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Abstract. This study presents a modification of the central-upwind Kurganov
scheme for approximating the solution of the 2D Euler equation. The prototype,
extended from a 1D model, reduces substantially less dissipation than expected.
The problem arises from over-restriction of some slope limiters, which keep slopes
between interfaces of cells to be Total-Variation-Diminishing. This study reports the
defect and presents a re-derived optimal formula. Numerical experiments highlight
the significance of this formula, especially in long-time, large-scale simulations.
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1 Introduction

This study simulates the dynamics of ideal gas based on conservation laws for mass,
momentum and energy, which are described by the hyperbolic system of Euler equa-
tions. Over the last three to four decades, researchers have presented many schemes
and improved greatly in this field [9]. The central-upwind (Riemann-problem-solver-
free and central Godunov-type projection-evolution) methods [2–8, 11–13] offer im-
pressive advances with key features that bypass solving of the Riemann problem and
therefore simplify complex and heavy computations. The central-upwind framework
also significantly decreases the numerical dissipation present in the staggered central
schemes. They were improved progressively by more precise estimates of the width
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of Riemann fans† and a higher order of interpolation with sharper slopes to recon-
struct cell distributions. Finally, semi-discrete configurations facilitate multidimen-
sional extensions substantially. As described in [2], this series of algorithms enjoys the
advantages of high resolution, simplicity, universality and robustness.

Despite lighter loading, it took at least 320 CPU hours to complete one round of
computation for the 2D Rayleigh-Taylor instability problem with 1728 × 6912 grids.
Such time-consuming experiments motivate the use of newest massively parallel com-
puting technique, GPGPU (General purpose computing with graphics processor units).
The most valuable feature of a GPU is its large number of scalar processors (SPs) which
offer much better computing performance than a CPU (GPU ≈ 1000GFLOPS vs. CPU
< 10GFLOPS). Here GFLOPS means Giga (one billion) Floating point Operations Per
Second. However, the cost is a whole new programming strategy under special struc-
tures [15, 16, 19–22].

In this application, we tried several revised configurations and found that the anti-
diffusion term (2.5) is the key to improving computing accuracy near discontinuities.
Whereas the dissipation reducing is not easily observed over a short period or at a
low resolution, the powerful GPU can perform one round of simulation within 13.5
hours. This makes it possible to investigate the ultimate effects of the anti-diffusion
mechanism.

In solving 1D Euler equations, the prototype [2] keeps discontinuities as narrow
as possible. However, it shows signs of weakness when simulating 2D Euler equa-
tions. This is caused by over-operation of some slope limiters in formula (2.3a), whose
original purpose is to restrict, under Total-Variation-Diminishing (TVD) conditions,
the slopes between interfaces of cells to avoid oscillations. This study analyzes what
happens, re-derives a modified formula in Section 3 and finally demonstrates its sig-
nificance with a series of large-scale numerical simulations in Section 4.

2 Numerical algorithm

The 2D Euler equations can be written as

Ut + f (U)x + g(U)y = s(U), (2.1)

where

U(x, y, t) = (ρ, ρu, ρv, E),

f (U) = f (ρ, ρu, ρv, E) = (ρu, ρu2 + P, ρuv, u(E + P)),

g(U) = (ρv, ρuv, ρv2 + P, v(E + P)).

Here ρ(x, y, t) is the density, (u(x, y, t), v(x, y, t)) is the velocity, E(x, y, t) is the total
energy and P(x, y, t) is the pressure. The relationship between is

E =
P

γ − 1
+

1
2

P(u2 + v2);

†The fan area is caused by the propagation of discontinuity from the initial state.
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where γ is a constant depending on the species of the gas and s(U) is the source term.

2.1 Prototype

The semi-discrete type of Kurganov scheme [2] is to integrate the following O.D.E.
system:

d
dt

Uij(t) = −
Fi,j+ 1

2
(t)− Fi,j− 1

2
(t)

∆x
−

Gi+ 1
2 ,j(t)− Gi− 1

2 ,j(t)

∆y
+ s(Uij(t)), (2.2a)

Fi,j+ 1
2
(t) =

a+
i,j+ 1

2
f (UE

i,j)− a−
i,j+ 1

2
f (UW

i,j+1)

a+
i,j+ 1

2
− a−

i,j+ 1
2

+ a+
i,j+ 1

2
· a−

i,j+ 1
2

[ UW
i,j+1 − UE

i,j

a+
i,j+ 1

2
− a−

i,j+ 1
2

− Qx
i,j+ 1

2

]
, (2.2b)

Gi+ 1
2 ,j(t) =

b+
i+ 1

2 ,j
g(UN

i,j)− b−
i+ 1

2 ,j
g(US

i+1,j)

b+
i+ 1

2 ,j
− b−

i+ 1
2 ,j

+ b+
i+ 1

2 ,j
· b−

i+ 1
2 ,j

[ US
i+1,j − UN

i,j

b+
i+ 1

2 ,j
− b−

i+ 1
2 ,j

− Qy
i+ 1

2 ,j

]
, (2.2c)

a+
i,j+ 1

2
= max(0, λ+

x (U
W
i,j+1), λ+

x (U
E
i,j)), a−

i,j+ 1
2
= min(0, λ−

x (U
W
i,j+1), λ−

x (U
E
i,j)), (2.2d)

b+
i+ 1

2 ,j
= max(0, λ+

y (U
S
i+1,j), λ+

y (U
N
i,j)), b−

i+ 1
2 ,j

= min(0, λ−
y (U

S
i+1,j), λ−

y (U
N
i,j)), (2.2e)

λ±
x (U) = u ±

√
γP/ρ are the slowest and fastest eigenvalues of

∂ f
∂U

, (2.2f)

λ±
y (U) = v ±

√
γP/ρ are the slowest and fastest eigenvalues of

∂g
∂U

, (2.2g)

UE(W)
i,j = pi,j

(
xj ±

∆x
2

, yi

)
, UN(S)

i,j = pi,j

(
xj, yi ±

∆y
2

)
, (2.2h)

where pi,j(x, y) is a linear interpolant defined in the interval [xj − ∆x/2, xj + ∆x/2]×
[yi − ∆y/2, yi + ∆y/2] which can be used to reconstruct U(x, y, tn) in a neighborhood
of (xj, yi) at time tn

Qx
i,j+ 1

2
=

minmod
(
UNW

i,j+1 − wint
i,j+ 1

2
, USW

i,j+1 − wint
i,j+ 1

2
, wint

i,j+ 1
2
− UNE

i,j , wint
i,j+ 1

2
− USE

i,j
)

a+
i,j+ 1

2
− a−

i,j+ 1
2

, (2.3a)

Qy
i+ 1

2 ,j
=

minmod
(
USW

i+1,j − wint
i+ 1

2 ,j
, USE

i+1,j − wint
i+ 1

2 ,j
, wint

i+ 1
2 ,j

− UNW
i,j , wint

i+ 1
2 ,j

− UNE
i,j

)
b+

i+ 1
2 ,j

− b−
i+ 1

2 ,j

, (2.3b)

minmod(c1, · · · , cm) =


min(c1, · · · , cm), if ci > 0 ∀i = 1, · · · , m,
max(c1, · · · , cm), if ci < 0 ∀i = 1, · · · , m,
0, otherwise.

(2.3c)

Qx
i,j+1/2 and Qy

i+1/2,j are the anti-diffusion terms which contribute to reduce numerical
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dissipation.

UNE(NW)
i,j = pi,j

(
xj ±

∆x
2

, yi +
∆y
2

)
, USE(SW)

i,j = pi,j
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2

)
,

wint
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=
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2
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2
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wint
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.

To integrate the ODE (2.2a), each time step is restricted by the CFL-condition, i.e.,

tn+1 − tn = ∆t ≤ CFL · min
i,j

(
∆x

max
(

a+
j+ 1

2
,−a−

j+ 1
2

) ,
∆y

max
(

b+
i+ 1

2
,−b−

i+ 1
2

)).

The key difference between this algorithm (2.2c) and others [3,4,7,8] is the presence of
additional anti-diffusion terms (2.3a). These terms can improve computing accuracy
near discontinuities, as illustrated by the figures in Section 4.

2.2 Simplified form

As mentioned by Remark 4.1 in [2], formula (2.2a) is ”almost” dimension-separable;
the directional flux (Fi,j+1/2(t)− Fi,j−1/2(t))/∆x and (Gi+1/2,j(t)− Gi−1/2,j(t))/∆y
seem to depend only on f (U) and g(U) individually without interaction. How-
ever, the anti-diffusion terms (2.3a) Qx

i,j+1/2 and Qy
i+1/2,j contain UNE(NW)

i,j and USE(SW)
i,j ,

which must refer to both f (U) and g(U). It is not possible to evaluate independently
the directional flux (with respect to the partial derivative) within each dimension. To
some degree, this prevents parallel computing.

Consider departing the 2D model (2.1) in dimension-separated sense, that is, at-
tempt to evaluate Qx

i,j+1/2 and Qy
i+1/2,j in only one-dimensional form

Qx
i,j+ 1

2
=

minmod
(
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i,j+1 − wint
i,j+ 1

2
, wint

i,j+ 1
2
− UE

i,j
)

a+
i,j+ 1

2
− a−

i,j+ 1
2

, (2.4a)

Qy
i+ 1

2 ,j
=

minmod
(
US

i+1,j − wint
i+ 1

2 ,j
, wint

i+ 1
2 ,j

− UN
i,j
)

b+
i+ 1

2 ,j
− b−

i+ 1
2 ,j

. (2.4b)

This approach is just like using the 1D algorithm in [2, 6] to solve for the flux F and
G in two dimensions individually and then combining their outcomes. This approach
works in parallel and is much easier. However, such a simplified limitation of slope
may violate the premier TVD objective and result in extraneous oscillations.

As mentioned in Section 1, Qx
i,j+1/2 and Qy

i+1/2,j are the major keys in the Kurganov
scheme. A little variation will subvert thoroughly its accuracy. Section 4 demonstrates
different figures w.r.t. the utilization of different anti-diffusion terms.
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2.3 Modified form

The original anti-diffusion terms (2.3a) have little effect on practical 2D simulations.
Instead, it is formula (2.4) that makes a great difference. The problem arises from some
over limitation of slopes. Below is an alternative of anti-diffusion terms which we will
demonstrate as a moderate modification for those of (2.3a) or (2.4). Section 3 analyzes
these three formulas

Qx
i,j+ 1

2
=

minmod
(

UW
i,j+1 − wint

i,j+ 1
2
, wint

i,j+ 1
2
− UE

i,j,
UNW

i,j+1−UNE
i,j

2 ,
USW

i,j+1−USE
i,j

2

)
a+

i,j+ 1
2
− a−

i,j+ 1
2

, (2.5a)

Qy
i+ 1

2 ,j
=

minmod
(

US
i+1,j − wint

i+ 1
2 ,j

, wint
i+ 1

2 ,j
− UN

i,j,
USW

i+1,j−UNW
i,j

2 ,
USE

i+1,j−UNE
i,j

2

)
b+

i+ 1
2 ,j

− b−
i+ 1

2 ,j

. (2.5b)

3 Derivation of modification

To demonstrate the proposed modification, this section first briefly explains the inten-
sion of formula (2.3a) and then provides a detailed revaluation using Figs. 1 and 2.
Finally, this section compares formulas (2.3a), (2.4) and (2.5).

Reconstructing U(x, y, tn) with as steep as possible linear planes on Di,j+1/2 and
Di+1/2,j reduces the numerical dissipations between cell interfaces. For Di,j+1/2, for ex-
ample, the four values USW(NW)

i,j+1 , USE(NE)
i,j at corners P1, · · · , P4 and the average wint

i,j+1/2

are involved in the interpolation to determine (Ux)
n+1
i,j+1/2 and (Uy)

n+1
i,j+1/2, the plane’s

x-slope and y-slope. As mentioned in [2, 8], the x-slope is a real anti-diffusion key. In
contrast, the y-slope has no effect by the subsequent projection average. However, the
latter interferes with the availability of the former and causes either in formula (2.3a)
to over-exclude some feasible solutions or in formula (2.4) to connive the controversial
solutions.

For brevity, the following discussion omits the subscript if there is no confusion.
We now show how to determine the optimal Ux, i.e., (Ux)

n+1
i,j+1/2, with computed UE,

UW, USE, USW, UNE, UNW and wint under TVD constraint.

Figure 1: Non-uniform location of control volumes in 2D model, as Fig. 3 in [2].



C. J. Yu and C. T. Liu / Adv. Appl. Math. Mech., 3 (2012), pp. 340-353 345

Figure 2: 3D view of control volumes with interpolation planes on the interfaces of cells.

Without loss of generality, assume that UE ≥ wint ≥ UW. Let

δx =
1
2

P3P4 =
1
2
(
a+

i,j+ 1
2
− a−

i,j+ 1
2

)
· ∆t, δy =

1
2

P2P4.

Ux is the slope of the blue line on the green plane, which must be TVD restrained in
the x-direction,

Ux = min mod
(UW − wint

δx
,

wint − UE

δx

)
,

i.e.,

UW − wint

δx
≤ Ux ≤ 0,

wint − UE

δx
≤ Ux ≤ 0. (3.1)

Uy is the slope of the yellow line on the green plane, which must be TVD restrained in
the y-direction. Therefore, on the vertical plane P2-P4,

Uy ∈
[UNW − A

δy
,

A − USW

δy

]
. (3.2)

Remark 3.1. On the intersection of the green plane and plane P2-P4,

A = wint + δx · Ux + 0 · Uy ≥ UW =
UNW + USW

2
,

by (3.1). Therefore
UNW − A ≤ A − USW,

and then,
UNW − A

δy
≤ A − USW

δy
.
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Similarly, on the vertical plane P1-P3,

Uy ∈
[B − USE

δy
,

UNE − B
δy

]
. (3.3)

The conditions (3.1), (3.2) and (3.3) must be fully satisfied to guarantee the TVD prop-
erty in both the x-direction and y-direction. Intervals in (3.2) and (3.3) both depend on
the value of Ux. If there is no intersection between these two intervals, a moderate Uy
is not possible. In other words, extreme values of feasible Ux will occur when the two
intervals intersect at only one point.

That is, either

A − USW

δy
=

B − USE

δy
or

UNW − A
δy

=
UNE − B

δy
,

wint + δx · Ux − USW = wint − δx · Ux − USE ⇒ Ux =
USW − USE

2δx
,

UNW − (wint + δx · Ux) = UNE − (wint − δx · Ux) ⇒ Ux =
UNW − UNE

2δx
.

Therefore

Ux = min mod
(USW − USE

2δx
,

UNW − UNE

2δx

)
. (3.4)

Ignoring the feasibility of Uy by considering only (3.1) leads to formula (2.4) after
passing to the semi-discrete limit. In contrast, synthesizing (3.1) and (3.4) generates
formula (2.5). If Uy is set to zero, then (3.2) and (3.3) show that

UNW − A
δy

≤ 0 ≤ A − USW

δy
⇒ Ux ≥ UNW − wint

δx
and Ux ≥ USW − wint

δx
,

B − USE

δy
≤ 0 ≤ UNE − B

δy
⇒ Ux ≥ wint − USE

δx
and Ux ≥ wint − UNE

δx
.

Therefore,

Ux = min mod
(UNW − wint

δx
,

USW − wint

δx
,

wint − USE

δx
,

wint − UNE

δx

)
. (3.5)

The outcome condition (3.5) leads to formula (2.3a).
Formula (2.4) may violate the TVD constraint. However, formula (2.5) is a re-

strained version of the former that considers 2 more quantities. In contrast, the im-
plicit precondition Uy = 0 makes (3.5) unduly prudent in determining a feasible non-
zero Ux. Consequently in (2.3a), Qx

i,j+1/2 = 0 and (2.2c) degenerates back to scheme
[3,4,7,8]. In conclusion, (2.5) is the optimal feasible choice of Ux. Section 4 surveys the
practical evidence for discrepancy and efficacy between those formulas by numerical
simulations.
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4 Numerical simulations

ODE (2.2a) should be better to integrate with a 3rd-order SSP/TVD ODE solver [17,
18], as suggested in [2]. Because the enhanced anti-diffusion terms only work near
discontinuities, we simply test unsmooth problems to demonstrate the effects induced
by different formulas (2.3a), (2.4) and (2.5). Tables 1 and 2 below specify the simulation
environment and execution times.

Table 1: Specifications of the test platforms.

System Hardware
CPU Intel Core 2 Duo E8500 3.16GHz, 6MB L2 Cache, FSB-1333 MHz

PC Host RAM 4 × 2048 MB DDR3, 1333 MHz
Chipset NVIDIA nforce790i SLI

VGA GPU NVIDIA G200 (GTX280) Core 602 MHZ, Shader 1296 MHz
Device RAM 1024 MB DDR3, 1107 MHz

Software & Drivers
Operating System Window XP 64 SP2
Graphics Driver ForceWare 257.21
CUDA V3.1
Visual C++ 2005 V8.0.50727.762 SP1 -O2 -arch sm 13 -code sm 13

4.1 Rayleigh-Taylor instability (ref. to [14])

Using the proposed algorithm, the simulations running with one GPU core are limited
to a resolution of 1024 × 4096 in double-precision mode. However, by paralleling 3
GPU cores, it is possible to achieve a maximum resolution of 1728× 6912. Fig. 3 shows
that the modified (2.5) achieves better enhancement than the prototype (2.3a).

Domain: 0 ≤ x ≤ 1/4, 0 ≤ y ≤ 1.

Boundary conditions:

• Both x = 0 and x = 1/4 are reflective boundaries.

• The bottom boundary y = 0 is fixed at the post-shock state.

• The top boundary y = 1 is fixed at the initial pre-shock state.

Table 2: Execution times for 4.1 Rayleigh-Taylor instability.

Resolution Iteration Computing Time (in sec.) GPU Cores
240 × 960 8450 428.475 1

480 × 1920 16705 3355.210 1
960 × 3840 34136 26428.606 1
1728 × 6912 61044 48536.219 3

Equation of state: γ = 5/3.
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Initial setup for interior grid points:

y ≤ 1
2

, post-shock state:


ρ
u
v
P

 =


2
0

−0.025 · c0 · cos(8πx)
2y + 1

 ,

otherwise, pre-shock state:


ρ
u
v
P

 =


1
0

−0.025 · c0 · cos(8πx)
y + 1.5

 , where c0 =

√
γP
ρ

.

CFL number: 0.475
Time period: T = 1.95
Source term: s(U) = (0, 0, ρ, ρv)

Fig. 4 presents the quantities Qx
i,j+1/2 + Qy

i+1/2,j for the three different formulas.
The prototype (2.3a) achieves poor compensation (limited in individual x-direction
or y-direction), but the modified (2.5) achieves a better performance close to (2.4) but
without violating TVD. Because (2.4) is not TVD-restrained, its controversial demon-
strations are bypassed in the following tests.

4.2 Double Mach reflection (ref. to [14])

Even though the time period of this example is too short to highlight differences be-
tween the various anti-diffusion terms, the modified formula (2.5) still performs better
than the prototype (2.3a), as indicated in the ”eye” area in Fig. 5.
Domain: 0 ≤ x ≤ 4, 0 ≤ y ≤ 1
Boundary conditions:

• The left boundary x = 0 is fixed at the post-shock state.

• The right boundary x = 4 is fixed at the pre-shock state.

• The bottom boundary y = 0 is fixed at the post-shock state if x ≤ 1/6, otherwise is reflective.
• To describe the exact motion of shock, the top boundary y = 1 is fixed at the post-shock state

if x ≤ xs(t), otherwise is fixed at the pre-shock state. Here xs(t) = 1/6 + (1 + 20t)/
√

3.

Equation of state: γ = 1.4
Initial setup for interior grid points:

x ≤ 1
6
+

y√
3

, post-shock state:


ρ
u
v
P

 =


8

8.25 · cos
(π

6

)
−8.25 · sin

(π

6

)
1160.5

 ,

otherwise, pre-shock state: (ρ, u, v, P) = (1.4, 0, 0, 1).

CFL number: 0.475
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Figure 3: Rayleigh-Taylor Instability (∆x = ∆y = 1/6912): Contours of density ρ using the same Kurganov
algorithm with four different anti-diffusion terms. From left to right, the first one is from (2.4), the second
has no anti-diffusion term as in [8], the third is from the prototype (2.3a) and the last one is from the
modified formula (2.5).

Figure 4: Rayleigh-Taylor Instability (∆x = ∆y = 1/960): Images presenting the compensation quantities of
different anti-diffusion terms. From left to right, the first one is from (2.4), the second is from the prototype
(2.3a) and the third is from the modified formula (2.5). Compare these shapes with the simulated shock
interfaces in the last figure.

Time period: T = 0.2

No source term: s(U) = (0, 0, 0, 0)
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Figure 5: Figures on the right side are contours of density ρ for shock-bubble interaction problem (∆x =
∆y = 1/1200) zoomed at [1.2, 2.1] × [−0.3, 0.3]. Figures on the left side are density-plots of ρ for the
Double Mach reflection problem (∆x = ∆y = 1/1728) zoomed at [2.3, 2.75]× [0, 0.3]. From top to bottom,
the first one has no anti-diffusion term, the second is from the prototype (2.3a) and the last one is from the
modified formula (2.5).

Figure 6: Explosion problem (∆x = ∆y = 1/2048): Contours of density ρ.
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4.3 Shock-bubble interaction (ref. to [2])

According to Fig. 5 and [2], formula (2.5) reduces the bubble splitting caused by nu-
merical diffusion.

Domain: −0.5 ≤ x ≤ 2.5, −0.5 ≤ y ≤ 0.5

• Both y = −0.5 and y = 0.5 are reflective boundaries.

• Both x = −0.5 and x = 2.5 are outflow boundaries.

Equation of state: γ = 1.4
For the initial state of interior grid points, there is a vertical right-moving shock located
at x = −0.3 and a circular bubble of radius 0.2 located at the origin:

(ρ, u, v, P) =



(4
3

,
707
2000

, 0, 1.5
)

, x ≤ −0.3,( 1
29

, 0, 0, 1
)

, x2 + y2 ≤ 0.04,

(1, 0, 0, 1), otherwise.

CFL number: 0.475

Time period: T = 4.0

No source term: s(U) = (0, 0, 0, 0)

4.4 Explosion (ref. to [2])

According to Fig. 6 and [2], the instabilities developed by (2.5) in the circular contact
curve are ”curlier”.
Domain: 0 ≤ x ≤ 1.5, 0 ≤ y ≤ 1.5

• Both y = 0 and x = 0 are symmetric boundaries.

• Both x = 1.5 and y = 1.5 are outflow boundaries.

Equation of state: γ = 1.4

Initial setup for interior grid points:

(ρ, u, v, P) =

{
(1, 0, 0, 1), x2 + y2 ≤ 0.16,
(0.1, 0, 0, 0.1), otherwise.

CFL number: 0.475

Time period: T = 3.2

No source term: s(U) = (0, 0, 0, 0)
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5 Conclusions

The demonstrated derivation addresses a defect in the 2D Kurganov scheme to rein-
force its reduction of numerical dissipation for shock preserving in long-time, large-
scale simulations. The experiments in this study reveal the effects of this modified
2nd-order scheme. The proposed formula (2.5) is simple and clear and offers insights
into the uncultivated 3D model.

Because of its amazing increase in speed, GPU computing is becoming increasingly
popular for CFD simulations. Although several authors [1, 20, 21] have discussed this
issue, the common problem of memory amount makes it difficult for most 3D GPU
programs to achieve high resolution for each dimension. In the future, we think the
enhanced anti-diffusion term will play a key role in the sophisticated large-scale sim-
ulations involving the 3D Kurganov scheme.
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