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Abstract. In this paper we present a new computationally efficient numerical scheme

for the minimizing flow for the computation of the optimal L2 mass transport map-

ping using the fluid approach. We review the method and discuss its numerical
properties. We then derive a new scaleable, efficient discretization and a solution

technique for the problem and show that the problem is equivalent to a mixed form

formulation of a nonlinear fluid flow in porous media. We demonstrate the effec-
tiveness of our approach using a number of numerical experiments.
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1. Introduction

Optimal mass transport is of cardinal importance in geoscience and engineering

with other applications in econometrics, fluid dynamics, automatic control, transporta-

tion, statistical physics, shape optimization, expert systems, and meteorology [26,31].

The problem was first formulated by the civil engineer Gaspar Monge in 1781, and

concerns with finding an optimal way, in the sense of minimal transportation cost, of

moving a pile of soil from one site to another. Much later the problem was extensively

analyzed by Kantorovich [21], and is now known as the Monge-Kantorovich problem.

There are several formulations of the problem [2, 26, 31] of varying degrees of

generality. Here we start with the formulation of the Monge-Kantorovich problem for

smooth densities and domains in Euclidean space (for more general measures, see [2]).

Let Ω0 and Ω1 be two diffeomorphic connected subdomains of Rd, and let µ0, µ1 be
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Borel measures on Ω0 and Ω1, each with a strictly positive density function µ0(x) ≥
µ0
low > 0 and µ1 ≥ µ1

low > 0, respectively. Assume

∫

Ω0

µ0(x)dx =

∫

Ω1

µ1(x)dx,

so that the same total mass is associated with Ω0 and Ω1.

Under some mild assumptions, the Monge-Kantorovich problem may be expressed

as the following optimization problem

min M(u) :=
1

p

∫

Ω
µ0(x)|u(x)|

p dx (1.1a)

s.t. c(u) = det(Id +∇u)µ1(x+ u(x)) − µ0(x) = 0, (1.1b)

where u is a C1,α diffeomorphism from Ω0 → Ω1. The constraint c(u) = 0 (the Jacobian

equation) is often referred to as the mass preserving (MP) property. Here, we consider

the classical case of p = 2 as well as 1 < p ≤ 2 and attempt to numerically address the

limiting (ill-posed) case when p = 1.

Even with a simple, quadratic distance function, the problem (1.1) is regarded as

a highly nonlinear equality constrained optimization problem. Extensive analysis as

for the existence, uniqueness, and properties of the solution is available (see for exam-

ple [2, 15, 31] and the references therein). However, while a large body of literature

deals with the analysis of the problem, surprisingly a relatively small number of papers

concern with finding numerical solutions to the problem, and even a smaller number

of publications that deal with devising efficient, that is, scalable, numerical solutions

for this challenging problem [3,5,11–13,19,24].

Generally speaking, numerical methods for the solution of the problem can be di-

vided into three approaches. In the first approach, for the case p = 2, one utilizes the

property that u = ∇φ where φ is a concave function and solves the Monge-Ampère

equation [14, 25]. The second approach attempts to tackle the constrained optimiza-

tion problem head-on. Among this work is our previous algorithm [19].

A third approach for the solution of the problem, which is the starting point of

this study was proposed in the seminal paper of Benamou and Brenier [5]. Their re-

search reconstructs an optimal path from µ0 to µ1 by solving a convex optimization

problem with a linear space-time transport partial differential equation as a constraint.

Their approach is particularly useful if the transportation path is needed. Its disad-

vantage is that it increases the dimensionality of the problem by recasting the problem

as a space-time control problem. In the original work of Benamou and Brenier, sim-

ple nodal discretization was used, combined with the augmented Lagrangian method

for the solution of the problem. When reproducing the results of the paper we have

observed some stability issues as well as deterioration of the algorithm for large-scale

problems. As we show in this work this instability can be explained by analyzing their

discretization using multigrid tools (Fourier analysis) that show that the discretization

is not h-elliptic.
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A Multilevel Method for the Solution of Time Dependent Optimal Transport 99

Nonetheless, the Benamou and Brenier method replaces a generally non-convex

problem with a convex one and further avoids some other intricacies such as boundary

conditions and difficulties when the density contrasts are large. In fact, for the latter

case all algorithms known to us have failed when the density contrast between µ0 and

µ1 was larger than 50.

Given the lack of efficient numerical techniques for the solution of the problem,

the goal of this study is to develop a numerical solution framework, based upon the

Benamou-Brenier fluid dynamics formulation. We require this algorithm to be stable

fast and efficient (with linear complexity), capable of resolving problems comprising

large density contrast, and lastly, we aim at design of generic formulation, for which

alternative cost functionals can be readily incorporated, such as [27]. We point that

non of the algorithms in use today can claim linear complexity for the problem.

The paper is structured as follows. In Section 2 we reformulate the problem by fol-

lowing the Benamou and Brenier derivation and present its extension to more general

Lp functionals. In Section 3 we introduce a conservative discretization of the prob-

lem. In Section 4 we describe the optimization algorithm and the linear solver used to

solve the optimization problem and the linear systems that arise in the solution pro-

cess. In Section 5 we conduct few numerical experiments and finally, in Section 6 we

summarize the paper.

2. Problem reformulation

Let us consider the time interval t ∈ [0, 1]. The idea of Benamou-Brenier was to

replace the non-convex problem (1.1) with an optimization problem, constrained by a

partial differential equation

min

∫ 1

t=0

∫

Ω
ρ(x, t)|v(x, t)|2 dx dt (2.1a)

s.t.
∂ρ

∂t
+∇ · (ρv) = 0, (2.1b)

ρ(x, 0) = µ0, ρ(x, 1) = µ1. (2.1c)

Here, v(x, t) is the velocity and ρ(x, t) > 0 is the density. This formulation essentially

describes the evolution of the mass density distribution ρ0 to the distribution ρ1, where

minimal energy is invested, while the mass obeys a mass-preserving PDE. The above

problem falls into the PDE constrained optimization problems category. Generic so-

lutions for this family of problems were recently presented in the literature (see for

example, [7,8,17] and reference within). In the context of PDE optimization problems

the density, ρ, is the state and the velocity, v, is the control. One then minimizes the ob-

jective function subject to fulfilment of the PDE constraints. This formulation is similar

to the one solved in [8].

While conventional PDE optimization methods can be used here, there are some

obvious limitations to their use. The main limitation is related to the underlying as-

sumption that given the controls, v, the PDE can be solved independently from the
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optimization problem. For the problem (2.1) this is not the case. Note that there are

no boundary conditions (BC) for ρ in the PDE and thus one cannot solve for ρ even if v
is known without introducing (unnecessary) boundary conditions. Although it is possi-

ble to “fake” boundary conditions (and this has been done), such boundary conditions

can bring disastrous effects upon the reconstruction. For example, the use of some in-

flow and outflow BC strongly biases v, similarly, periodic BC (used in the original work

of [5]) are non-physical. As we see next, BC for ρ are actually not needed in order to

solve the problem. In fact, resolving the boundary conditions is an integral part of the

optimization problem. To see that, we continue and follow Benamou-Brenier formula-

tion by setting the momentum m = ρv and replacing (2.1) with a convex optimization

problem

min f(m,ρ) =

∫ 1

t=0

∫

Ω

|m(x, t)|2

ρ(x, t)
dx dt (2.2a)

s.t. c(m,ρ) = ρt +∇ · m = 0, (2.2b)

ρ(x, 0) = µ0, ρ(x, 1) = µ1. (2.2c)

It is interesting to note that the above problem has the same structure as of mixed

form of non-linear flow in porous media [23]. This become apparent by setting w =
(m,ρ)⊤ = (m1, · · · ,md, ρ)

⊤, where d is the dimension of the problem, and rewriting

the problem as

min f(w)

s.t. ∇st · w = 0,

where ∇st· is the space-time divergence. If we treat time as a spatial dimension then

the MK problem and non-linear flow in porous media have the exact same general

variational form (see [4, 9, 23]). Furthermore, it is well-known that such problems

are well-posed as long as f is smooth and convex even in the absence of boundary

conditions for wd+1 = ρ. As we shall see later, similar to other mixed form of elliptic

problems [9], the lack of BC for ρ leads to BC for the Lagrange multipliers. To illustrate

this notion over the simplest case, let

f(w) =

∫

Ω
|w|2 dx.

For this objective, a classical result yields the mixed form of the Poisson equation [9].

Thus, we see that the optimization problem at hand is nothing but a nonlinear Poisson-

like equation that regularly solved for ground water flow [4,22].

This similarity to the mixed form of flow in porous media in mixed form, motivates

our research here. A large body of literature and highly efficient algorithms have been

developed for such problems (e.g. [20, 22] and many others). It is merely sensible

on our behalf to put this techniques into good use. Understanding this similarity also

helps in developing robust and stable discretization, choosing efficient optimization
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A Multilevel Method for the Solution of Time Dependent Optimal Transport 101

algorithms and indicate efficient solvers for the linear systems. We address each of

these components separately in the following sections.

The above consideration allows us to easily consider alternative convex functionals.

For example, we may consider the function |v|pρ(x), which lend itself to the energy

|v(x, t)|p

ρ(x, t)
=
|m(x, t)|p

ρ(x, t)p−1
. (2.3)

This functional is strictly convex for 1 < p ≤ 2. Interestingly, for the case p = 1 we

obtain that the energy is reduced to |m| that is non-differentiable. Nonetheless, in our

numerical test we consider a sequence of p’s that converges to p = 1 as a possible

approach in computing the L1 solution.

3. Discretization

It is important to note that discretization of optimization problems consisting of

differential constraints may not be straightforward. In fact, instabilities may arise if

näıve discretization techniques are used. This topic has been studied extensively for the

Stokes problem and for flow in porous media (see for example [9, 30] and reference

within). To obtain stable discretizations using finite difference or finite volume, h-

ellipticity criterion needs to be met. For finite element discretization the Ladysenskaja,

Babuska, Brezzi (LBB) conditions need to be fulfilled [9]. Thus, special attention must

be given to maintain stability in such problems.

Here we propose to use a finite volume approach in space-time. For simplicity of

the discussion we describe the discretization in 2D and time. The extension to 3D is

straightforward and will be experimented with in Section 5.

Figure 1: A box and the staggered grid in space-time. ρ is discretize at the beginning and end of each time
interval and m is discretized on a staggered grid in space.
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We discretize space-time using n1 × n2 × n3 rectangular cells. For simplicity we

assume uniform spacing h, yet, this can be easily generalized. Let Ωijk be the (i, j, k)
box in space time. By integrating the constraint over Ωijk and using Gauss theorem

along with the midpoint integration rule we obtain

h−3

∫

Ωijk

∇st · w dxdt = h−3

∫

Sijk

w · n dS

=h−1

(
(w

i+ 1

2
,j,k

1 − w
i− 1

2
,j,k

1 ) + (w
i,j+ 1

2
,k

2 − w
i,j− 1

2
,k

2 ) + (w
i,j,k+ 1

2

3 − w
i,j,k− 1

2

3 )

)
+ O(h2).

This suggests a staggered grid discretization for the variables m1,m2 and ρ. Indeed, it is

well known that a natural compact discretization of the divergence is staggered for both

fluid dynamics, mixed formulation of the Poisson equation and Maxwell’s equations

[1,30]. Thus, we discretize m1 at points (i+ 1
2 , j, k), m2 at (i, j+ 1

2 , k) and ρ at (i, j, k+ 1
2 )

with i, j, k = 0, · · · n. It is important to note that if non-staggered grid is used for the

discretization of the divergence, instabilities arise due to null spaces of the resulting

system [30]. Also, note that just like the continuous constraint, this discretization does

not requires boundary conditions for m or ρ, that is a natural property for the problem

at hand.

Finally, discretizing µ0 and µ1 and defining the vector

q = h−1

(
µ⊤
0 , 0, · · · , 0︸ ︷︷ ︸

n1n2(n3−1)

, µ⊤
1

)⊤

we obtain a compact discretization of the constraint

D1m1 +D2m2 +D3ρ = q, (3.1)

where Dj are derivative matrices in x, y and t directions.

In order to discretize the objective function we use a combination of a midpoint and

a trapezoidal methods. It is straightforward to verify that for sufficiently smooth m and

ρ we have

∫

Ωijk

|m|2

ρ
dx dt = h3

(m
i+ 1

2
,j,k

1 )2 + (m
i− 1

2
,j,k

1 )2 + (m
i,j+ 1

2
,k

2 )2 + (m
i,j− 1

2
,k

2 )2

4ρi,j,k−
1

2

+ h3
(m

i+ 1

2
,j,k

1 )2 + (m
i− 1

2
,j,k

1 )2 + (m
i,j+ 1

2
,k

2 )2 + (m
i,j− 1

2
,k

2 )2

4ρi,j,k+
1

2

+ O(h2). (3.2)

Abusing notations we can write the objective in matrix form as

∫

Ω

|m|2

ρ
dx dt = h3

{
A1(m1)

2 +A2(m2)
2

A+
3 ρ

+
A1(m1)

2 +A2(m2)
2

A−

3 ρ

}
+ O(h2), (3.3)
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where A1, A2 are averaging matrices for the x and y directions and A±

3 picks the

appropriate ρ on each side of the space-time cube. In our notation, the expressions

m2 and 1/ρ is applied pointwise. This expression can also be written as
∫

Ω

|m|2

ρ
dx dt = h3(Asm

2)At

(1
ρ

)
+O(h2), (3.4)

where As = [A1, A2] and At are averaging matrices in space and time with respect to

vectors m = [m1,m2] and ρ.

Note that since we use a staggered grid, averaging is needed to evaluate the ob-

jective function, which is defined pointwise. Averaging can introduce instabilities into

the discretization if not done appropriately. Here we first square then average and first

divide then average. These are crucial points in obtaining stable discretization (see a

discussion in [1]). For example, this guarantees that f(m,ρ) → ∞ as ρ → 0. This

property is important if we want to avoid obtaining non-physical negative densities.

4. Optimization

In this section we shortly describe the constrained optimization framework for the

discrete problem

min f(m,ρ) = h3(Asm
2)At

(
1

ρ

)

s.t. C(m,ρ) := D
[
m⊤; ρ⊤

]⊤
− q = 0.

We will use a Newton-type scheme for the solution of this constrained optimization

problem. Such method bears the advantage of being mesh independent [32], that

is, the number of iteration needed for convergence are independent of the mesh size.

When such a method is combined with an appropriate multigrid solver for the linear

system one can obtain linear complexity convergence.

Since we consider large-scale 3D and 4D space-time problems, inexact Newton

solvers are inevitable. In particular, we will consider the sequential quadratic program-

ming (SQP) method for the solution of the problem, with inexact step computation of

the linearized system. We can write the Lagrangian of the problem

L(m,ρ) = (Asm
2)At

(
1

ρ

)
+ λ⊤

(
D
[
m⊤; ρ⊤

]⊤
− q
)
,

where λ is a Lagrange multipliers vector. From here it follows that the first order

necessary conditions are

∇mL = 2MA⊤

s At

(
1

ρ

)
+ (D1,D2)

⊤λ = 0, (4.1a)

∇ρL = −RA⊤

t As(m
2) +D⊤

3 λ = 0, (4.1b)

∇λL = D
[
m⊤; ρ⊤

]⊤
− q = 0, (4.1c)
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where M := diag(m), R := diag( 1
ρ2
).

This non-linear system of equations for m,ρ and λ can be solved in principle by

using Newton’s method. However, since the mixed second derivative of the objective

function introduces non-diagonal terms in the Hessian, a Gauss-Newton approximation

to the Hessian of the constraint is therefore sought [18].

The saddle point system which is solved inexactly at each SQP iteration can be

written as (
Â D⊤

D 0

)(
δw
δλ

)
= −

(
∇wL
∇λL

)
, (4.2)

where Â := ∇̂2L is symmetric positive definite approximation of the Hessian of the

objective function

Â =

(
2diag(A⊤

s At(
1
ρ
)) 0

0 2diag(A⊤
t As(m

2)diag( 1
ρ3
)

)
.

The saddle point system is symmetric indefinite [6]. It is also ill-conditioned, large

and sparse. We will consider two solution approaches. In the first approach, we solve

this system inexactly using preconditioned GMRES [29] to obtain an update for the

variables

w ← w + αδw, (4.3)

λ ← λ+ αδλ, (4.4)

where α is determined by a line search.

In order to incorporate inexactness in the solution of the linear system into the

SQP framework we use a similar method to the one proposed in [10]. We base our

stopping criteria for GMRES on a so-called filter [16], and will stop the linear iterations

whenever the step is accepted by the filter. Thus, the GMRES solver has two stopping

criteria and both has to be fulfilled in order to stop the iteration. First, the desired

stopping criteria is achieved and second, the solution is tested by the filter. Only if both

criteria are fulfilled the iteration is stopped; for further details see [16].

Since the saddle point system (4.2) is ill-conditioned, the use of suitable precondi-

tioner is essential. We consider a preconditioner based on Schur complement (see [6]

and references within) (
Â D⊤

0 S

)(
δw
δλ

)
= −

(
∇wL
∇λL

)
,

where S = −D⊤Â−1D is the Schur complement of the system. This preconditioner

converges within three GMRES steps in exact arithmetic. The difficulty lies in inverting

the Schur complement.

We should notice that since Â is a diagonal matrix, its inverse can be trivially com-

puted. Moreover, the Schur complement is a generalized Laplacian in space-time of

the form ∇st · σ(∇st· )∗ with coefficients σ = diag(Â−1) which depends only on ρ and
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m2. Therefore, the Schur complement is suitable for multigrid methods. Since we

consider models of high density contrast, we should pursue a multigrid algorithm that

can account for jumping coefficient. In our algorithm we applied a single V-cycle of

a Ruge-Stüben style algebraic multigrid algorithm [28] for the solution of the Schur

complement part of the preconditioner.

While the above approach has optimal complexity in theory it may be slow in prac-

tice. This is due to the large setup time and memory of algebraic multigrid methods.

A simpler approach that is not optimal but can converge quickly for smaller mesh is to

solve the system (4.2) by elimination. We first eliminate δw, and obtain a symmetric

positive definite system for δλ

−Sδλ = ∇λL −DÂ−1∇wL (4.5)

which is solved by the conjugated gradients (CG) method with a Symmetric Gauss-

Seidel preconditioner. We then compute the update for w by

δw = −Â−1(D⊤δλ+∇wL)

and update the variables as in (4.4).

In numerical experiments we have found out that the “break even” point between

the approaches is when the mesh size is roughly 643.

5. Numerical experiments

In our numerical experiments we would like to examine two aspects of the algo-

rithm. Firstly, we would like to test the algorithm for the L2 distance. Here we consider

the two approaches elucidated above: a combination of GMRES and multigrid versus

solution of the reduced order system by elimination and preconditioned CG. Secondly,

we would like to test the behavior of the algorithm when the norm of the MK functional

is gradually reduced from two to one. Note that for the L1 norm we have that

f(m,ρ) =

∫

Ω

∫ 1

0
|m| dt dx

and thus the problem is not well-defined. We therefore look at the limit p→ 1 of

f(m,ρ) =

∫

Ω

∫ 1

0

|m|p

ρp−1
dt dx

and examine the behavior of the algorithm as we gradually reduce the norm p to one.

As a set of model problems we considered the 2D images displayed in Fig. 2. For the

initial density distribution µ0 an image of four circle quarters, one at each corner was

employed. The final distribution µ1 was represented by an image of a circle positioned

in the center, where we verified that the two images have the same total volume, see

Fig. 2.
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106 E. Haber and R. Horesh

Figure 2: Left: initial density distribution image µ0; right: final density distribution image µ1.

Figure 3: Solution for density distribution for p = 2.

For the sake of ease of computations, we considered grid size of 42 × 42 in space

and 42 discretization steps in time, with density contrast of 10. We shall later increase

the grid fineness to examine the performance of our multigrid scheme. In Fig. 3 the

solution for density distributions with contrast 10 and for p = 2 is displayed; for each

time step excluding the initial and final stage, from left to right, top to bottom.

Next we would like to check the optimality of our algorithm with respect to mesh

independence behavior. The overall algorithm is optimal if its iteration count is inde-

pendent with respect to the problem size, that is, if each problem is of linear complexity

with respect to the number of unknowns. For this test, we considered a grid hierarchy;

starting from a coarse grid of 16 × 16 × 10 (in space and time) through a grids of

32× 32× 20 to a grid of 64× 64× 40. We set the tolerance for the outer (SQP) iteration

to 10−4, and as mentioned before, each step was computed inexactly up to a relative

residual error tolerance of 0.1.
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Table 1: Number of SQP iterations required for convergence on different grid sizes, for p = 2 and density
contrast 10.

Grid Size SQP iterations

16× 16× 10 16

32× 32× 20 13

64× 64× 40 14

Table 2: Comparison of numbers of preconditioned GMRES iterations required for convergence to the
tolerance of 0.1 at 1st, midst and last iteration of the SQP algorithm.

Grid Size 1st Midst Last

16× 16× 10 2 3 2

32× 32× 20 2 5 3

64× 64× 40 2 6 7

In Table 1 we record the number of SQP iterations required for convergence on dif-

ferent grid dimensions to the desired tolerance for p = 2. As can be deduced from the

table, the SQP algorithm is almost optimal: although the number of variables increased

by a factor of 8 between the different grid sizes the number of SQP iterations required

for convergence altered only mildly. In order to verify that the overall algorithm is also

optimal, we need to check that the linear solver is of linear complexity. Thus, the con-

vergence rate of the multigrid preconditioner is of particular interest. The performance

of GMRES with multigrid preconditioner is presented in Table 2. In this table the inner

iteration count is compared for the first iteration of SQP, an iteration in the midst of

the optimization process, and the last iteration of the process. Table 2 shows a small

increase in the number of iterations when the mesh is refined. Although, the number

of iterations is incrementing, this increment is still negligible in comparison to the in-

crease in mesh size. It is interesting to note that the increase in the number of iterations

of the linear solver is not due to the deterioration of the multigrid solver. The reason

for the increase is that the GMRES solution for a tolerance of 0.1 was determined to

be inappropriate for descent by the filter. Thus more iterations in the GMRES solver

where needed to fulfill the filter criteria.

In a third experiment we test our algorithm for higher density contrast. For that

purpose, we consider the 2D images as before but this time with density contrast of

100. Again, our setup involve an hierarchy of models of increasing grid sizes, starting

from 16 × 16 in space and 8 in time and up to 64 × 64 in space and 32 time steps.

As before, we set the tolerance for the outer (SQP) iteration to 10−4, and each step

is computed inexactly up to a relative residual error tolerance of 0.1. In this case,

we take the multi-level approach, where we interpolate the solution from the coarser

grid to finer one, such that the initial guess on the finer grid is closer to the optimal

solution. In Table 3 we record the number of SQP iterations required for convergence

on different grid sizes to the desired tolerance for p = 2.

For this problem, the number of GMRES iterations was consistently two throughout

the optimization process, for all grid sizes. As can be seen, the algorithm works well
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Table 3: Number of SQP iterations required for convergence on different grid sizes, for p = 2 and density
contrast 100.

Grid Size SQP iterations

16× 16× 8 28

32× 32× 16 12

64× 64× 32 14

Table 4: Number of SQP iterations required for convergence on different grid sizes, for 4D problem, with
p = 2 and density contrast 10.

Grid Size SQP iterations

16× 16× 16× 8 10

32× 32× 32× 16 11

64× 64× 64× 32 10

Table 5: Comparison of numbers of preconditioned CG iterations required for convergence to a tolerance of

10
−4 at 1st, midst and last iteration of the SQP algorithm.

Grid Size 1st Midst Last

16× 16× 16× 8 21 38 32

32× 32× 32× 16 39 86 60

64× 64× 64× 32 71 187 137

for large density contrast. No other algorithm known to us could solve this problem

efficiently.

In a forth experiment, we would like to test our algorithm on 3D problems (3D in

space plus time). Since we do not have an effective 4D AMG code the linear system

is solved by elimination as described in Section 4. Again, we consider an hierarchy of

grids, starting from 16 × 16 × 16 in space and 8 time steps, through 32 × 32 × 32 with

16 times step up to a grid of size 64 × 64 × 64 in space and 32 time steps. In Table

4 we present the number of SQP iterations required for convergence on different grid

dimension to the desired tolerance for p = 2. In Table 5 we summarize the number of

preconditioned CG iterations required to converge to a tolerance of 10−4 at different

stages of the SQP iterations. The table clearly demonstrates the mesh independence

criteria of our algorithm even in 4D. Since we use symmetric Gauss-Seidel as a pre-

conditioner our linear solver is not mesh independent. Nonetheless, the number of

iteration grows mildly and we are still able to obtain solutions of 4D problems in a

reasonable computational effort.

Finally, we test the performance of our algorithm when gradual reduction of the

norm p from two to one is imposed. We shall address a 2D problem in space and time,

with grid size 64 × 64 with 32 time steps, and density contrast 10. We elect to solve

the reduced system using preconditioned CG. Simple continuation is used to obtain a

solution with p → 1. We start with p = 2 and perform a single SQP iteration. We

then reduce p and repeat the process, starting from the previous solution. We use 100
continuation steps to get from p = 2 to p = 1.01. In Fig. 4 a convergence of the primal
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Figure 4: Left: Norm of primal feasibility as a function of norm p; right: Norm of dual feasibility as a
function of norm p.

(Eq. (4.1c)) and dual feasibility (Eqs. (4.1a) and (4.1b)) are presented as a function

of the norm p. As expected, the norm of primal and dual feasibility is reduced as we

progress with the continuation and reduce the norm value. Although we have used a

simple continuation, this was sufficient in order to obtain an approximation to the L1

problem. More efficient continuation methods for the problem are not considered in

this study.

6. Summary

A novel numerical framework for the 3D optimal mass transport problem in the fluid

mechanics formulation is proposed. The new framework treats the time dependency of

the PDE as another spatial dimension in staggered grid discretization. This formulation

does not require boundary conditions for the density distribution explicitly. Instead,

these boundary conditions are introduced implicitly as part of our optimization scheme.

In order to account for large density contrast in the models, we have incorporated an

algebraic multigrid as preconditioner for the solution of the linearized system. This

approach proved to be optimal with respect to mesh size. We have also considered a

distance function for general norm p, where 1 < p ≤ 2. We started our iterations at

p = 2 and slowly relaxed the norm until p = 1.01, while performing only few iterations

for each p.

From an imaging perspective, the transformation of the initial density distribution

closely resembles the final distribution, which indicates a good correspondence and

overall good performance of the proposed algorithm.
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