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Abstract. This paper is devoted to the study of an inverse problem containing a
semilinear integrodifferential parabolic equation with an unknown memory kernel.

This equation is accompanied by a Robin boundary condition. The missing kernel

can be recovered from an additional global measurement in integral form. In this
contribution, an error analysis is performed for a time-discrete numerical scheme

based on Backward Euler’s Method. The theoretical results are supported by some
numerical experiments.

AMS subject classifications: 47J35, 65M12, 65M32

Key words: Parabolic inverse problem, convolution kernel, error estimates.

1. Introduction

The aim of this paper is to derive error estimates for a time-discrete numerical

scheme that approximates the solution of an inverse semilinear parabolic integrodiffer-

ential problem. This problem contains a Robin boundary condition and an unknown

solely time-dependent memory kernel K(t). More exactly, it is mathematically formu-

lated as































∂tu(x, t)−∆u(x, t) +K(t)h(x, t)− (K ∗∆u(x))(t) = f(u(x, t)),

(x, t) ∈ Ω× (0, T ],

α(u(x, t)) +∇u(x, t) · ν = g(x, t), (x, t) ∈ Γ× [0, T ],

u(x, 0) = u0(x), x ∈ Ω,

(1.1)
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Error Estimates for an Inverse Kernel Problem 117

with Ω ⊂ R
d, d > 1, a Lipschitz domain with boundary Γ and [0, T ], T > 0, the time

frame. The data functions h, f , g, α and u0 are supposed to be known. The usual

convolution in time is denoted by the symbol ∗, i.e.

(K ∗∆u(x))(t) =

∫ t

0
K(t− s)∆u(x, s)ds.

The convolution kernel K(t) and the function u(x, t) need to be reconstructed from the

extra given measurement

∫

Ω
u(x, t) dx = m(t), t ∈ [0, T ]. (1.2)

The identification of missing memory kernels in partial integrodifferential equations

is relatively new in inverse problems. The first papers on this topic concern abstract

parabolic and hyperbolic equations with memory [1–5]. These papers contain some

local existence and global uniqueness results applying the contraction mapping princi-

ple. Other papers dealing with this topic are [6–14]. For instance, in [14], Colombo

and Guidetti derived some local and global in time existence results for the recovery of

solely time-dependent memory kernels in semilinear integrodifferential models. More

specifically, they studied the evolution equation for materials with memory given by

∂tu = ∆u+

∫ t

0
K(t− s)∆u(x, s) ds+ F (u), x ∈ Ω0 ⊂ R

3, t ∈ [0, T0],

which corresponds with problem (1.1). More recent papers dealing with a similar

problem setting are [15] and [16], in which the authors have used the global measure-

ment (1.2) to reconstruct the kernel of a convolution of the form K ∗ u in a semilinear

parabolic problem. Such types of integro-differential problems arise in the theory of

reactive contaminant transport, cf. [17].

In [18], the development of a numerical algorithm for problems of type (1.1)-(1.2)

has been provided under the condition that

min
t∈[0,T ]

∣

∣

∣

∣

∫

Ω
h(t)

∣

∣

∣

∣

> ω > 0.

However, only weak convergence of the numerical approximations to the kernel K has

been shown. The first goal of this paper is to slightly change the numerical scheme

from [18], such that higher stability results can be obtained. These stability results are

needed for the second goal, i.e., to perform an error analysis, from which the strong

convergence of the numerical approximations to the kernel K follows. The last goal

of this paper is to support the theoretical results with some numerical experiments.

The acquired a priori estimates for the error estimates are complicated and deliver a

possible solution approach for solving other integrodifferential problems.

The outline of this paper is as follows. First, the numerical scheme of [18] and some

corresponding a priori estimates are adapted in Section 2. In the same section, also the
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118 M. Grimmonprez, K. Van Bockstal and M. Slodička

convergence of the approximations towards the unique weak solution is proved. Next,

in Section 3, some higher stability results are derived, assuming sufficiently regular

data. This section also deals with the error analysis. Further, two numerical experi-

ments are conducted in Section 4. Finally, a conclusion is stated in Section 5.

Remark 1.1. The values C, ε and Cε are considered to be generic and positive con-

stants (independent of the discretization parameter), where ε is arbitrarily small and

Cε arbitrarily large, i.e. Cε = C
(

1
ε

)

. The same notation for different constants is used,

but the meaning should be clear from the context.

2. Numerical scheme

In this section, we firstly repeat how the authors from [18] have built up a numerical

scheme for problem (1.1). Secondly, we describe why and how this numerical scheme

needs to be changed to be able to prove higher stability results. Finally, we repeat some

lemmas and theorems that are proved in [18] and that stay valid after the adaption of

the scheme.

In [18], it has been shown that the variational formulation of problem (1.1)-(1.2)

can be formulated as: find (K,u) ∈ L2(0, T )×L2((0, T ),H1(Ω)), with ∂tu ∈ L2
(

(0, T ),
(

H1(Ω)
)∗ )

, such that for almost all t ∈ (0, T ] and for all ϕ in the test space H1(Ω), it

holds that

(∂tu, ϕ) + (∇u,∇ϕ) +K (h, ϕ) + (K ∗ ∇u,∇ϕ)

= (f(u), ϕ) + (g − α(u), ϕ)Γ + (K ∗ (g − α(u)), ϕ)Γ (P)

and such that the global measurement (1.2) is satisfied. Putting ϕ = 1 in (P), it is clear

that

m′ +K

∫

Ω
h =

∫

Ω
f(u) +

∫

Γ
(g − α(u)) +

∫

Γ
K ∗ (g − α(u)). (MP)

The well-posedness of (P) and (MP) has been studied in [18] by using Rothe’s method,

cf. [19]: a time-discrete scheme based on Backward Euler’s method has been designed

and the convergence of the approximations towards the unique weak solution has been

proved under appropriate conditions on the data. Accordingly, an equidistant time-

partitioning of the time frame [0, T ] into n ∈ N intervals has been considered. The

time step has been denoted by τ = T/n < 1 and the discrete time points by ti = iτ ,

i = 1, . . . , n. The notations

zi ≈ z(ti), 0 6 i 6 n, and δzi =
zi − zi−1

τ
, 1 6 i 6 n,

have been introduced for any function z. In [18], the convolution term K ∗∆u(x)(ti)
has been approximated by

∑i
k=1Kk∆ui−kτ , which led to the following linearized Back-
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Error Estimates for an Inverse Kernel Problem 119

ward Euler scheme:

(δui, ϕ)− (∆ui, ϕ) +Ki (hi, ϕ)−

(

i
∑

k=1

Kk∆ui−kτ, ϕ

)

= (fi−1, ϕ) , ϕ ∈ H1(Ω), (2.1)

in which fi−1 := f(ui−1). Next, the following decoupled system for approximating the

unknowns (Ki, ui), 1 6 i 6 n, has been proposed

(δui, ϕ) + (∇ui,∇ϕ) +Ki (hi, ϕ) +

(

i
∑

k=1

Kk∇ui−kτ,∇ϕ

)

= (fi−1, ϕ) + (gi − αi−1, ϕ)Γ +

(

i
∑

k=1

Kk(gi−k − αi−k)τ, ϕ

)

Γ

, (2.2)

m′
i +Ki (hi, 1) = (fi−1, 1) + (gi − αi−1, 1)Γ +

(

i
∑

k=1

Kk(gi−k − αi−k)τ, 1

)

Γ

, (2.3)

with αi := α(ui). At every time step ti, 1 6 i 6 n, first (2.3) has been solved for Ki

and next (2.2) for ui. However, (2.2) is not equivalent with (2.1), which is needed to

obtain higher stability results of the approximations leading to error estimates of order

τ .

In this article, we solve the previous issue using the approximations

K ∗∆u(x)(ti) ≈

i−1
∑

k=0

Kk∆ui−kτ, ∇ui · ν ≈ gi − αi−1,

leading to the following linearized Backward Euler scheme

(δui, ϕ)− (∆ui, ϕ) +Ki (hi, ϕ)−

(

i−1
∑

k=0

Kk∆ui−kτ, ϕ

)

=(fi−1, ϕ) , ϕ ∈ H1(Ω) (DPi1)

and the equivalent decoupled system

(δui, ϕ) + (∇ui,∇ϕ) = −Ki (hi, ϕ) −

(

i−1
∑

k=0

Kk∇ui−kτ,∇ϕ

)

+ (gi − αi−1, ϕ)Γ

+ (fi−1, ϕ) +

(

i−1
∑

k=0

Kk(gi−k − αi−k−1)τ, ϕ

)

Γ

, ϕ ∈ H1(Ω), (DPi2)

m′
i +Ki (hi, 1) = (fi−1, 1) + (gi − αi−1, 1)Γ +

(

i−1
∑

k=0

Kk(gi−k − αi−k−1)τ, 1

)

Γ

. (DMPi)
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Eq. (DPi2) is also conveniently written as B(ui, ϕ) = Fi(ϕ), with

B(ui, ϕ) =
1

τ
(ui, ϕ) + ((1 +K0τ)∇ui,∇ϕ)

and

Fi(ϕ) = (fi−1, ϕ) + (gi − αi−1, ϕ)Γ −Ki (hi, ϕ)−

(

i−1
∑

k=1

Kk∇ui−kτ,∇ϕ

)

+

(

i−1
∑

k=0

Kk(gi−k − αi−k−1)τ, ϕ

)

Γ

+
1

τ
(ui−1, ϕ).

The resulting numerical algorithm is as follows:

Algorithm 2.1. Numerical scheme in pseudo code.

Input: T > 0, n ∈ N and functions f , g, h, α, m, m′ and u0
Output: kernel K and solution u at discrete time steps

Step 1. τ ← T/n;

Step 2. θ ← [0 : τ : T ];

Step 3. K ← zeros(n+ 1);

Step 4. u[0]← u0;

Step 5. K[0]←
1

(h0, 1)

(

(f0, 1) −m′
0 + (g0 − α0, 1)Γ

)

;

Step 6. For i = 1 to n do

K[i]←
1

(hi, 1)
×

(

(fi−1, 1) + (gi − αi−1, 1)Γ +

(

i−1
∑

k=0

Kk(gi−k − αi−k−1)τ, 1

)

Γ

−m′
i

)

;

u[i]← solveEP(B(ui, ϕ) = Fi(ϕ)).

Remark 2.1. Note that

(i) in step 5, we need (h0, 1) 6= 0.

(ii) from step 5 and the assumptions on the data, it follows that K0 6 C.

(iii) in step 6, (hi, 1) 6= 0 is necessary.

Using the Lax-Milgram lemma, we can prove the existence and uniqueness of a solution

(Ki, ui) ∈ R ×H1(Ω) obeying (DMPi) and (DPi2), see the following lemma. The proof

is similar as the proof of [18, Proposition 3.1]. Therefore, we omit it.
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Error Estimates for an Inverse Kernel Problem 121

Lemma 2.1. Let f and α be bounded. Moreover, assume that u0 ∈ L2(Ω), g ∈ C
(

[0, T ], L2

(Γ)
)

, h ∈ C
(

[0, T ], L2(Ω)
)

,

min
t∈[0,T ]

∣

∣

∣

∣

∫

Ω
h(t)

∣

∣

∣

∣

> ω > 0, m ∈ C1 ([0, T ]) .

Then constants C > 0 and τ0 > 0 exist such that for any τ < τ0 and each i ∈ {1, . . . , n} a

unique couple (Ki, ui) ∈ R×H1(Ω) exists, solving (DMPi) and (DPi2).

Remark 2.2. If in practice m /∈ C1([0, T ]), then a smooth approximation of m in [0, T ]
is considered.

In the following lemma, the a priori estimates from [18] are collected, combined

with Remark 2.1. They stay valid for the scheme (DPi2)-(DMPi). The proofs follow the

same line as the proofs in [18].

Lemma 2.2. Let the assumptions of Lemma 2.1 be satisfied. Then positive constants C
and τ0 exist such that, for any τ < τ0, it holds that

(i) max
0≤i≤n

|Ki| ≤ C,

(ii) max
1≤i≤n

‖ui‖
2 +

n
∑

i=1

‖∇ui‖
2 τ +

n
∑

i=1

‖ui − ui−1‖
2 ≤ C,

(iii)

n
∑

i=1

‖δui‖
2
(H1(Ω))∗ τ ≤ C.

Now, the discrete solutions are prolonged in time in two ways: piecewise linear and

piecewise constant. The piecewise linear in time functions uτ are defined as

uτ : [−τ, T ]→ L2(Ω) : t 7→

{

u0 t ∈ [−τ, 0]

ui−1 + (t− ti−1)δui t ∈ (ti−1, ti], 1 ≤ i ≤ n,

and the piecewise constant in time functions uτ as

uτ : [−τ, T ]→ L2(Ω) : t 7→

{

u0 t ∈ [−τ, 0]

ui t ∈ (ti−1, ti], 1 ≤ i ≤ n.

Similarly, the step functions Kτ , hτ , gτ , mτ and m′
τ are introduced. Using these so-

called Rothe’s functions, we rewrite (DPi2) and (DMPi) on the whole time frame as

(∂tuτ (t), ϕ) + (∇uτ (t),∇ϕ)

=−Kτ (t)(hτ (t), ϕ) −





⌊t⌋τ
∑

k=0

Kτ (tk)∇uτ (t− tk)τ,∇ϕ



 + (f(uτ (t− τ)), ϕ)

+ (gτ (t)− α(uτ (t− τ)), ϕ)Γ +





⌊t⌋τ
∑

k=0

Kτ (tk) [gτ (t− tk)− α(uτ (t− tk+1))] τ, ϕ





Γ

(DP)
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and

m′
τ (t) +Kτ (t)

(

hτ (t), 1
)

=(f(uτ (t− τ)), 1) + (gτ (t)− α(uτ (t− τ)), 1)Γ

+





⌊t⌋τ
∑

k=0

Kτ (tk) [gτ (t− tk)− α(uτ (t− tk+1))] τ, 1





Γ

, (DMP)

with ⌊t⌋τ = i − 1 for t ∈ (ti−1, ti]. The convergence of (DP) to (P) and of (DMP) to

(MP), as well as the existence of a unique weak solution to (P)-(MP), can be shown

in a similar way as for the discrete scheme in [18]. The results are summarized in the

following theorem (i)-(ii). Only the main differences with the proof in [18, Theorem

2] are mentioned. The proof of Theorem 2.1(iii) can be found in [18, Proposition 2.2].

Theorem 2.1 (Existence, uniqueness and convergence). Let the assumptions of Lemma

2.2 be fulfilled. Moreover, assume that u0 ∈ H1(Ω) and that f and α are Lipschitz

continuous. Then

(i) a couple (K,u) ∈ L2(0, T ) ×
[

C
(

[0, T ] , L2 (Ω)
)

∩ L2
(

(0, T ) ,H1(Ω)
)]

with ∂tu ∈

L2
(

(0, T ),
(

H1(Ω)
)∗)

exists such that Kτ ⇀ K in L2(0, T ), uτ → u in L2
(

(0, T ),
L2(Ω)

)

, uτ → u in L2
(

(0, T ), L2(Ω)
)

and uτ → u in L2
(

(0, T ), L2(Γ)
)

as τ → 0,

(ii) the couple (K,u) from (i) is a unique solution to (P)-(MP),

(iii) a positive constant C > 0 exists such that maxt∈[0,T ] |K(t)| 6 C.

Proof. (ii) Integrating (DP) in time over (0, η), η ∈ (0, T ], we get two different terms

as compared to the scheme in [18]:

T1 :=

∫ η

0





⌊t⌋τ
∑

k=0

Kτ (tk)∇uτ (t− tk)τ,∇ϕ



 ,

T2 :=

∫ η

0





⌊t⌋τ
∑

k=0

Kτ (tk) [gτ (t− tk)− α(uτ (t− tk+1))] τ, ϕ





Γ

.

We need to prove that: ∀ϕ ∈ H1(Ω),

T1 →

∫ η

0
(K ∗ ∇u(t),∇ϕ) , T2 →

∫ η

0
(K ∗ (g(t)− α(t)), ϕ)Γ ,
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as n→∞. First, we note that

⌊t⌋τ
∑

k=0

Kτ (tk)uτ (t− tk)τ = Kτ ∗ uτ (t) +K0uτ (t)τ −

∫ t

τ⌊t⌋τ

Kτ (s)uτ (t− s), (2.4)

⌊t⌋τ
∑

k=0

Kτ (tk)gτ (t− tk)τ = Kτ ∗ gτ (t) +K0gτ (t)τ −

∫ t

τ⌊t⌋τ

Kτ (s)gτ (t− s), (2.5)

⌊t⌋τ
∑

k=0

Kτ (tk)α(uτ (t− tk+1))τ = Kτ ∗ α(uτ )(t) +K0α(uτ (t− τ))τ

−

∫ t

τ⌊t⌋τ

Kτ (s)α(uτ (t− s)) +

∫ τ⌊t⌋τ

0
Kτ (s) [α(uτ (t− s− τ))− α(uτ (t− s))] . (2.6)

From the Green Theorem, it follows that, ∀ϕ ∈ C∞(Ω),

T1 = −

∫ η

0





⌊t⌋τ
∑

k=0

Kτ (tk)uτ (t− tk)τ,∆ϕ



 +

∫ η

0





⌊t⌋τ
∑

k=0

Kτ (tk)uτ (t− tk)τ,∇ϕ · ν





Γ

=: T1,1 + T1,2.

Equality (2.4) and standard techniques based on the triangle and Cauchy inequalities
and on the results of Lemma 2.2(i) and (ii) then lead to

∣

∣

∣

∣

T1,1 +

∫ η

0

(K ∗ u(t),∆ϕ)

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ η

0

(

Kτ ∗ uτ (t),∆ϕ
)

−

∫ η

0

(K ∗ u(t),∆ϕ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ η

0

(

∫ t

τ⌊t⌋τ

Kτ (s)uτ (t− s),∆ϕ

)∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ η

0

(K0uτ (t)τ,∆ϕ)

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ η

0

∫ t

0

(

Kτ (s)−K(s)
)

(uτ (t− s),∆ϕ)

∣

∣

∣

∣

+ C

√

∫ t

0

|K(s)|
2

∫ η

0

√

∫ t

0

‖uτ (t− s)− u(t− s)‖
2
+ Cτ.

This converges to 0 as n → ∞, which follows from the results of Theorem 2.1(i) and

of Lemma 2.2(ii). Using the same techniques, combined with the trace inequality, we

arrive at
∣

∣

∣

∣

T1,2 −

∫ η

0
(K ∗ u(t),∇ϕ · ν)Γ

∣

∣

∣

∣

→ 0

as n →∞. From this, the Green Theorem and the density of C∞(Ω) in H1(Ω), it then

follows that

T1 →

∫ η

0
(K ∗ ∇u(t),∇ϕ) , ∀ϕ ∈ H1(Ω), as n→∞.

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2017.m1513
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:21:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2017.m1513
https://www.cambridge.org/core


124 M. Grimmonprez, K. Van Bockstal and M. Slodička

Next, some simple calculations based on identity (2.5), combined with the same stan-

dard techniques as before, the regularity of g and the results of Theorem 2.1(i) and

Lemma 2.2(i) and (ii) give

∣

∣

∣

∣

∣

∣

∫ η

0





⌊t⌋τ
∑

k=0

Kτ (tk)gτ (t− tk), ϕ





Γ

−

∫ η

0
(K ∗ g(t), ϕ)Γ

∣

∣

∣

∣

∣

∣

→ 0,

∀ϕ ∈ H1(Ω), as n→∞. Finally, identity (2.6) leads to

∣

∣

∣

∣

∣

∣

∫ η

0





⌊t⌋τ
∑

k=0

Kτ (tk)α (uτ (t− tk+1))τ, ϕ





Γ

−

∫ η

0
(K ∗ α(u(t)), ϕ)Γ

∣

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ η

0
(K0α(uτ (t− τ))τ, ϕ)Γ

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ η

0

(

∫ t

τ⌊t⌋τ

Kτ (s)α(uτ (t− s)), ϕ

)

Γ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ η

0

(

Kτ ∗ α (uτ ) (t), ϕ
)

Γ
−

∫ η

0
(K ∗ α(u)(t), ϕ)Γ

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ η

0

(

∫ τ⌊t⌋τ

0
Kτ (s) [α(uτ (t− s− τ))− α(uτ (t− s))] , ϕ

)

Γ

∣

∣

∣

∣

∣

=:

4
∑

k=1

Ak.

Using the same techniques again and applying the Lipschitz continuity and bounded-

ness of α, we then obtain

A1 +A2 6 Cτ,

A3 6 C

∫ η

0

√

∫ t

0
|K(s)|2

√

∫ t

0
‖uτ (t− s)− u(t− s)‖2Γ

+

∣

∣

∣

∣

∫ η

0

∫ t

0

(

Kτ (s)−K(s)
)

(α (uτ (t− s)) , ϕ)Γ

∣

∣

∣

∣

,

A4 6 C

∫ η

0

√

∫ t

0
‖uτ (s− τ)− uτ (s)‖

2
Γ,

which all converge to 0 if n→∞. Collecting all previous results gives

T2 →

∫ η

0
(K ∗ (g(t) − α(t)), ϕ)Γ ,

∀ϕ ∈ H1(Ω), as n→∞.
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Finally, integrating (DMP) in time over (0, η), η ∈ (0, T ], we get one different term

in comparison with the scheme in [18]:

T3 :=

∫ η

0





⌊t⌋τ
∑

k=0

Kτ (tk) [gτ (t− tk)− α(uτ (t− tk+1))] τ, 1





Γ

,

of which the convergence to

∫ η

0
(K ∗ (g(t) − α(t)), 1)Γ can be proved in exactly the

same manner as the convergence of T2. �

A drawback of the latter theorem is that the convergence of Kτ to K is only proven

in weak sense. However, a consequence of the error estimates proved in the remainder

of this paper is the strong convergence of Kτ to K in L2(0, T ).

3. Error analysis

The next step is to derive some higher stability results for the approximations. These

are needed to obtain a convergence rate ofO(τ) in the error analysis. They are stated in

Lemmas 3.1-3.3. In the proof of Lemma 3.1, it is needed that ∆ui ∈ L2(Ω), 1 6 i 6 n.

From (DPi1) follows that

−∆ui =
1

1 +K0τ

(

fi−1 −Kihi − δui +
i−1
∑

k=1

Kk∆ui−kτ

)

.

This equality must be understood in the sense of duality, as a functional on H1(Ω).
However, if fi−1, hi, δui and ∆u1, . . . ,∆ui−1 are elements of L2(Ω), it follows that also

∆ui ∈ L2(Ω) and

−∆ui =
1

1 +K0τ

(

fi−1 −Kihi − δui +

i−1
∑

k=1

Kk∆ui−kτ

)

in L2(Ω). (3.1)

Hence, using the assumptions that |f | 6 C and h ∈ C
(

[0, T ], L2(Ω)
)

and applying the

result of Lemma 2.2(ii), a bootstrap argument gives that ∆ui ∈ L2(Ω), i = 1, · · · , n.

Lemma 3.1. Let the assumptions of Theorem 2.1 be fulfilled. Moreover, assume that

g ∈ C1
(

[0, T ], L2(Γ)
)

. Then positive constants C and τ0 exist such that, ∀ τ < τ0,

(i)

n
∑

i=1

‖∆ui‖
2 τ + max

16j6n
‖∇uj‖

2 +

n
∑

i=1

‖∇ui −∇ui−1‖
2
6 C,

(ii)

n
∑

i=1

‖δui‖
2 τ 6 C.
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Proof. (i) We set ϕ = −∆uiτ in (DPi1) and sum it up for i = 1, . . . , j, keeping

1 6 j 6 n. We obtain

j
∑

i=1

(δui,−∆ui) τ +

j
∑

i=1

‖∆ui‖
2 τ

=

j
∑

i=1

Ki (hi,∆ui) τ −

j
∑

i=1

(fi−1,∆ui) τ −

j
∑

i=1

(

i−1
∑

k=0

Kk∆ui−kτ,∆ui

)

τ. (3.2)

For the terms in the right-hand side (RHS) of (3.2), we need to construct an upper

bound. Using the Cauchy and Young inequalities and Lemma 2.2(i), we derive that

∣

∣

∣

∣

∣

j
∑

i=1

(

i−1
∑

k=0

Kk∆ui−kτ,∆ui

)

τ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

j
∑

i=1

(

i
∑

k=1

Ki−k∆ukτ,∆ui

)

τ

∣

∣

∣

∣

∣

6Cε

j
∑

i=1

i
∑

k=1

‖∆uk‖
2 τ2 + ε

j
∑

i=1

‖∆ui‖
2 τ.

Moreover, the triangle, Cauchy and Young inequalities, the regularity of f and h and

Lemma 2.2(i) lead to

∣

∣

∣

∣

∣

j
∑

i=1

Ki (hi,∆ui) τ −

j
∑

i=1

(fi−1,∆ui) τ

∣

∣

∣

∣

∣

6 Cε + ε

j
∑

i=1

‖∆ui‖
2 τ.

On the first term in the LHS of (3.2), we apply the Green theorem and Abel’s lemma −
see [20] − which states that

2

j
∑

i=1

ai(ai − ai−1) = a2j − a20 +

j
∑

i=1

(ai − ai−1)
2, ∀ ai ∈ R. (3.3)

We successively deduce that

j
∑

i=1

(δui,−∆ui) τ

=

j
∑

i=1

(∇δui,∇ui) τ −

j
∑

i=1

(δui,∇ui · ν)Γ τ (3.4)

=
1

2

(

‖∇uj‖
2 − ‖∇u0‖

2 +

j
∑

i=1

‖∇ui −∇ui−1‖
2

)

−

j
∑

i=1

(δui, gi − αi−1)Γ τ.

In what comes next, we focus on the last term in the RHS of (3.4). First, note that

for any real sequences {zi}
∞
i=0 and {wi}

∞
i=0 the following summation by parts identity
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takes place

j
∑

i=1

zi (wi −wi−1) = zjwj − z0w0 −

j
∑

i=1

(zi − zi−1)wi−1. (3.5)

Moreover, the inequality below holds true, see [21],

‖z‖2Γ 6 ε ‖∇z‖2 + Cε ‖z‖
2 , ∀z ∈ H1 (Ω) , 0 < ε < ε0. (3.6)

Using the Cauchy, triangle, Young and trace inequalities, the Mean Value Theorem

(MVT), the regularity of u0 and g and Lemma 2.2(ii), we then get

∣

∣

∣

∣

∣

j
∑

i=1

(δui, gi)Γ τ

∣

∣

∣

∣

∣

(3.5)
=

∣

∣

∣

∣

∣

(gj, uj)Γ − (g0, u0)Γ −

j
∑

i=1

(δgi, ui−1)Γ τ

∣

∣

∣

∣

∣

6 C

(

‖gj‖
2
Γ + ‖uj‖

2
Γ + ‖g0‖

2
Γ + ‖u0‖

2
H1(Ω) +

j
∑

i=1

‖δgi‖
2
Γ τ +

j
∑

i=1

‖ui−1‖
2
H1(Ω) τ

)

(3.6)

6 C + Cε ‖uj‖
2 + ε ‖∇uj‖

2
6 Cε + ε ‖∇uj‖

2 .

Furthermore, it is easy to see that

j
∑

i=1

(δui, αi−1)Γ τ =

j
∑

i=1

(ui − ui−1, αi)Γ +

j
∑

i=1

(ui − ui−1, αi−1 − αi)Γ

=:T1 + T2.

The Cauchy inequality, the Lipschitz continuity of α and Lemma 2.2(ii) then give us

|T2| 6 C

j
∑

i=1

‖ui − ui−1‖
2
Γ

(3.6)

6 Cε

j
∑

i=1

‖ui − ui−1‖
2 + ε

j
∑

i=1

‖∇ui −∇ui−1‖
2

6Cε + ε

j
∑

i=1

‖∇ui −∇ui−1‖
2 .

Next, using the Lipschitz constant of α, which we denote by Lα, we can rewrite T1 as

T1 =

j
∑

i=1

(ui − ui−1, Lαui + αi)Γ −

j
∑

i=1

(ui − ui−1, Lαui)Γ . (3.7)

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2017.m1513
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:21:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2017.m1513
https://www.cambridge.org/core


128 M. Grimmonprez, K. Van Bockstal and M. Slodička

We construct an upper bound for the second term in the RHS of (3.7) using the triangle

and trace inequalities, the regularity of u0 and Lemma 2.2(ii). We obtain that

∣

∣

∣

∣

∣

j
∑

i=1

(ui − ui−1, Lαui)Γ

∣

∣

∣

∣

∣

(3.3)
=

∣

∣

∣

∣

∣

Lα

2

(

‖uj‖
2
Γ − ‖u0‖

2
Γ +

j
∑

i=1

‖ui − ui−1‖
2
Γ

)∣

∣

∣

∣

∣

(3.6)

6 Cε ‖uj‖
2 + ε ‖∇uj‖

2 + C ‖u0‖
2
H1(Ω) + Cε

j
∑

i=1

‖ui − ui−1‖
2 + ε

j
∑

i=1

‖∇ui −∇ui−1‖
2

6Cε + ε

(

‖∇uj‖
2 +

j
∑

i=1

‖∇ui −∇ui−1‖
2

)

.

Now, we introduce the following notation for any function β : R→ R

Φβ(z) :=

∫ z

0
β(s)ds, ∀ z ∈ R.

If β is a monotonically increasing function, then Φβ is convex and it can be easily

verified that

β(z1)(z2 − z1) 6 Φβ(z2)− Φβ(z1) 6 β(z2)(z2 − z1) (3.8)

for any z1, z2 ∈ R. If β is Lipschitz continuous with Lipschitz coefficient Lβ and β(0) =
0, then

β2(z)

2Lβ

6 Φβ(z) 6
Lβz

2

2
, (3.9)

see, e.g [22, 23]. It is easy to see that θ(s) := Lαs + α(s) is Lipschitz continuous and

monotone, which follows from

0 6 Lα + α′(s) =
dθ

ds
(s) 6 2Lα =: Lθ.

Therefore, we obtain for the first term in the RHS of (3.7) that

j
∑

i=1

(ui − ui−1, Lαui + αi)Γ

(3.8)

>

j
∑

i=1

∫

Γ
(Φθ(ui)− Φθ(ui−1)) =

∫

Γ
(Φθ(uj)− Φθ(u0)) .

Using lemma 2.2(ii), the trace inequality and the regularity of u0, we then get

∣

∣

∣

∣

∫

Γ
(Φθ(uj)− Φθ(u0))

∣

∣

∣

∣

(3.9)

6 Lα

(

‖uj‖
2
Γ + ‖u0‖

2
Γ

)

(3.6)

6 Cε ‖uj‖
2 + ε ‖∇uj‖

2 + C ‖u0‖
2
H1(Ω) 6 Cε + ε ‖∇uj‖

2 .
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Putting everything together and using the regularity of u0, we arrive at

j
∑

i=1

‖∆ui‖
2 τ +

1

2
‖∇uj‖

2 +
1

2

j
∑

i=1

‖∇ui −∇ui−1‖
2

6 Cε

(

1 +

j
∑

i=1

i
∑

k=1

‖∆uk‖
2 τ2

)

+ε

(

j
∑

i=1

‖∆ui‖
2 τ + ‖∇uj‖

2 +

j
∑

i=1

‖∇ui −∇ui−1‖
2

)

.

Since ε can be chosen arbitrarily small, we obtain

j
∑

i=1

‖∆ui‖
2 τ + ‖∇uj‖

2 +

j
∑

i=1

‖∇ui −∇ui−1‖
2

6C

(

1 +

j
∑

i=1

(

i
∑

k=1

‖∆uk‖
2 τ

)

τ

)

.

Finally, taking τ smaller than or equal to a suitable fixed τ0 > 0 and applying the

discrete Grönwall lemma, we get

j
∑

i=1

‖∆ui‖
2 τ + ‖∇uj‖

2 +

j
∑

i=1

‖∇ui −∇ui−1‖
2
6 C,

which is valid for all 1 6 j 6 n. From this, we conclude the proof.

(ii) From (3.1), we derive that

δui = (1 +K0τ)∆ui −Kihi + fi−1 +
i−1
∑

k=1

Kk∆ui−kτ in L2(Ω).

Therefore, taking into account the regularity of the data and the stability results from

Lemma 2.2(i) and Lemma 3.1(i) and fixing τ sufficiently small, we immediately obtain

that

n
∑

i=1

‖δui‖
2 τ 6 C + C

n
∑

i=1

‖∆ui‖
2 τ +C

n
∑

i=1

i−1
∑

k=1

|Ki−k|
2 ‖∆uk‖

2 τ2 6 C.

This completes the proof of the lemma. �

For the next two lemmas, we set

∂tu(0) := ∆u0 −K0h0 + f(u0) (3.10)

in the space where the RHS is defined. Further, we define

δu0 := ∂tu(0) and u−1 := u0 − δu0τ. (3.11)
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From (3.10) and (3.11), it is easy to see that

u0 ∈ H2(Ω), |K0| 6 C, h0 ∈ L2(Ω) and f Lipschitz continuous

⇒ δu0 ∈ L2(Ω) and u−1 ∈ L2(Ω)

and

u0 ∈ H3(Ω), |K0| 6 C, h0 ∈ H1(Ω) and f Lipschitz continuous

⇒ δu0 ∈ H1(Ω) and u−1 ∈ H1(Ω). (3.12)

For the proof of Lemma 3.2, we also need the discrete measured problem at t = 0.

First, multiplying (3.10) by ϕ ∈ H1(Ω), integrating the result over the domain Ω and

applying the Green theorem give the discrete variational problem at t = 0, i.e.

(δu0, ϕ) + (∇u0,∇ϕ) +K0 (h0, ϕ) = (f(u0), ϕ) + (g0 − α0, ϕ)Γ . (DP0)

Next, setting ϕ = 1 and using the measurement (1.2) yield the discrete measured

problem at t = 0:

m′
0 +K0 (h0, 1) = (f0, 1) + (g0 − α0, 1)Γ . (DMP0)

Lemma 3.2. Let the assumptions of Lemma 3.1 be fulfilled. Moreover, assume that u0 ∈
H3(Ω), h ∈ C1

(

[0, T ], L2(Ω)
)

, h0 ∈ H1(Ω) and m ∈ C2([0, T ]). Then positive constants

C and τ0 exist such that, ∀ τ < τ0, ∀ j ∈ {1, · · · , n},

j
∑

i=1

|δKi|
2τ 6 C

(

1 +

j
∑

i=1

‖∇δui‖
2 τ

)

.

Proof. First, we subtract (DMP0) from (DMPi) for i = 1 and divide the result by τ .

We obtain

δK1 (h1, 1) = (δg1, 1)Γ +K0 (g1 − α0, 1)Γ −K0 (δh1, 1)− δm′
1. (3.13)

Using the triangle and Cauchy inequalities, the MVT, the assumptions on the data and

Lemma 2.2 (i), we then immediately derive from (3.13) that

|δK1| |(h1, 1)| 6 C,

from which

|δK1| 6 C. (3.14)

Next, we apply the δ-operator to (DMPi) for i > 2 and use the rule

δ (aibi) = δaibi + ai−1δbi,
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which is valid for any real sequences {ai}
∞
i=0 and {bi}

∞
i=0. This gives us

δKi (hi, 1) = (δfi−1, 1) + (δgi, 1)Γ − (δαi−1, 1)Γ −Ki−1 (δhi, 1)− δm′
i

+

i−2
∑

k=0

Kk (δgi−k − δαi−k−1, 1)Γ τ +Ki−1 (g1 − α0, 1)Γ .

The same techniques as before, combined with the Lipschitz continuity of f and α and

with the trace inequality, then lead to

|δKi|
2
6 C

(

1 + ‖δui−1‖
2 + ‖∇δui−1‖

2 +

i−2
∑

k=0

‖δui−k−1‖
2 τ +

i−2
∑

k=0

‖∇δui−k−1‖
2 τ

)

.

Summing this up for i = 2, . . . , j, keeping 2 6 j 6 n, combining the result with (3.14)

and multiplying it by τ , we get

j
∑

i=1

|δKi|
2 τ 6 C

(

1 +

j
∑

i=1

‖δui‖
2 τ +

j
∑

i=1

‖∇δui‖
2 τ

+

j
∑

i=2

i−1
∑

k=1

‖δuk‖
2 τ2 +

j
∑

i=2

i−1
∑

k=1

‖∇δuk‖
2 τ2

)

.

From this, together with the result of Lemma 3.1(ii), we conclude the proof. �

Lemma 3.3. Let the assumptions of Lemma 3.2 be fulfilled. Moreover, assume that

h ∈ C1
(

[0, T ], L2(Ω)
)

∩ C
(

[0, T ],H1(Ω)
)

. Then positive constants C and τ0 exist such

that, ∀ τ < τ0,

(i)

n
∑

i=1

‖∇δui‖
2 τ + max

16j6n
‖∆uj‖

2 +

n
∑

i=1

‖∆ui −∆ui−1‖
2
6 C,

(ii)

n
∑

i=1

|δKi|
2τ 6 C,

(iii) max
16i6n

‖δui‖ 6 C.

Proof. (i) We set ϕ = −∆δuiτ in (DPi1) and sum it up for i = 1, . . . , j, keeping

1 6 j 6 n. We get

−

j
∑

i=1

(δui,∆δui) τ +

j
∑

i=1

(∆ui,∆δui) τ

=−

j
∑

i=1

(

i−1
∑

k=0

Kk∆ui−kτ,∆δui

)

τ +

j
∑

i=1

Ki (hi,∆δui) τ −

j
∑

i=1

(fi−1,∆δui) τ

=:
3
∑

k=1

Sk. (3.15)
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If we now apply the Green theorem on the first term in the LHS of (3.15), we obtain

−

j
∑

i=1

(δui,∆δui) τ =

j
∑

i=1

‖∇δui‖
2 τ −

j
∑

i=1

(δui, δgi − δαi−1)Γ τ.

A simple calculation, based on the Cauchy and Young inequalities, on (3.6), on the

result from Lemma 3.1(ii), on the MVT and on the regularity of g, then gives us

∣

∣

∣

∣

∣

j
∑

i=1

(δui, δgi)Γ τ

∣

∣

∣

∣

∣

6 Cε + ε

j
∑

i=1

‖∇δui‖
2 τ.

Moreover, the same techniques, combined with the Lipschitz continuity of α, the regu-

larity of the data and (3.12), lead to

∣

∣

∣

∣

∣

j
∑

i=1

(δui, δαi−1)Γ τ

∣

∣

∣

∣

∣

6 C

(

j
∑

i=1

‖δui‖
2
Γ τ +

j
∑

i=1

‖δαi−1‖
2
Γ τ

)

(3.6)

6 ε

(

j
∑

i=1

‖∇δui‖
2 τ + ‖∇δu0‖

2 τ

)

+ Cε

(

j
∑

i=1

‖δui‖
2 τ + ‖δu0‖

2 τ

)

6Cε + ε

j
∑

i=1

‖∇δui‖
2 τ.

For the second term on the LHS of (3.15) we easily get

j
∑

i=1

(∆ui,∆δui) τ
(3.3)
=

1

2

(

‖∆uj‖
2 − ‖∆u0‖

2 +

j
∑

i=1

‖∆ui −∆ui−1‖
2 τ

)

.

Now, note that

δ

(

i−1
∑

k=0

Kk∆ui−kτ

)

= δ

(

i
∑

k=1

Ki−k∆ukτ

)

=

i−1
∑

k=1

δKi−k∆ukτ +K0∆ui.

Using this, together with summation rule (3.5), we get

|S1| =

∣

∣

∣

∣

∣

(

j−1
∑

k=0

Kk∆uj−kτ,∆uj

)

−

j
∑

i=1

(

i−1
∑

k=1

δKi−k∆ukτ +K0∆ui,∆ui−1

)

τ

∣

∣

∣

∣

∣

.

The Cauchy and Young inequalities, Lemma 2.2(i) and Lemma 3.1(i) allow us to deduce

that
∣

∣

∣

∣

∣

(

j−1
∑

k=0

Kk∆uj−kτ,∆uj

)∣

∣

∣

∣

∣

6 Cε

j
∑

k=1

‖∆uk‖
2 τ + ε ‖∆uj‖

2
6 Cε + ε ‖∆uj‖

2 .
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In a similar way, using also the result of Lemma 3.2 and the regularity of u0, we derive

that

∣

∣

∣

∣

∣

j
∑

i=1

(

i−1
∑

k=1

δKi−k∆ukτ,∆ui−1

)

τ

∣

∣

∣

∣

∣

6

j
∑

i=1

(

i−1
∑

k=1

|δKi−k|
2 τ

)

1

2
(

i−1
∑

k=1

‖∆uk‖
2 τ

)

1

2

‖∆ui−1‖ τ

6 ε

j
∑

i=1

i
∑

k=1

|δKk|
2 τ2 + Cε

j
∑

i=1

‖∆ui−1‖
2 τ

6 Cε + ε

j
∑

i=1

(

1 +

i
∑

k=1

‖∇δuk‖
2 τ

)

τ 6 Cε + ε

j
∑

i=1

‖∇δui‖
2 τ.

Furthermore, using the Cauchy inequality, the regularity of u0, Lemma 2.2(i) and

Lemma 3.1(i), we find out that

∣

∣

∣

∣

∣

j
∑

i=1

(K0∆ui,∆ui−1) τ

∣

∣

∣

∣

∣

6 C

(

j
∑

i=1

‖∆ui‖
2 τ +

j
∑

i=1

‖∆ui−1‖
2 τ

)

6 C.

Thus, S1 can be bounded above as

|S1| 6 ε ‖∆uj‖
2 + ε

j
∑

i=1

‖∇δui‖
2 τ +Cε.

To find an upper bound for S2, we first apply the Green theorem. Next, we use the

triangle and Cauchy inequalities, Lemma 2.2(i), the Young and trace inequalities, the

Lipschitz continuity of α, the MVT, the regularity of the data, (3.12) and the result of

Lemma 3.1(ii). We observe that

|S2| =

∣

∣

∣

∣

∣

−

j
∑

i=1

Ki (∇hi,∇δui) τ +

j
∑

i=1

Ki (hi, δgi − δαi−1)Γ τ

∣

∣

∣

∣

∣

6

j
∑

i=1

|Ki| ‖∇hi‖ ‖∇δui‖ τ + C

j
∑

i=1

|Ki| ‖hi‖H1(Ω)

(

‖δgi‖Γ + ‖δui−1‖Γ

)

τ

(3.6)

6 Cε

(

1 +

j
∑

i=1

‖δui−1‖
2 τ

)

+ ε

j
∑

i=1

‖∇δui‖
2 τ

6 Cε + ε

j
∑

i=1

‖∇δui‖
2 τ.
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Finally, the triangle, Cauchy and Young inequalities, even as the MVT, the boundedness

and Lipschitz continuity of f and the results of Lemma 3.1 imply that

|S3|
(3.5)
=

∣

∣

∣

∣

∣

(fj,∆uj)− (f0,∆u0)−

j
∑

i=1

(∆ui, δfi) τ

∣

∣

∣

∣

∣

6 Cε

(

1 +

j
∑

i=1

‖∆ui‖
2 τ +

j
∑

i=1

‖δui‖
2 τ

)

+ ε ‖∆uj‖
2

6 Cε + ε ‖∆uj‖
2 .

Collecting all partial results and using the regularity of u0 yield

j
∑

i=1

‖∇δui‖
2 τ +

1

2

(

‖∆uj‖
2 +

j
∑

i=1

‖∆ui −∆ui−1‖
2 τ

)

6Cε + ε

(

j
∑

i=1

‖∇δui‖
2 τ + ‖∆uj‖

2

)

.

Now, fixing ε sufficiently small, we conclude the proof.

(ii) This is a direct consequence of Lemmas 3.2 and 3.3(i).
(iii) Following more or less the same lines as the proof of Lemma 3.1(ii) and using the

result of lemma 3.3(i), we immediately obtain

‖δui‖ 6 C + C ‖∆ui‖+

i−1
∑

k=1

|Kk| ‖∆ui−k‖ τ 6 C.

This completes the proof of the lemma. �

Some simple calculations, combined with the result of Lemma 3.3(iii), give

‖uτ (t− τ)− uτ (t)‖ + ‖uτ (t)− uτ (t)‖

6 ‖∂tuτ (t)‖ τ 6 Cτ, ∀ t ∈ (0, T ]. (3.16)

Note that this inequality is also valid for t = 0 if δu0 ∈ L2(Ω). Analogously, it holds that

‖∇uτ (t− τ)−∇uτ (t)‖ + ‖∇uτ (t)−∇uτ (t)‖ 6 ‖∂t∇uτ (t)‖ τ, ∀ t ∈ (0, T ].

Based on the result of Lemma 3.3(i), this yields

∫ T

0

(

‖∇uτ (t− τ)−∇uτ (t)‖
2 + ‖∇uτ (t)−∇uτ (t)‖

2
)

6 Cτ2. (3.17)

From the trace theorem then follows that
∫ T

0

(

‖uτ (t− τ)− uτ (t)‖
2
Γ + ‖uτ (t)− uτ (t)‖

2
Γ

)

6 Cτ2. (3.18)
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After these preliminary remarks, the error analysis can be performed. First, the follow-

ing notations are introduced:

eu := uτ − u, eK := Kτ −K.

Analogously, eg, eh and em′ are defined. The following frequently used estimates for

the convolution term are needed, see [18, Proposition 2.1]:

Lemma 3.4. Set I = (0, η), η > 0. Suppose κ ∈ L2(I) and υ ∈ L2(I, L2(Ω)), then it

holds that

(i) ‖κ ∗ υ‖2 6 κ2 ∗ ‖υ‖2,

(ii)

∫ η

0
‖κ ∗ υ‖2 6

∫ η

0
|κ|2

∫ η

0
‖υ‖2 .

Before the derivation of the error estimates, a bound on eK in L2(0, T ) is proved in the

following Lemma.

Lemma 3.5. Let the conditions of Lemma 3.3 be fulfilled. Then positive constants C and

τ0 exist such that, ∀ τ < τ0, ∀ η ∈ [0, T ] and for every ε > 0,
∫ η

0

∣

∣Kτ −K
∣

∣

2
6 Cε

(

τ2 +

∫ η

0
‖uτ − u‖2

)

+ ε

∫ η

0
‖∇uτ −∇u‖

2 .

Proof. First, we subtract (MP) from (DMP) and we use (2.5) en (2.6) to get

eK
(

hτ , 1
)

=(f(uτ (t− τ))− f(u(t)), 1) − (α(uτ (t− τ))− α(u(t)), 1)Γ
− e

m′ + (eg, 1)Γ +
(

eK ∗ gτ , 1
)

Γ
+ (K ∗ eg, 1)Γ

−
(

eK ∗ α(uτ ), 1
)

Γ
− (K ∗ (α(uτ )− α(u)) , 1)Γ

−

(

∫ τ⌊t⌋τ

0
Kτ (s) [α(uτ (t− s− τ))− α(uτ (t− s))] , 1

)

Γ

+

(

∫ t

τ⌊t⌋τ

Kτ (s) [gτ (t− s)− α(uτ (t− s))] , 1

)

Γ

+ (K0 (gτ (t)− α(uτ (t− τ))) τ, 1)Γ −K
(

eh, 1
)

. (3.19)

Next, we estimate all terms in the RHS of (3.19) from above. Clearly,
∣

∣em′

∣

∣+
∣

∣(eg, 1)Γ
∣

∣+
∣

∣K
(

eh, 1
)∣

∣ 6 Cτ,

by the Cauchy inequality, the MVT, Theorem 2.1(iii) and the regularity of m, g and h.

Moreover, using the triangle and Cauchy inequalities, the Lipschitz continuity of f and

α and (3.16), we obtain
∣

∣

∣ (f(uτ (t− τ))− f(u(t)), 1) − (α(uτ (t− τ))− α(u(t)), 1)Γ

∣

∣

∣

6C
(

τ + ‖eu(t)‖+ ‖uτ (t− τ)− u(t)‖Γ

)

.
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Now, applying the triangle and Cauchy inequalities, the regularity of g and the bound-

edness of α, we immediately derive that

∣

∣

(

eK ∗ gτ , 1
)

Γ
−
(

eK ∗ α(uτ ), 1
)

Γ

∣

∣ 6 C

∫ t

0

∣

∣eK
∣

∣ .

Furthermore, The Cauchy inequality, Theorem 2.1(iii), the MVT and the regularity of

g allow us to deduce that

∣

∣(K ∗ eg, 1)Γ
∣

∣ 6 C

∫ t

0
|K(t− s)| ‖eg(s)‖Γ ds 6 Cτ.

Next, applying the Cauchy inequality, Theorem 2.1(iii) and the Lipschitz continuity of

α once more, we may write that

|(K ∗ (α(uτ )− α(u)) , 1)Γ|

6C

∫ t

0
|K(t− s)| ‖uτ (s)− u(s)‖Γ ds 6 C

∫ t

0
‖uτ − u‖Γ .

Moreover, Lemma 2.2(i), the regularity of g and the boundedness of α immediately

give that

∣

∣

∣

∣

∣

(

∫ t

τ⌊t⌋τ

Kτ (s) [gτ (t− s)− α(uτ (t− s))] , 1

)

Γ

+ (K0 (gτ (t)− α(uτ (t− τ))) τ, 1)Γ

∣

∣

∣

∣

∣

6Cτ.

Finally, he Cauchy inequality, Lemma 2.2(i), the Lipschitz continuity of α and (3.18)

lead to

∣

∣

∣

∣

∣

(

∫ τ⌊t⌋τ

0
Kτ (s) [α(uτ (t− s− τ))− α(uτ (t− s))] , 1

)

Γ

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

(

∫ t

t−τ⌊t⌋τ

Kτ (t− s) [α(uτ (s− τ))− α(uτ (s))] , 1

)

Γ

∣

∣

∣

∣

∣

6C

√

∫ t

t−τ⌊t⌋τ

∣

∣Kτ (t− s)
∣

∣

2

√

∫ t

t−τ⌊t⌋τ

‖uτ (s− τ)− uτ (s)‖
2
Γ

6Cτ.

Gathering all estimates, we obtain

∣

∣eK
(

hτ , 1
)∣

∣ 6 C

(

τ + ‖eu‖+ ‖uτ (t− τ)− u(t)‖Γ +

∫ t

0
‖uτ − u‖Γ +

∫ t

0

∣

∣eK
∣

∣

)

.
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The Grönwall lemma now yields

∣

∣eK
∣

∣ 6 C

(

τ + ‖eu‖+ ‖uτ (t− τ)− u(t)‖Γ +

∫ t

0
‖uτ − u‖Γ

)

+ C

(
∫ t

0
‖eu‖+

∫ t

0
‖uτ (t− τ)− u(t)‖Γ

)

.

Squaring this result, integrating it in time and using (3.6), (3.16) and (3.17), we easily

deduce that
∫ η

0

∣

∣eK
∣

∣

2
6 Cε

(

τ2 +

∫ η

0
‖eu‖

2

)

+ ε

∫ η

0
‖∇eu‖

2 .

Finally, the following theorem contains the error estimates. �

Theorem 3.1. Let the conditions of Lemma 3.5 be fulfilled. Then positive constants C and

τ0 exist such that, ∀ τ < τ0,
∫ T

0

∣

∣Kτ −K
∣

∣

2
+

∫ T

0
‖∇uτ −∇u‖

2 + max
η∈[0,T ]

‖uτ (η)− u(η)‖2 6 Cτ2.

Proof. First, we subtract (P) from (DP). Next, we put ϕ = eu and we integrate the

result over (0, η), η ∈ [0, T ]. After some rearrangements in the terms and using (2.5),

(2.6) and

⌊t⌋τ
∑

k=0

Kτ (tk)∇uτ (t− tk)τ = Kτ ∗ ∇uτ +K0∇uτ (t)τ −

∫ t

τ⌊t⌋τ

Kτ (s)∇uτ (t− s),

we obtain
∫ η

0

(∂teu, eu) +

∫ η

0

‖∇eu‖
2
+

∫ η

0

(∇ (uτ − uτ ) ,∇eu) +

∫ η

0

eK
(

hτ , eu
)

+

∫ η

0

K
(

eh, eu
)

+

∫ η

0

(

Kτ ∗ ∇ (uτ − uτ ) ,∇eu
)

+

∫ η

0

(

Kτ ∗ ∇eu,∇eu
)

+

∫ η

0

(eK ∗ ∇u,∇eu) +

∫ η

0

(K0∇uτ (t)τ,∇eu)−

∫ η

0

(

∫ t

τ⌊t⌋τ

Kτ (s)∇uτ (t− s),∇eu

)

=

∫ η

0

(f (uτ (t− τ)) − f (u(t)) , eu) +

∫ η

0

(eg, eu)Γ −

∫ η

0

(α (uτ (t− τ)) − α (u(t)) , eu)Γ

+

∫ η

0

(eK ∗ gτ , eu)Γ +

∫ η

0

(K ∗ eg, eu)Γ −

∫ η

0

(eK ∗ α(uτ ), eu)Γ

−

∫ η

0

(K ∗ (α(uτ )− α(u)) , eu)Γ +

∫ η

0

(K0 (gτ (t)− α(uτ (t− τ))) τ, eu)Γ

−

∫ η

0

(

∫ τ⌊t⌋τ

0

Kτ (s) [α(uτ (t− s− τ))− α(uτ (t− s))] , eu

)

Γ

−

∫ η

0

(

∫ t

τ⌊t⌋τ

Kτ (s) [gτ (t− s)− α(uτ (t− s))] , eu

)

Γ

=:

10
∑

k=1

Tk. (3.20)
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For the first term in the LHS of (3.20), we immediately find that

∫ η

0
(∂teu, eu) =

1

2
‖eu(η)‖

2 .

In what’s next, we estimate the absolute value of the other terms in the LHS of (3.20),

with exception of the second one, and every term in the RHS of (3.20) from above. The

Cauchy inequality, the regularity of h, the Young inequality and the result of Lemma

3.5 give us

∣

∣

∣

∣

∫ η

0
eK
(

hτ , eu
)

∣

∣

∣

∣

6 Cε

(

τ2 +

∫ η

0
‖eu‖

2

)

+ ε

∫ η

0
‖∇eu‖

2 .

Moreover, the Cauchy and Young inequalities, Theorem 2.1(iii), the MVT and the reg-

ularity of h and g lead to

∣

∣

∣

∣

∫ η

0
K
(

eh, eu
)

∣

∣

∣

∣

+ |T2| 6 C

(∫ η

0

(

K
∥

∥eh
∥

∥

)2
+

∫ η

0
‖eu‖

2 +

∫ η

0
‖eg‖

2
Γ +

∫ η

0
‖eu‖

2
Γ

)

(3.6)

6 Cε

(

τ2 +

∫ η

0
‖eu‖

2

)

+ ε

∫ η

0
‖∇eu‖

2 .

Furthermore, we have

∣

∣

∣

∣

∫ η

0
(∇ (uτ − uτ ) ,∇eu)

∣

∣

∣

∣

6 Cετ
2 + ε

∫ η

0
‖∇eu‖

2 ,

∣

∣

∣

∣

∫ η

0

(

Kτ ∗ ∇ (uτ − uτ ) ,∇eu
)

∣

∣

∣

∣

6 Cε

∫ η

0

∥

∥Kτ ∗ ∇ (uτ − uτ )
∥

∥

2
+ ε

∫ η

0
‖∇eu‖

2

6Cε

∫ η

0

∣

∣Kτ

∣

∣

2
∫ η

0
‖∇ (uτ − uτ )‖

2 + ε

∫ η

0
‖∇eu‖

2
6 Cετ

2 + ε

∫ η

0
‖∇eu‖

2 ,

and

∣

∣

∣

∣

∫ η

0

(

Kτ ∗ ∇eu,∇eu
)

∣

∣

∣

∣

6 Cε

∫ η

0

∥

∥Kτ ∗ ∇eu
∥

∥

2
+ ε

∫ η

0
‖∇eu‖

2

6Cε

∫ η

0

∫ t

0

∣

∣Kτ (t− s)
∣

∣

2
‖∇eu(s)‖

2 dsdt+ ε

∫ η

0
‖∇eu‖

2

6Cε

∫ η

0

∫ t

0
‖∇eu‖

2 + ε

∫ η

0
‖∇eu‖

2 ,

where we combined the Cauchy and Young inequalities with (3.17) in the first estimate,

with Lemma 3.4(ii), Lemma 2.2(i) and (3.17) in the second estimate and with Lemma

3.4(i) and Lemma 2.2(i) in the last estimate. Taking into account the results from
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Lemma 3.4(ii) and Lemma 3.5 and the regularity of the solution, we deduce in a similar

way that

∣

∣

∣

∣

∫ η

0

(

eK ∗ ∇u,∇eu
)

∣

∣

∣

∣

6Cε

∫ η

0

∣

∣eK
∣

∣

2
∫ η

0
‖∇u‖2 + ε

∫ η

0
‖∇eu‖

2

6Cε

(

τ2 +

∫ η

0
‖eu‖

2

)

+ ε

∫ η

0
‖∇eu‖

2 .

For the last two terms in the LHS of (3.20), we deduce from the Cauchy inequality,

Lemma 2.2(i), Lemma 3.1(i) and the Young inequality that

∣

∣

∣

∣

∣

∫ η

0
(K0∇uτ (t)τ,∇eu)−

∫ η

0

(

∫ t

τ⌊t⌋τ

Kτ (s)∇uτ (t− s),∇eu

)∣

∣

∣

∣

∣

6Cετ
2 + ε

∫ η

0
‖∇eu‖

2 .

Further, it is easy to see that

|T1| 6 C

(

τ2 +

∫ η

0
‖eu‖

2

)

,

|T3| 6 C

(
∫ η

0
‖uτ (t− τ)− uτ (t)‖

2
Γ +

∫ η

0
‖eu‖

2
Γ

)

6 Cε

(

τ2 +

∫ η

0
‖eu‖

2

)

+ ε

∫ η

0
‖∇eu‖

2 ,

for which we used standard techniques, together with the Lipschitz continuity of f and

(3.16) in the first estimate and together with the Lipschitz continuity of α, the triangle

inequality, (3.18) and (3.6) in the second estimate. Moreover, from the Cauchy and

Young inequalities, Lemma 3.4(ii), the regularity of g and Lemma 3.5, we successively

deduce that

|T4| 6 C

(∫ η

0

∥

∥eK ∗ gτ
∥

∥

2

Γ
+

∫ η

0
‖eu‖

2
Γ

)

(3.6)

6 C

∫ η

0

∥

∥eK ∗ gτ
∥

∥

2

Γ
+ ε

∫ η

0
‖∇eu‖

2 + Cε

∫ η

0
‖eu‖

2

6 C

∫ η

0

∣

∣eK
∣

∣

2
∫ η

0
‖gτ‖

2
Γ + ε

∫ η

0
‖∇eu‖

2 + Cε

∫ η

0
‖eu‖

2

6 Cε

(

τ2 +

∫ η

0
‖eu‖

2

)

+ ε

∫ η

0
‖∇eu‖

2 .

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2017.m1513
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:21:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2017.m1513
https://www.cambridge.org/core


140 M. Grimmonprez, K. Van Bockstal and M. Slodička

Likewise, using also Theorem 2.1(iii), the boundedness and Lipschitz continuity of α,

the MVT, the triangle inequality, (3.16) and (3.17), we find that

∣

∣

∣

∣

∣

7
∑

k=5

Tk

∣

∣

∣

∣

∣

6 Cε

(

τ2 +

∫ η

0
‖eu‖

2

)

+ ε

∫ η

0
‖∇eu‖

2 .

For the estimation of T8 and T10, we use the Cauchy and triangle inequalities, the

regularity of g, the boundedness of α, Lemma 2.2(i), the Young inequality and (3.6) to

obtain

|T8 + T10| 6 Cε

(

τ2 +

∫ η

0
‖eu‖

2

)

+ ε

∫ η

0
‖∇eu‖

2 .

Finally,

|T9| 6 C

∫ η

0

∫ t

t−τ⌊t⌋τ

‖uτ (s− τ)− uτ (s)‖
2
Γ + C

∫ η

0

∫ t

t−τ⌊t⌋τ

‖eu‖
2
Γ

6 Cε

(

τ2 +

∫ η

0
‖eu‖

2

)

+ ε

∫ η

0
‖∇eu‖

2 ,

which follows from the Cauchy inequality, Lemma 2.2(i), the Young inequality, (3.18)

and (3.6). Collecting all estimates, we arrive at

∫ η

0
‖∇eu‖

2 +
1

2
‖eu‖

2
6 Cε

(

τ2 +

∫ η

0
‖eu‖

2 +

∫ η

0

∫ t

0
‖∇eu‖

2

)

+ ε

∫ η

0
‖∇eu‖

2 .

Fixing ε small enough and using the Grönwall lemma, we eventually obtain that

∫ η

0
‖∇eu‖

2 + ‖eu‖
2
6 Cτ2,

which is valid for every η ∈ [0, T ]. This, combined with Lemma 3.5, concludes the

proof. �

The following corollary follows from Lemma 2.2, Lemma 3.3(ii) and the Arzelà-

Ascoli theorem [24, Theorem 1.5.3].

Corollary 3.1. Let the assumptions of Theorem 3.1 be fulfilled. Then Kτ → K in

L2(0, T ). Moreover, Kτ → K in C([0, T ]) with ∂tK ∈ L2(0, T ) and there exists a positive

constant C such that
∫ T

0
|Kτ (t)−K(t)|2 dt 6 Cτ2.
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4. Numerical experiment

The aim of the following simulations is to demonstrate the established error es-

timate in Corollary 3.1. For the implementaion, the finite element library DOLFIN

[25,26] from the FEniCS project [27] is used.
In every experiment, the domain Ω equals the unit interval. The number of time

discretization intervals is chosen to be n = 2j , j = 3, . . . , 8, such that the time step τ
for the equidistant time partitioning equals 2−jT, j = 3, . . . , 8 respectively. At every
discrete time step, the resulting elliptic problems (see step 6 in the algorithm) are
solved numerically by the finite element method (FEM) using first order (P1-FEM)
Lagrange polynomials for the space discretization. For this space discretization, a fixed
uniform mesh of 50 intervals is used. The L2-error between the numerical and exact
kernel is approximated by the Simpson’s rule for the several values of the timestep τ :

EK(τ) =

∫ T

0

|Kτ (t)−K(t)|2 dt

≈

n
∑

i=1

τ

6

[

(Ki−1 −K(ti−1))
2
+ 4

(

Ki−1 +Ki

2
−K

(

ti−1 + ti
2

))2

+ (Ki −K(ti))
2

]

.

4.1. Experiment 1

For the first experiment, we prescribe the exact solution as

u(x, t) =
(

1 + t+ t2
)

(cos (π x) + 1) , (4.1a)

K(t) = 1 + t+ t2, x ∈ [0, 1], t ∈ [0, 2]. (4.1b)

The functions h, f and α are given by respectively h(x, t) = 2x + 2t + 1, f(s) = s + 5
and α(s) = s − 2. In Figure 1(a) the exact kernel K is compared with the numerical
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(a) The exact solution (4.1b) is approximated bet-

ter as τ becomes smaller

(b) The error EK(τ ) decreases with decreasing

time step

Figure 1: Kernel reconstruction in Experiment 1.

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2017.m1513
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:21:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2017.m1513
https://www.cambridge.org/core


142 M. Grimmonprez, K. Van Bockstal and M. Slodička

solution for τ = 2−2, 2−3 and τ = 2−5 . It can be seen that the approximations become

better as the time step τ decreases. We draw the same conclusion from Figure 1(b),

where log2EK is plotted as a function of log2 τ . The linear regression line through the

data points is given by log2 EK = 2.0234 log2 τ + 2.9896. This is in accordance with the

predicted convergence rate in Corollary 3.1.

4.2. Experiment 2

In the second experiment, the unknown kernel is sinusoidal, i.e.

u(x, t) =
(

1 + t+ t2
)

(cos (π x) + 1) , (4.2a)

K(t) = sin(2πt), x ∈ [0, 1], t ∈ [0, 1]. (4.2b)

The functions h, f and α are given by respectively h(x, t) = 2x+2t+1, f(s) = s−5 and

α(s) = s+2. In Figures 2(a)–2(b) the results of the numerical experiment are depicted.

They can be interpreted analogously as in the first experiment. The linear regression

line through the data points in Figure 2(b) is given by log2EK = 2.1290 log2 τ −1.1151,

which also supports the theoretically obtained convergence rate in Corollary 3.1.
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(b) The error EK(τ ) decreases with decreasing

time step

Figure 2: Kernel reconstruction in Experiment 2.

5. Conclusion

The semilinear parabolic problem (1.1) of second order with an unknown solely

time-dependent convolution kernel K has been considered. The numerical scheme

from [18] for reconstructing the unknown convolution kernel from the additional in-

tegral measurement (1.2) has been adapted such that higher stability results are valid.

Using these estimates, it has been proved that, under appropriate conditions of the
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data, the convergence of the numerical approximations Kτ and Kτ to K is of first

order in time:

‖Kτ (t)−K(t)‖L2(0,T ) + ‖Kτ (t)−K(t)‖L2(0,T ) ≈ O(τ).

This means that strong convergence of the approximations to the kernel K has been

obtained, whereas in [18] this convergence had only been proved in weak sense. Two

numerical experiments have supported the theoretically obtained result. Finally, it is

worth pointing out that the techniques used in this article might be applicable to other

problems in other settings.
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