Chllull1 + | Pyt —uy]|
<Ch. (3.55)

Thus, we complete the proof. O

Theorem 3.2. Let (v,z,p,q) and (yu,zn,p,.q,) be the solutions of (2.9a)-(2.9e) and (2.17a)-
(2.17e) respectively. Assume that all the assumptions in Lemmas 3.1-3.3 are valid. Then we
have

ly—=ynll+lz—zxl| <Ch, (3.56a)
lp—ppllaio+11g—aqpllaio < Ch. (3.56b)

Proof. From (2.9a)-(2.9d) and (2.17a)-(2.17d), using (2.13a), we get the following error
equations

(a(p—pp)on) — (Puy—yn,divo,) + (B(y—yn),on) =0, (3.57a)
(div(p—py,),wn) +(c(y—yn),wn) = (Pyu—uy,wy), (3.57b)
(a(qg—ay),0n) — (Phz—zp,divoy) = —(p—py,on), (3.57¢)
(div(q—gqy,),wn) = (B-(q—4q,),wn) + (c(z—2zn),wn) = (Pry —Yn, wn), (3.57d)

for any v, € Vj, and wy, € Wj,.
Using (3.1), (3.18), (3.33)-(3.36), (2.13b) and (2.14b), we get

|p(un) —pyll +1q(un) —q, || < Ch. (3.58)
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Then, similar to (3.1) and (3.58), we derive

1Pyy —yu | + 1| Paz—2z4l| < Ch2, (3.59)
lp—pull+lg—aq4l < Ch. (3.59b)

Moreover, it follows from (1.2), (2.2), (3.11) and (3.25) that

|div(p—p,) | =Ilu—cy— (up—Pycyy)||
<|Ju—uy||+[|cy — Pycyl| + || Puc(y—yn) ||

<Ch, (3.60)
and
|div(q—q,)l|=[IB-q—cz+y—ya— (Pi(B-4;) — Paczn+yn—Puya) |
<lIB-a—=Pu(B-9) | +IPx(B-q—B-q;) ||+ cz—Pycz]|
+ [1Phe(z—zp) |+ [ly =y 1+ 1ya — Pryall
<Ch. (3.61)
Thus, using (2.13b) and (3.59a)-(3.61), we complete the proof. O

Remark 3.1. Notice that using (1.6), the constraint that & is sufficiently small can be re-
moved for a priori L2-error estimates. However, the constraint will be necessary for su-
perconvergence properties, which are used to derive H !-error estimates.

4 H l-error estimates

In this section, we will obtain H -error estimates for the optimal control problem. First,
we can derive the H l-error estimates for the scalar functions.

Theorem 4.1. Let (y,z,u) and (y,,zy,uy) be the solutions of (2.9a)-(2.9¢) and (2.17a)-(2.17e)
respectively. Assume that all the conditions in Theorem 3.2 are valid. Then we have

e —uy|| 1 <Ch?2, (4.1)
3
ly=ynll-1+[lz—znl[-1 < Ch2. (4.2)
Proof. Using (2.13b) and Lemma 3.3, it is easy to see that

([t —up || -1 <[Jue— Ppue|| 1+ || Pyre — || -1
<Ch[u]l1 +C|| Pyt — |
<Ch3. (4.3)

Similarly, by use of (2.13b) and (3.59a), we can derive (5.2). Thus, we complete the proof
of the theorem. O
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Next, we consider the H™!-error estimates for the divergence of the vector-valued

functions.

Theorem 4.2. Let (p,q) and (p,,q,,) be the solutions of (2.9a)-(2.9¢) and (2.17a)-(2.17e), re-

spectively. Assume that all the conditions in Theorem 3.2 are valid. Then we have

, , 3
[div(p—py)||-1+div(g—q;) | -1 < Ch2.
Proof. Let p € HY(Q)). Then, by (3.57b), (2.13a) and (2.13b), we derive
(div(p—py), @) =(div(p—p,),Pag) + (div(p—p,), ¢ — Do)
=(Pyut—up, Pyp) — ((c—Piuc) (y— Pry), Prp)

—(c(Ppy—yn), Prp)+(div(p—p;), ¢ —Pro)
<C||Pyue—up]|- || Pupl|+CH | cl1,00 [y ]l1 | Prep |

+CllcllocollPey —yull- | Pagll+ChIdiv(p—py) |- ¢]l1-

Using (4.5), (3.45), (3.59a) and (3.60), we find that
Idiv(p—p,)]| -1 < Ch2.
Similarly, by (3.57d), (2.13a) and (2.13b), we get

(div(g—q;,),¢)

=(div(g— qh) Pyg)+(div(g—g,,),¢—Pyro)

(B (4—41),Pu) + (Pry—yn,Pug) — ((c—Puc) (z—Puz), Prop)
—(c (th zn),Phe) +(div(q—q,),¢—Prp)
<(B-(a—a,),Lu@) +Cl|Pyy—ynl|- || Pu ||+ CH?||c||1,00 |z ]|1 | Pup |
+Cllcllo,eo | Puz =2z |- | Pa || +Chl|div (g —g;)1l - [| @[l1-

(4.4)

(4.5)

(4.6)

(4.7)

For the first term on the right hand side of (4.7), using (2.13b)-(2.14b) and (3.57a)-(3.57¢),

we have

(B-(a—a,),Pup) = (B-(9—4,,), Prp—9)+(B-(9—1q,),9)
=(B-(9—4a,), Pro— )+ (a(q—9q,),bo—11,(be))
+(p—pp11u(be)) — (Phiz—2zp,div(be))
=(B-(9—49,), Pro— )+ (a(q—9,),bo—11,(be))
+(p—pp I1u(bp) —be)+(a(p—p,),abe—11;(abe))
+ (Ppy —yn, 1 (abe)) + (B(y—yn),abe—11;(abe))
—(y—yn b’ @) — (Pyz—z;,div(bg))
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<Ch({|Bllo,co+allo,0 1b][1,00) [Pl | — a3
+Ch(||bl]1,00+allo,eollall1,00]11,00) [|@ll1 ][ 2= Pyl
+Cllallo,col[bllocoll @l - Puyy — |
+Chl|Bllo,collall1,00l[Bl1,00 l@ll1 [y =yl
+CIBI13 co lly =yl -1+ 1B]11,00]| Pz =z ]|) | @]

It follows from Theorem 3.2, (3.59a), (4.2) and (4.7)-(4.8) that
Idiv(g—ag,)]| -1 < Ch2.

Combining (4.6) and (4.9), we complete the proof.

Finally, we consider the H!-error estimates for the vector-valued functions.

(4.8)

(4.9)

Theorem 4.3. Assume that all the conditions in Theorem 3.2 are valid. Let (p,q) and (p;,q;,)

be the solutions of (2.9a)-(2.9e) and (2.17a)-(2.17e), respectively. Then we have

3
lp—pull-1+lg—gpll-1 < Ch2.

(4.10)

Proof. For ¢ € (H'(Q)))?, let ¢ € H2(Q)NH{(Q) be the solution of the Dirichlet problem

—div(aVe)=divy, xeQ),
=0, x €90

Then,
lolla <Clldivep|| <Cl[]]1-
Furthermore, p = —aV ¢+ 0, where div =0 and
18]l <Cllgll1-

Now,

(a(g—9q;,).¢)=—(a(9—9q;,),aV )+ (a(9—q,),0)
=(div(q—9q,,),¢)+(a(q—9q,),0).

Using (4.9) and (4.12), we have

. . 3
(div(g—gy),¢) < Clldiv(g—q,)[-1llellr < Ch2 ||}

(4.11a)
(4.11b)

(4.12)

(4.13)

(4.14)

(4.15)
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Then, since div@ =0 and by (3.57¢c), (2.14a)-(2.14b) and Theorem 3.2,

(x(q—q,),0)

(a(q—q,)11,0)+(a(9—q,),0 —11,6)

(Prz—2zp,divI1,0) — (p — p;, 11,0) +(a(9—9,,),0 —11,6)

(Pyz—zp,dive) — (p—p;, 11,0 —0) — (p—p,,, 0) + (x(9—9q,,),0 —11,6)
Ch(llp—pull+lla—a,DII6l1+Cllp—ppll-1116]1

C(F+lp—pyll-1)116]]1. (4.16)

IA A

Using (4.13)-(4.16), we conclude that

3
lg—=a,ll-1 <C(hZ+[|p=p [ -1)- (4.17)

Similarly, we can prove
lp—pyll-1 < Ch2. 4.18)
Thus, we complete the proof. O

5 Numerical experiments

In this section, we present below an example to illustrate the theoretical results. The op-
timization problems were solved numerically by projected gradient methods, with codes
developed based on AFEPack [12]. The discretization was already described in previ-
ous sections: the control function u was discretized by piecewise constant functions,
whereas the state (y,p) and the co-state (z,q4) were approximated by the lowest order
Raviart-Thomas mixed finite element functions. In our examples, we choose the domain

O=1[0,1]x[0,1],v=1,b=(1,1)T,c=1and a=1.

Example 5.1. We consider the following two-dimensional elliptic optimal control prob-
lem

.1 1 1
min { =l p—py |2+ 5 |y —yal >+ 5 o] | 5.1)

uclyy

subject to the state equation

divp+y=f+u, p=—-Vy— (y,y)T, (5.2)
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Table 1: The errors of [lu—uyll, [ly=yall, l2=2ull. lp—psll and [g—q,]-
Resolution | u—ual | Tv—l | Te=l | Tp—p,] | Ta—a,]
16 x16 7.9715e-02 | 1.4539e-02 | 1.4487e-02 | 3.9463e-01 | 2.4196e-01
32x32 3.9975e-02 | 7.2847e-03 | 7.2623e-03 | 1.9754e-01 | 1.1953e-01
64 x 64 1.9892e-02 | 3.7430e-03 | 3.6493e-03 | 1.0189%e-01 | 6.1744e-02
128 x 128 | 9.8874e-03 | 1.8954e-03 | 1.8486e-03 | 4.9643e-02 | 3.0956e-02
where
y=sin(7x;)sin(mxy), z=sin(7mrxy)sin(xy), (5.3a)
X
u0:1.0—0.83in<71> —0.8sin(27tx7), u=max(uy—2z,0), (5.3b)

f=divp+y—u, ys=—divg+(1,1)T-g—z+y, (5.30)

B cos(7txy)sin(7tx;)

q__< Zsm(;rrxll)cos(;;xz) ) (5:3d)
o (sin(7tx1) +7wcos(mxy ) ) sin(7rxy)

P—Pd——< 31n(7tx13(7rcos(7rx2):—sm(nxzi) > (5:3¢)

In Table 1, the errors |[u—uy||, |[y—yul, l|z—2zul, [[p—p,ll and ||g—g,| obtained on
a sequence of uniformly refined meshes are shown. Moreover, in Fig. 1, we show the
convergence orders by slopes. The convergence orders of these errors can be clearly
recognized from the Fig. 1. In Fig. 2, the profile of the numerical solution of u on the
64 x 64 mesh grid is plotted. Finally, in Fig. 3, the error between the exact solution u and
its numerical solution is plotted.

-05FV=

-15r

Ioglo(error)

2t

-25¢

—-O-

-0
T

[lu=upll
Ily=y,ll
llz=z,|l
lIp=p,ll
lla-ay |l
- k=-1.0

1
13

1 1 1
14 15 16

1 1 1
17 18 19

Iogm(sqn(dofs))

1 )
2 21 22

Figure 1. Convergence orders of ||u—uy||, |ly—yul. lz—zull, lp—p,ll and ||g—g,| in L?>-norm.
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Figure 2: The profile of the numerical solution of u on 64 x 64 triangle mesh.

Figure 3: The profile of the error between u and uj, on 64 x 64 triangle mesh.

6 Conclusions

In this paper, we discussed the lowest order Raviart-Thomas mixed finite element meth-
ods for an elliptic optimal control problem (1.1)-(1.4). Our L? and H !l-error estimates
for this class of elliptic optimal control problems by mixed finite element methods seems
to be new, and these results can be extended to RT1 mixed finite element methods. In
our future work, we will investigate L®-error estimates of the lowest order mixed finite
element methods for this class of optimal control problems.
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