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Abstract. Recently, many variational models involving high order derivatives have

been widely used in image processing, because they can reduce staircase effects

during noise elimination. However, it is very challenging to construct efficient algo-
rithms to obtain the minimizers of original high order functionals. In this paper, we

propose a new linearized augmented Lagrangian method for Euler’s elastica image
denoising model. We detail the procedures of finding the saddle-points of the aug-

mented Lagrangian functional. Instead of solving associated linear systems by FFT or

linear iterative methods (e.g., the Gauss-Seidel method), we adopt a linearized strat-
egy to get an iteration sequence so as to reduce computational cost. In addition, we

give some simple complexity analysis for the proposed method. Experimental results

with comparison to the previous method are supplied to demonstrate the efficiency
of the proposed method, and indicate that such a linearized augmented Lagrangian

method is more suitable to deal with large-sized images.
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1. Introduction

Image denoising aims to recover a noise-free image u from a noise-polluted image

f . In general, it can be modeled by f = u + η, where η is the unknown noise. It has

been a challenging topic and has been deeply investigated during the last two decades.
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Excellent results have been obtained by using the total variation (TV) model, which

involves solving a second-order partial differential equation (PDE). This model was

proposed by Rudin, Osher and Fatemi [21] (called the ROF model). Recently, the gap

between a continuous ROF model and its discretized version was studied in [14].

The traditional way to solve the ROF model is to solve the corresponding Euler-

Lagrange equation with some time marching methods [25]. Due to the stability con-

straint on time step size, this kind of methods usually converges slowly. To overcome

the non-differentiability of the ROF model and reduce computational cost, several fast

algorithms have been studied. For example, the idea of duality was first proposed by

Chan et al. [5], later by Carter [2] and Chambolle [3, 4], and then by Zhu [29], Zhu

and Chan [30], Zhu et al. [31]. In [11], Goldstein and Osher developed a split Breg-

man method where the Gauss-Seidel iteration was used to solve some linear systems.

If the periodic boundary condition is used, such linear systems generated by the split

Bregman method can be solved by fast Fourier transform (FFT) [27]. In [24], the au-

thors introduced an augmented Lagrangian method for solving the ROF model. More

specifically, it was shown in [26] that the CGM method, Chambolle’s dual algorithm,

the split Bregman method and the augmented Lagrangian method were equivalent.

Although the CGM method, the split Bregman method and the augmented La-

grangian method can deal with the ROF model efficiently, associated linear systems

still need to be solved by FFT or the Gauss-Seidel method. In order to avoid solving

a linear equation system and simultaneously obtain a closed form solution, Jia et al.

proposed an efficient algorithm by applying matrix-vector multiplication [16]. Based

on the same idea, that is, avoiding solving PDEs by FFT or linear iterative methods,

Duan and Huang adopted a fixed-point strategy and proposed a fixed-point augmented

Lagrangian method for TV minimization problems [9].

By using the ROF model, the edges and the small scale characteristics can be pre-

served during noise elimination. So this model has been extensively used for a variety

of image restoration problems (see [6, 20]). However, the ROF model often causes

staircase effects in the results. To overcome this difficulty, some high order mod-

els [8, 17–19, 22, 28, 32] have been introduced in image restoration recently. Also,

Hahn et al. did some research on reducing staircase effects [1,12,13]. In [22], the fol-

lowing minimization problem based on a fourth-order PDE (called the Euler’s elastica

model) has been proposed:

min
u

∫

Ω

(

a+ b

(

∇ ·
∇u

| ∇u |

)2
)

| ∇u | +
λ

2

∫

Ω

(u− f)2, (1.1)

where λ > 0 is a weighting parameter which controls the amount of denoising, and

the term ∇ · ∇u
|∇u| is the curvature of level curve u(x, y) = c. The use of fourth-order

derivatives damps out high frequency components of images faster than the second-

order PDE-based methods, so (1.1) can reduce the staircase effects and produce better

approximation to the nature image. Indeed, it is also able to preserve object edges

while erasing noise. The Euler’s elastica model is one of the most important high order

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2017.m1611
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:21:37, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2017.m1611
https://www.cambridge.org/core


100 J. Zhang, R.-L. Chen, C.-Z. Deng and S.-Q. Wang

models. It has been successfully applied in various problems, such as image denoising,

inpainting and zooming.

However, due to the high nonlinearity of related Euler-Lagrange equation as in

[22], the traditional ways to solve the Euler’s elastica model (1.1) are usually time-

consuming. In [23], the authors successfully introduced an augmented Lagrangian

method to solve this model. In their method, the original unconstrained problem (1.1)

was first transformed into a constrained optimization problem. They then concentrated

on finding the saddle-points of the corresponding augmented Lagrangian functional. To

this end, they solved several subproblems alternatively. Some subproblems have closed

form solutions and thus can be easily solved. But there are still some other subproblems

which need to be solved by applying techniques such as the FFT. With the aim of using

FFT to solve one of those subproblems, a frozen coefficient method was applied to the

coupled PDEs and this increased the computational cost. Moreover, if the boundary

condition assigned to the minimization problem (1.1) is not periodic, it is not possible

to use FFT. Last but not the least, since it is not necessary to solve the subproblems

exactly for each iteration, we can use some inexpensive methods instead of FFT. Based

on these observations, in [10], Duan et al. introduced a new variable into the con-

strained problem to remove the variable coefficient in one subproblem, and employed

a Gauss-Seidel method to solve related Euler-Lagrange equations. Compared with the

previous method, their method can reduce computational cost and can be applied on

a computational domain with non-periodic boundary. However, two subproblems still

needed to be solved by linear iterative method and didn’t have closed form solutions.

Recently, from the same point of view (that is, avoiding solving the Euler-Lagrange

equations of several subproblems by iterative methods), the linearized technique has

been successfully employed to deal with quadratic penalty terms in many optimization

problems. For instance, in [7], a linearized alternating direction method was applied

to multiplicative noisy image denoising. In [15], Jeong et al. proposed a linearized

alternating direction method for Poisson image restoration.

Inspired by the success of the linearized technique for dealing with these image

processing problems, we check whether the pursuit of the solutions of linear equation

systems can be replaced by adopting the linearized technique to approximate so as to

reduce computational cost. Then based on the linearized technique, in this paper, we

propose a new linearized augmented Lagrangian method for solving the Euler’s elastica

model (1.1). At each iteration of the proposed method, two quadratic penalty terms

are linearized. Owing to the use of this linearized technique, the solutions of all sub-

problems have closed form expressions and thus each subproblem can be easily solved.

Numerical results illustrate the efficiency of the proposed method. In particular, the

newly developed method is more suitable to deal with large-sized images. Further-

more, the plots of relative residuals and errors show the convergence of the proposed

method.

The organization of this paper is as follows. In Section 2, we review the previous

augmented Lagrangian method for solving the Euler’s elastica image denoising model

(1.1). The newly developed linearized augmented Lagrangian method for solving this
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problem is introduced in Section 3. We adopt a linearized strategy to approximate

two quadratic penalty terms and study the complexity of the proposed method in this

section. In Section 4, some numerical results are reported to show the efficiency of the

proposed method. We end the paper with some conclusions in Section 5.

2. The augmented Lagrangian method

As is well-known, the augmented Lagrangian method (ALM) is a fast method for

solving many regularization problems. It has been successfully employed in the mini-

mization of non-differentiable and high order functionals [23,24,26,33]. This is noted

that non-differentiable and high order functionals may cause some numerical difficul-

ties, but the ALM is capable of handling these. At present, ALM has been widely applied

in many fields.

Before reviewing related work on the ALM for the Euler’s elastica model (1.1), we

first list a definition and a lemma.

Definition 2.1. The shrink operator Sτ (·) : X → X is defined by

Sτ (x) := max

{

0, 1 −
τ

|x|

}

x, (2.1)

where τ > 0 is a given constant.

Lemma 2.1. ([23]) Let x0 be a given scalar or vector, µ, r be two parameters with r > 0,

then the minimizer of the following functional

min
x

∫

Ω

µ|x|+
r

2
|x− x0|

2

has an explicit solution

x = Sµ
r
(x0). (2.2)

It is easy to see that problem (1.1) is equivalent to the following constrained opti-

mization problem:

min
u,p,n,h

∫

Ω

(a+ bh2) |p|+
λ

2

∫

Ω

(u− f)2,

s.t. p = ∇u, n =
p

|p|
, h = ∇ · n.

(2.3)

Note that the second constraint in (2.3) is equivalent to p = |p|n. Therefore, the above

constrained problem can be reformulated as follows:

min
u,p,n,h

∫

Ω

(a+ bh2) |p|+
λ

2

∫

Ω

(u− f)2,

s.t. p = ∇u, p = |p|n, h = ∇ · n.
(2.4)
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The augmented Lagrangian functional for (2.4) is defined as:

L(u,p,n, h;λ1, λ2, λ3)

=

∫

Ω

(a+ bh2) |p|+
λ

2

∫

Ω

(u− f)2 +

∫

Ω

λ1 · (p − |p|n) +
r1

2

∫

Ω

|p − |p|n|2 (2.5)

+

∫

Ω

λ2 · (p −∇u) +
r2

2

∫

Ω

|p −∇u|2 +

∫

Ω

λ3(h−∇ · n) +
r3

2

∫

Ω

(h−∇ · n)2,

where p,n ∈ R
2 are auxiliary vectors, λ1, λ2 ∈ R

2, and λ3 ∈ R are Lagrangian multipli-

ers. Note that the saddle-points of the functional (2.5) correspond to the minimizers of

the constrained optimization problem (2.3) and the minimizers of the Euler’s elastica

model (1.1). Hence one just needs to find the saddle-points of (2.5). To this end, an

alternative minimization procedure is adopted as in [10]:

uk+1 = argmin
u

L(u,pk,nk, hk;λk
1 , λ

k
2 , λ

k
3), (2.6a)

pk+1 = argmin
p

L(uk+1,p,nk, hk;λk
1 , λ

k
2 , λ

k
3), (2.6b)

nk+1 = argmin
n

L(uk+1,pk+1,n, hk;λk
1 , λ

k
2 , λ

k
3), (2.6c)

hk+1 = argmin
h

L(uk+1,pk+1,nk+1, h;λk
1 , λ

k
2 , λ

k
3), (2.6d)

λk+1
1 = λk

1 + r1(p
k+1 − |pk+1|nk+1), (2.6e)

λk+1
2 = λk

2 + r2(p
k+1 −∇uk+1), (2.6f)

λk+1
3 = λk

3 + r3(h
k+1 −∇ · nk+1). (2.6g)

For the p-subproblem (the second problem of (2.6)), due to the presence of the

nonlinear and non-differentiable quadratic penalty term involving |p|, it is difficult to

solve. Therefore, as discussed in [10], p−|p|n in the quadratic penalty term is replaced

with p − |pk|n. Then the p-subproblem is reformulated as follows:

pk+1 = argmin
p

∫

Ω

(a+ b(hk)2) |p|+

∫

Ω

λk
1 · (p − |p|nk)

+
r1

2

∫

Ω

|p − |pk|nk|2 +

∫

Ω

λk
2 · p +

r2

2

∫

Ω

|p −∇uk+1|2. (2.7)

Then there is a closed form solution for the p-subproblem (2.7). By utilizing Lemma

2.1, the solution of the p-subproblem can be given by

pk+1 = S c
r1+r2

(

r1|p
k|nk + r2∇uk+1 − λk

1 − λk
2

r1 + r2

)

, (2.8)

where

c = a+ b(hk)2 − λk
1 · nk. (2.9)
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The h-subproblem also has a closed form solution which can be obtained by solving the

corresponding Euler-Lagrange equation. And it is simple to show that

hk+1 =
r3∇ · nk+1 − λk

3

2b|pk+1|+ r3
. (2.10)

For the n-subproblem, in order to avoid the singularity arising from the operator

∇(∇·), a quadratic penalty term is added. Therefore, the n-subproblem is rewritten as

follows:

nk+1 = argmin
n

∫

Ω

−(λk
1 · |p

k+1|n + λk
3∇ · n) +

r1

2

∫

Ω

|pk+1 − |pk+1|n|2

+
r3

2

∫

Ω

(hk −∇ · n)2 +
γ

2

∫

Ω

|n − nk|2, (2.11)

where γ > 0 is a penalty parameter. In [10], the u-subproblem and n-subproblem were

solved by applying a Gauss-Seidel method to their related Euler-Lagrange equations.

Algorithm 2.1. (ALM for Solving (1.1))

Step 1. Input a, b, λ, γ, r1, r2, r3. Initialization: u0 = f,p0,n0, h0, and λ0
1, λ

0
2, λ

0
3. Let

k := 0.

Step 2. Compute (uk+1,pk+1,nk+1, hk+1;λk+1
1 , λk+1

2 , λk+1
3 ) by solving (2.6).

Step 3. Stop if the stopping criterion is satisfied. Otherwise, let k := k + 1 and go to

Step 2.

Note that the ALM for solving the Euler’s elastica model (1.1) requires solving two

systems of PDEs related to the u-subproblem and the n-subproblem at each iteration.

As a result, the computational cost is expensive.

3. The linearized augmented Lagrangian method

In the augmented Lagrangian method (ALM) for the model (1.1), the way to solve

the associated Euler-Lagrange equations of the u-subproblem and n-subproblem is usu-

ally time-consuming. Concretely speaking, the ALM still needs to solve them by using

the Gauss-Seidel iterative method, which demands a high computational cost at each

iteration. This problem is mainly caused by the fact that these two subproblems have

no closed form solutions. Therefore, in this section, we introduce a linearized ALM

where the u-subproblem and n-subproblem also have closed form solutions. Namely,

we use matrix-vector multiplication to reduce computational cost instead of pursuing

the solutions of the systems of equations by the Gauss-Seidel method.
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104 J. Zhang, R.-L. Chen, C.-Z. Deng and S.-Q. Wang

3.1. Linearization for the u-subproblem and the n-subproblem

In [10], the time-consuming parts of the ALM are to solve the Euler-Lagrange equa-

tions of the u-subproblem and n-subproblem, which are given as

−r2∆u+ λu = λf −∇ · (r2p
k + λk

2) (3.1)

and
(

γ + r1|p
k+1|2 − r3∇(∇·)

)

n

= γnk + r1p
k+1|pk+1|+ λk

1 |p
k+1| − r3∇hk −∇λk

3 , (3.2)

respectively.

There are no closed form solutions for the above equations and hence the compu-

tational costs of uk+1 and nk+1 are expensive. Fortunately, we find that these diffi-

culties can be avoided by the linearization of the penalty terms r2
2

∫

Ω
|pk − ∇u|2 and

r3
2

∫

Ω
(hk − ∇ · n)2. Using the second-order Taylor expansion of these two terms at uk

and nk, respectively, we get

r2

2

∫

Ω

|pk −∇u|2

≈
r2

2

∫

Ω

|pk −∇uk|2 + r2

∫

Ω

〈∇ · (pk −∇uk), u− uk〉+
1

2δ1

∫

Ω

(u− uk)2 (3.3)

r3

2

∫

Ω

(hk −∇ · n)2

≈
r3

2

∫

Ω

(hk −∇ · nk)2 + r3

∫

Ω

〈∇(hk −∇ · nk),n − nk〉+
1

2δ2

∫

Ω

|n − nk|2, (3.4)

where δ1, δ2 > 0 are two constants. Substituting (3.3)-(3.4) into the u-subproblem of

(2.6) and the n-subproblem (2.11) respectively, according to the optimality conditions,

we deduce that the corresponding Euler-Lagrange equations are

u− uk

δ1
+ λu = λf −∇ · (r2p

k + λk
2) + r2∆uk (3.5)

and

n − nk

δ2
+
(

γ + r1|p
k+1|2

)

n

=γnk + r1p
k+1|pk+1|+ λk

1|p
k+1| − r3∇hk −∇λk

3 + r3∇(∇ · nk). (3.6)

Then it is easy to see that the u-subproblem and the n-subproblem have closed form

solutions, which are defined as

uk+1 =
uk + δ1g1

1 + δ1λ
, (3.7a)

nk+1 =
nk + δ2g2

1 + δ2(γ + r1|pk+1|2)
, (3.7b)

where g1 and g2 denote the right-hand sides of (3.5) and (3.6), respectively.
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3.2. The proposed algorithm

By combining (2.8), (2.10), (3.7) and the last three equations of (2.6), we obtain a

linearized ALM for solving the Euler’s elastica model (1.1), which can be expressed as

the following simple form:

uk+1 =
uk + δ1g1

1 + δ1λ
, (3.8a)

pk+1 = S c
r1+r2

(

r1|p
k|nk + r2∇uk+1 − λk

1 − λk
2

r1 + r2

)

, (3.8b)

nk+1 =
nk + δ2g2

1 + δ2(γ + r1|pk+1|2)
, (3.8c)

hk+1 =
r3∇ · nk+1 − λk

3

2b|pk+1|+ r3
, (3.8d)

λk+1
1 = λk

1 + r1(p
k+1 − |pk+1|nk+1), (3.8e)

λk+1
2 = λk

2 + r2(p
k+1 −∇uk+1), (3.8f)

λk+1
3 = λk

3 + r3(h
k+1 −∇ · nk+1). (3.8g)

Algorithm 3.1. (Linearized ALM for Solving (1.1))

Step 1. Input a, b, λ, γ, r1, r2, r3, δ1, δ2. Initialization: u0 = f,p0,n0, h0, and λ0
1, λ

0
2, λ

0
3.

Let k := 0.

Step 2. Compute (uk+1,pk+1,nk+1, hk+1;λk+1
1 , λk+1

2 , λk+1
3 ) by solving (3.8).

Step 3. Stop if the stopping criterion is satisfied. Otherwise, let k := k + 1 and go to

Step 2.

Compared with Algorithm 2.1, Algorithm 3.1 requires less computational cost be-

cause it only involves the shrink operator and all subproblems have closed form solu-

tions.

3.3. Complexity analysis

In the following, we will give some simple analysis of complexity for the proposed

method.
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For our proposed method, the cost of updating uk is 16N+2 at each iteration, where

N = mn is the total number of grid points. At the same time, if a root operation is equal

to 12 times addition, or subtraction, or multiplication, or division, it will spend 58N +1
(2N times root operations), 48N (N times root operations), 7N + 1, 8N , 6N and 3N
operations for each iteration on updating pk,nk, hk, λk

1 , λ
k
2 , λ

k
3 , respectively. Then the

total cost of one step is 146N + 4, which gives rise to the O(N) complexity.

4. Numerical experiments

In this section, some numerical experiments are presented to illustrate the effective-

ness and efficiency of the proposed method for Euler’s elastica model. For simplicity of

presentation, we denote the newly developed method as LALM. Specifically, we com-

pare our results with those of the augmented Lagrangian method proposed in [10]

which is denoted as GSALM. Moreover, to show the significance of the linearization

for the n-subproblem, we also compare with the LnALM in which the linearization

technique will only be applied to the n-subproblem but not the u-subproblem. Ex-

perimental results indicate that the proposed method converges faster, especially for

large-sized images.

The programs were coded in MATLAB and run on a personal computer with a

3.0GHZ CPU processor. For each experiment, we use the relative error of the solution

uk defined by
‖ uk − uk−1 ‖2

‖ uk−1 ‖2
(4.1)

as the stopping criterion. That is, once the relative error is less than a given error

tolerance, the iteration process will be terminated and the solution is obtained. In

order to check whether the iteration converges, we monitor the relative error (4.1).

We also observe how the numerical energy of the Euler’s elastica model evolves during

the iteration process. To this end, we track the amount Ek defined as follows:

Ek =

∫

Ω

(

a+ b
(

hk
)2
)

| pk | +
λ

2

∫

Ω

(uk − f)2. (4.2)

To assess the restoration performance qualitatively, the peak signal to noise ratio (PSNR)

defined as

PSNR = 10 log10
2552

1
MN

∑M
i=1

∑N
j=1

(ui,j − Ii,j)2
, (4.3)

is used, where ui,j and Ii,j denote the pixel values of the restored image and the original

clean image, respectively.

In the following, three synthetic and a real images used in [10] are chosen as the

test images. The noisy images are generated by adding random noise with mean zero

and the standard deviation 10 to the clean images. The same parameters as did in [10]

are used in experiments. In this way, it will be more reasonable when we compare with

the GSALM proposed in [10].
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PSNR ≈ 28.134 PSNR ≈ 37.748 PSNR ≈ 37.750
(a)

PSNR ≈ 28.120 PSNR ≈ 37.806 PSNR ≈ 37.767
(b)

PSNR ≈ 28.123 PSNR ≈ 40.399 PSNR ≈ 40.115
(c)

Figure 1: The denoising results for three synthetic images. Here a = 1, b = 10, λ = 1, r1 = 0.03, r2 =

10, r3 = 10000, γ = 0.01. Specifically, in the LALM, δ1 = 2.3 · 10−2, δ2 = 4.5 · 10−5 are chosen and the
tolerance is 5.5 · 10−4 for (a). For (b), δ1 = 2.51 · 10−2, δ2 = 4.7 · 10−5 and the tolerance 5.9 · 10−4 are
used. And for (c), set δ1 = 2.1 · 10−2, δ2 = 4.4 · 10−5 and the tolerance is 4 · 10−4. The noisy image,
the denoised images by the GSALM and the LALM are shown from the first column to the third column,
respectively.

The results of the synthetic images are shown in Fig. 1 and the result of the real

image is displayed in Fig. 2. For all four experiments, the related numerical results are

listed in Table 1, where iter., cpu(s) and ∆ denote the number of iterations, the CPU

time in second required for the whole denoising process and the saved relative time

indicated as a percentage, respectively.

From the first and third columns of Fig. 1 and those of Fig. 2, we see that the visual
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Table 1: Numerical results.

Image Algorithm iter. cpu(s) PSNR ∆

Fig.1(a) GSALM 310 3.728 37.748

100 × 100 LnALM 397 1.357 37.800 63.6%
LALM 363 1.201 37.750 67.8%

Fig.1(b) GSALM 135 1.716 37.806

100 × 100 LnALM 132 0.483 37.723 71.9%
LALM 138 0.436 37.767 74.6%

Fig.1(c) GSALM 96 1.981 40.399

128 × 128 LnALM 100 0.717 40.711 63.8%
LALM 99 0.639 40.115 67.7%

Fig.2(a) GSALM 88 8.486 32.118

256 × 256 LnALM 81 3.229 32.161 61.9%
LALM 83 2.948 32.150 65.3%

PSNR ≈ 28.131 PSNR ≈ 32.118 PSNR ≈ 32.150
Figure 2: The denoising result for a real image. We set a = 1, b = 2, λ = 1, r1 = 0.02, r2 = 10, r3 =

5000, γ = 0.01. Specifically, we choose δ1 = 2.25 · 10−2, δ2 = 10
−4 for the LALM. The tolerance is

7.75 · 10−4. The noisy image, the denoised images by the GSALM and the LALM are shown from the first
column to the third column, respectively.

results are impressive. In other words, our proposed algorithm (LALM) is effective.

Specifically, we can observe from the second and third columns of Fig. 1 and those of

Fig. 2 that the visual results of our LALM are comparable to the GSALM. Furthermore,

from Table 1, we find that the LALM performs better than the GSALM in terms of CPU

time, while delivering almost the same quality (PSNR) of restoration. Notice from this

table that for the above four images, both LnALM and LALM are faster than GSALM and

the LALM is a little faster than the LnALM, while the PSNR values obtained by these

three methods are almost equal. This means that the linearization for the n-subproblem

saves more computational cost than that for the u-subproblem.

The results also show that the CPU time grows fast when the size of the image

increases. In order to further show the advantage of the LALM, we adopt four larger

images as examples. The Gaussian white noise with mean zero and standard deviation

20 is added to the test images. Specifically, to test the convergence of the LALM, we
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Table 2: Numerical results for the LALM with δ1 = 0.4.

δ2 8 · 10−5 10−4 3 · 10−4 5 · 10−4 7 · 10−4 9 · 10−4 11 · 10−4

PSNR 28.414 28.503 28.889 28.753 28.615 28.509 28.441

Table 3: Numerical results for the LALM with δ2 = 3 · 10−4.

δ1 0.2 0.25 0.3 0.35 0.4 0.45 0.5

PSNR 28.647 28.756 28.829 28.858 28.868 28.857 28.749

Table 4: Numerical results.

Image Algorithm iter. cpu(s) PSNR ∆

Fig.3 cameraman GSALM 312 29.437 28.855

512 × 512 LALM 328 11.871 28.956 59.7%
Fig.4 lena GSALM 146 63.461 30.537

512 × 512 LALM 167 25.412 31.201 60.0%
Fig.5 man GSALM 501 220.070 29.472

512 × 512 LALM 220 33.821 29.525 84.6%
Fig.6 boat GSALM 460 827.569 32.415

1024 × 1024 LALM 212 132.366 32.315 84.0%

track the relative error in u (4.1), the numerical energy (4.2), the PSNR (4.3) of the

images. And the plots are displayed in Figs. 3 and 4. While we show numerical results

obtained at the iteration when the stopping criterion is met, all graphs related to the

LALM and GSALM are drawn up to 1000 iterations.

In the Euler’s elastica model (1.1), there are three parameters: a, b and λ. By using

the previous augmented Lagrangian method (GSALM), there are four more parameters

r1, r2, r3, γ. In our improved augmented Lagrangian method (LALM), we have two

more parameters δ1, δ2. We will study the behavior and effect of parameters δ1, δ2. In

our fifth experiment for ‘cameraman’ image, we choose a = 1, b = 0.1, λ = 0.12, r1 =
0.08, r2 = 0.4, r3 = 1000, γ = 0.01 and our proposed LALM is terminated after 1000

steps. The PSNR values for various values of δ2 are listed in Table 2. From this table,

we observe that the PSNR value of the denoised image with δ2 = 3 · 10−4 is the biggest.

Then for the case of δ2 = 3 · 10−4, we further study the effect of parameter δ1 on the

LALM. We list the corresponding results for various values of δ1 in Table 3. From this

table, we know that we would better choose δ1 = 0.4. It is necessary to emphasize

that in order to choose better values of parameters, we did the same work while using

the GSALM. Once the better values of parameters in the GSALM are set, we choose the

same values of parameters in the LALM in most cases. Then we study how to choose

the parameters δ1, δ2.

It is easy to see from Figs. 3-6 that the visual results of the LALM are also compara-

ble to the GSALM. And numerical results in Table 4 demonstrate that the LALM spends

less CPU time than the GSALM, while the PSNR values obtained by these two methods
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PSNR ≈ 22.100 PSNR ≈ 28.855 PSNR ≈ 28.956
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Figure 3: The denoising results and the plots of (4.1), (4.2) and (4.3) for the real cameraman image.
We set a = 1, b = 0.1, λ = 0.12, r1 = 0.08, r2 = 0.4, r3 = 1000, γ = 0.01. Specifically, in the LALM,
δ1 = 0.4, δ2 = 3 · 10−4 are chosen and the tolerance is 2 · 10−3. The noisy image, the denoised images by
the GSALM and the LALM are shown on the first row, respectively. The plots of relative error in uk and
numerical energy are displayed on the second row while the plot of PSNR is shown on the third row.

are almost equal. Since the Euler’s elastica energy functional is not convex, we can not

expect monotonic decrease in the values of the numerical energy and relative error in

u. From these plots in Figs. 3-6, it is shown that the LALM is stable and has converged,

just as the GSALM did. It is actually clear that the energy and PSNR have converged to

a steady state.

The experimental results in Tables 1 and 4 show that the LALM is almost 2 times

faster than the GSALM in terms of the CPU time. It can restore noisy images quite well

in an efficient manner, especially for some large-sized images.
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PSNR ≈ 22.113 PSNR ≈ 30.537 PSNR ≈ 31.201
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Figure 4: The denoising results and the plots of (4.1), (4.2) and (4.3) for the real lena image. For the
GSALM, we choose a = 1, b = 1.8, λ = 0.1, r1 = 0.03, r2 = 15, r3 = 600, γ = 0.01. The same parameters
are used except λ = 0.08, r2 = 4 for the LALM. Specifically, in the LALM, δ1 = 0.05, δ2 = 6 · 10−4 are
chosen. The tolerance is 4.5 · 10−4. The noisy image, the denoised images by the GSALM and the LALM
are shown on the first row, respectively. The plots of relative error in uk and numerical energy are displayed
on the second row while the plot of PSNR is shown on the third row.

5. Conclusion

In this paper, we presented a linearized augmented Lagrangian method for solving

the Euler’s elastica image denoising model. We applied the linearlization technique

to two subproblems such that all subproblems in the newly developed method had

closed form solutions and thus could be solved rather easily. Furthermore, we analyzed

the complexity of the proposed method. We tested this method by comparing it with
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PSNR ≈ 22.104 PSNR ≈ 29.472 PSNR ≈ 29.525
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Figure 5: The denoising results and the plots of (4.1), (4.2) and (4.3) for the real man image. For the
GSALM, we set a = 1, b = 0.12, λ = 0.1, r1 = 0.06, r2 = 1.8, r3 = 1600, γ = 0.01. The same parameters
are used for the LALM. Specifically, in the LALM, δ1 = 0.1, δ2 = 3 · 10−4 are chosen. The tolerance is
10

−3. The noisy image, the denoised images by the GSALM and the LALM are shown on the first row,
respectively. The plots of relative error in uk and numerical energy are displayed on the second row while
the plot of PSNR is shown on the third row.

the previous augmented Lagrangian method in order to demonstrate its efficiency. As

numerical results demonstrated, our method performed better in terms of CPU time.

Especially, it is shown that our method is more suitable to deal with large-sized im-

ages. The plots of relative error in uk, numerical energy and PSNR illustrate that it can

converge to a steady state.
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PSNR ≈ 22.120 PSNR ≈ 32.415 PSNR ≈ 32.315
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Figure 6: The denoising results and the plots of (4.1), (4.2) and (4.3) for the real boat image. For the
GSALM, we set a = 1, b = 5.5, λ = 0.12, r1 = 0.085, r2 = 25, r3 = 1100, γ = 0.01. The same parameters
are used except λ = 0.08, r2 = 16 for the LALM. Specifically, in the LALM, δ1 = 0.013, δ2 = 3.15 · 10−4

are chosen. The tolerance is 5 · 10−4. The noisy image, the denoised images by the GSALM and the LALM
are shown on the first row, respectively. The plots of relative error in uk and numerical energy are displayed
on the second row while the plot of PSNR is shown on the third row.
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