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Abstract. This paper provides an overview of the main ideas driving the bootstrap

algebraic multigrid methodology, including compatible relaxation and algebraic dis-
tances for defining effective coarsening strategies, the least squares method for com-

puting accurate prolongation operators and the bootstrap cycles for computing the
test vectors that are used in the least squares process. We review some recent re-

search in the development, analysis and application of bootstrap algebraic multigrid

and point to open problems in these areas. Results from our previous research as
well as some new results for some model diffusion problems with highly oscillatory

diffusion coefficient are presented to illustrate the basic components of the BAMG

algorithm.
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1. Introduction

Numerous scientific and engineering problems find their formulation in terms of

(systems) of partial differential equations, which in turn require the solution of large-

scale finite element, finite difference, or finite volume equations. Modern applications

involve large-scale parallel processing of (linear) systems with millions or even billions

of unknowns, for which multigrid (MG) methods often provide solvers that are optimal

with respect to their computational complexity and, hence, their parallel scalability.
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Bootstrap Algebraic Multigrid 113

Multigrid solvers for sparse systems of linear equations Ax = b are all based on two

complimentary processes: a local relaxation scheme (smoother) that eliminates certain

components of the error by working on the fine level and a coarse-level correction that

treats the remaining global error.

Generally, the design and analysis of these two MG components are based on the

following smoothing property of relaxation. For any 0 < ρ < 1, an error vector e is

called ρ-smooth if all its normalized residuals† are smaller than ρ‖e‖. The basic observa-

tion [2] is that the convergence of a proper relaxation process‡ slows down only when

the current error is ρ-smooth with ρ≪ 1, the smaller the ρ the slower the convergence.

This implies that when relaxation slows down, the error vector e can be approximated

in a much lower-dimensional subspace. Very efficient “geometric multigrid” solvers have

been developed for the case that the lower-dimensional subspace corresponds to func-

tions on a well-structured grid (the coarse level), on which the smooth errors can be

approximated by easy-to-derive equations, based for example on discretizing the same

continuum operator that has given rise to the fine-level equations Ax = b to define

the coarse-level operator Ac. The coarse-level equations are solved using recursively a

similar combination of relaxation sweeps and still-coarser-level approximations to the

resulting smooth errors.

The basic two-grid method for solving Ax = b, from which a multigrid method is

defined by recursion, involves a stationary linear iterative method applied to the fine-

grid system, and a coarse-grid correction; Given an approximation w ∈ C
n, compute

an update v ∈ C
n by

1. Pre-smoothing: y = w +M(f −Aw),

2. Correction: v = y + PA−1
c R(f −Ay).

Here, M is the approximate inverse of A that defines the multigrid smoother and R :
C
n 7→ C

nc and P : Cnc 7→ C
n with nc < n are the restriction and interpolation operators

that map information between the coarse grid of size nc and the fine grid of size n.

To deal with more general situations, where the fine-level system may not be de-

fined on a well-structured grid nor perhaps arise from any continuum problem, “al-

gebraic multigrid” (AMG) methods were developed to derive the set of coarse-level

variables and coarse-level equations directly from the given matrix A. The basic ap-

proach (developed in [9,10,34] and called today “classical AMG” or RS-AMG) involves

the following two steps:

(1) Choosing the coarse-grid variables, e.g., as a subset C of the set of fine-grid vari-

ables, Ω, such that each variable in F = Ω\C is “strongly connected” to variables

in C.

†The vector of normalized residuals is Ãe, where Ã, the normalized matrix, is scaled so that the l1 norm of

each of its rows is 1. Correspondingly, we define the normalized eigenvalues of A to be the eigenvalues of

Ã. The magnitude of any normalized eigenvalue is at most 1.
‡Kaczmarz relaxation can always be used (but better schemes are often available), supplemented when

needed by local relaxation steps around exceptionally large residuals (as suggested in [1, §A.9]).
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114 A. Brandt et al.

(2) Approximating the fine-level residual problem Ae = r by the coarse-level equa-

tions Acec = rc using the Galerkin definition Ac = RAP with rc = Rr, so that

e ≈ Pec.
§

In this classical approach, the “strength of connection” measure as well as the inter-

polation matrix P and the restriction matrix R are all defined directly in terms of the

elements of the matrix A. The overall algorithm gives satisfactory results only when

the (properly scaled) matrix A has a dominant diagonal and (with small possible ex-

ceptions) all its off-diagonal elements have the same sign. Even then, the produced

interpolation in many cases has limited accuracy, insufficient for full multigrid effi-

ciency.

The Bootstrap AMG (BAMG) algorithm, introduced in [4, §17.2], and the closely

related Adaptive AMG algorithms introduced in [18, 19], were developed to extend

AMG to an even wider class of problems for which the assumptions on smooth error

made in classical AMG are violated. The main idea in Bootstrap and Adaptive AMG

is to apply the current solver to appropriately formulated test problems to explicitly

compute approximations of the smooth error components. These components are then

incorporated into the coarse space by the AMG setup algorithm as needed.

The adaptive algebraic multigrid methods developed originally in [18,19], use a se-

quential setup procedure to adaptively identify the components of the space that needs

to be represented in the range of the coarse grid operator. While such an approach

insures that test vectors are incorporated into the coarse space only if they are needed,

this filtering procedure requires reconstructing the entire multilevel hierarchy at each

iteration, i.e., recomputing interpolation and the coarse matrices on all levels. Thus,

these approaches are efficient when one (or few) components are needed to define an

effective interpolation operator, but can be costly in cases where many such compo-

nents are needed to obtain full MG efficiency.

The two main ideas in bootstrap AMG that distinguish the approach from other

Adaptive AMG methods are: (1) defining restriction and interpolation to fit a collec-

tion of smooth vectors in a least squares sense, and (2) computing the collection of test

vectors simultaneously in a multigrid scheme, where the bulk of the work is done on

coarse, i.e., on cheap levels. The BAMG algorithm, described below, combines the gen-

eral devices of (A) compatible relaxation and algebraic distances to choose the coarse

variables with (B) a least squares procedure and (C) a bootstrap cycling scheme for

computing the test vectors used in the LS process to construct high-quality restric-

tion and interpolation operators and thereby a multigrid hierarchy. Before giving an

overview of those Bootstrap techniques, we remark here that they should be used as

needed, e.g., in cases where geometric MG and AMG solvers are not available and/or

the additional costs they introduce can be amortized, e.g., for problems where the same

system has to be solver for multiple right hand sides.

§ A common choice when A is Hermitian positive definite (HPD) is to set R = PH , which leads to a

variational Galerkin scheme.
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Bootstrap Algebraic Multigrid 115

(A) The coarse variables are selected using compatible relaxation and algebraic dis-

tances, as tools for gauging the quality of the coarse variable set and guiding the

coarsening process, respectively.

A general criterion for measuring the quality of the set of coarse variables C is the

fast convergence of compatible relaxation (CR), as introduced in [3] (being a special

case of choosing coarse variables for general types of systems [5], introduced first for

problems in statistical mechanics [11]). Generally, CR refers to a relaxation scheme that

keeps the coarse-grid variables invariant. A general approach introduced by Brandt and

Livne (see also [25]), that can be applied to any relaxation scheme is “habituated CR”

(HCR), which uses the full fine-grid relaxation and then imposes certain constraints on

the coarse-grid variables. The HCR criterion allows choosing a set of coarse variables

which is not necessarily a subset of the set of fine-level variables. In particular, coarse

variables can represent some averages of fine variables, as needed for example for equa-

tion homogenization or for coarsening nonlinear problems. Another important type of

a set of coarse variables whose choice can be guided by CR arises in wave equations,

where it should include several different subsets, each for example corresponding to

a different wave direction. Moreover, given a suitable definition of the averages used

in defining coarse variables, the HCR convergence rate yields an accurate prediction

of the convergence rate that can be achieved by a two-grid solver for a given relax-

ation scheme and the proposed set of coarse variables [12, 14]. In this way, the HCR

quantitative prediction is also very useful in designing and debugging the actual solver.

Algebraic distance gives a general approach for measuring the connectivity among

nodes in a graph. In BAMG, the algebraic distance measure is based on a notion of

strength of connectivity among variables that is derived by minimizing a local least

squares (LS) problem which is also used to derive interpolation (described in Sec-

tion 3). The approach first constructs direct (caliber-one) LS interpolation for a given

set of test vectors (representatives of algebraically smooth error obtained by the boot-

strap process described in Section 4) and then defines the algebraic distance between

a fine point and its neighboring points in terms of the values of the local least squares

functionals resulting from the so defined interpolation. The algebraic distance measure

thus aims to address the issue of strength of connections in a general context — the goal

being to determine explicitly those degrees of freedom from which high quality least

squares interpolation for some given set of smooth test vectors can be constructed.

An algorithm using algebraic distance was first developed for combinatorial opti-

mization problems on graphs [33, 35]. In these works, algebraic distance serves as

a measure of the closeness between nodes that is then used in an aggregation algo-

rithm to build multilevel representations of graphs. In [8], algebraic distance was

developed as a measure of strength of connectivity among variables for coarsening

non-grid-aligned anisotropic diffusion problems. Further, it was shown that combining

the measure with compatible relaxation results in a robust algorithm for choosing in-

terpolation operators for such problems. And an affinity measure based on algebraic

distance together with an energy measure are used to form aggregates in the Lean
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116 A. Brandt et al.

AMG solver developed in [26] for the graph Laplacian problem. Related work is found

in [13].

(B) The interpolation operators (as well as restriction operators for non-Hermitian

problems) are derived by a least-squares fit to a set of ρ-smooth Test Vectors

(TVs) with sufficiently small ρ.

Denote by Ci the set of coarse variables used in interpolating to a fine grid variable

i ∈ F . Then the main idea in the least squares interpolation approach is to compute

for each i ∈ F a row of interpolation that approximates the given set of test vectors at

the points in Ci, minimizing the interpolation error for these vectors in a least squares

sense. It follows from the satisfaction of the CR criterion that, with a proper choice

of Ci, there exists an interpolation that will have only O(ρ) errors in reproducing x
(k)
i

for any normalized vector x(k) which is ρ-smooth. The size c = |Ci| of this set should

in principle increase as ρ decreases, but in practice a preset interpolation ”caliber” c
yields small enough errors. For example, for a discretized scalar PDE in d-dimensions,

a proper set with |Ci| = d+ 1 points would give O(h2 + ρ) accuracy, which may suffice

if ρ is small enough (see below). Typically, the number of TVs need not be larger than

1.5c for this accuracy to be attained for almost every x
(k)
i .

The set Ci can often be adequately chosen by geometric considerations, such as

the set of geometrical neighbors. If the chosen set is inadequate, the least-squares

procedure will show bad fitness (interpolation errors large compared with ρ), and the

set can then be improved. The least-squares procedure can also detect variables in Ci

that can be discarded without a significant loss in accuracy. Thus, this approach allows

creating interpolation with whatever needed accuracy which is as sparse as possible.

Moreover, the LS derivation of interpolation is applicable to general types of coarse

variables (e.g., averages).

(C) The TVs are constructed in a bootstrap manner, in which several tentative AMG

levels generated by fitting interpolation to moderately smooth TVs are used to

produce improved (much smoother) TVs, repeating this if needed until fully effi-

cient AMG levels have been generated.

Quantitatively, the algorithm is driven by the following relations. The first TVs are

each produced by relaxing the homogeneous system Ax = 0 with a different start-

ing vector. This quickly leads to a set of ρ-smooth TVs with ρ ≪ 1. A combination

of random vectors and additional geometrically derived smooth vectors can generally

be used as starting vectors. In the case of discretized isotropic PDEs, if geometrically

smooth vectors that satisfy the homogeneous boundary conditions are used, relaxation

may not be needed at all. In many other cases relaxation can be confined to the neigh-

borhood of boundaries and discontinuities. As mentioned, the least-squares fitting to

such a ρ-smooth set produces an interpolation scheme whose errors in interpolating

any normalized ρ-smooth vector are at most O(ρ). The coarse-level Galerkin system

based on such an interpolation will then yield an O(ρ2)-accurate approximation to ev-

ery normalized eigenvalue of a ρ-smooth eigenvector. Increasingly coarser AMG levels
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Bootstrap Algebraic Multigrid 117

can recursively be built in this way, all typically having such O(ρ2) accuracy for eigen-

vectors with small normalized eigenvalues and their linear combinations.

The AMG cycles based on these levels can further be applied to the homogeneous

system Ax = 0. In many cases, the convergence (to x = 0) will exhibit the desired

multigrid efficiency (close to the HCR prediction), indicating that the produced AMG

structure is ready for production. If the given method needs further improvement, these

cycles will quickly produce O(ρ2)-smooth TVs, which can then be used for a second

round of constructing the AMG hierarchy, potentially (with suitable sets Ci) providing

O(ρ4)-accuracy. More such rounds of TV creation, to obtain still higher accuracy, is

seldom needed.

Some important applications do result in nearly singular systems, e.g., the dis-

cretized Dirac equation arising in lattice quantum chromodynamics. For such problems

the system matrix has several almost zero modes (AZMs), which are a few special,

nearly-singular eigenvectors with normalized eigenvalues much smaller than usual.

For example, in discretizing a q-order PDE on a (structured or unstructured) grid with

O(h) meshsizes, the lowest normalized eigenvalues will all usually have size O(hq); but

by a special adjustment of a parameter in the PDE, one normalized eigenvalue can be

made arbitrarily small, having size η ≪ hq.

Usually, the potential existence of one, or sometimes several, AZMs is known in

advance, as a property of the problem at hand. To obtain O(η) approximations to

normalized eigenvectors would generally require substantially increasing the number

of interpolation points, or caliber. However, since the number of AZMs is typically

small, the interpolation can be tailored to fit them individually sufficiently well, without

increasing its caliber. This will in fact automatically happen as soon as the AZMs emerge

(in the cycles applied to the homogeneous system), provided the least-squares fitting

weights each test vector proportionally to the inverse of its normalized residual norm.

We note that a multilevel eigensolver can be integrated into the bootstrap setup process

to further accelerate the convergence of the setup for the AZMs, as introduced in [7].

In the remainder of the paper, an overview of the main components of the BAMG

approach are given. Section 2 contains a review of compatible relaxation and algebraic

distances. The least squares approach for computing interpolation is discussed in Sec-

tion 3 and the bootstrap procedure aimed at computing increasingly accurate TVs is

discussed in Section 4. A main focus in the presentation in these sections is to point to

open research questions in the development, analysis and application of BAMG and to

the most pressing research directions on these topics. Promising future research areas

in BAMG are outlined in Section 5.

2. Compatible relaxation and algebraic distance

The first task in coarsening a given system is the choice of coarse-level variables,

which in the BAMG framework is accomplished using compatible relaxation and al-

gebraic distances. Compatible relaxation coarsening algorithms have been developed
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118 A. Brandt et al.

and analyzed for both classical AMG [14, 17, 23, 25] and aggregation-based coarsen-

ing [36]. These works have demonstrated the utility of CR as a tool for guiding the

coarsening process and assessing the quality of a given coarse variable set. The works

in [14, 25] focused on adding robustness to classical AMG using CR coarsening ap-

proaches, in particular for anisotropic diffusion problems with highly oscillatory and

strongly anisotropic diffusion coefficient. The method developed in [36] does not use

CR directly in the setup algorithm, however, CR was used as the main tool for the anal-

ysis and design of the resulting algorithm, which was developed specifically for general

non-grid-aligned anisotropic diffusion problems.

An outline of a generic coarsening process based on CR for the linear system Ax = b
is given in Algorithm 2.1. Here, ρcr is an approximation to the asymptotic convergence

rate of CR computed after the ν iterations are applied, and δ is a tolerance that can be

set by the user, or more generally it can be optimized within the algorithm. In [25],

the CR coarsening algorithm is designed to approximately optimize β = ρ
1
W
cr , where

W denotes the total work of a single AMG cycle that is estimated using the coarsening

ratios in different stages of a CR coarsening algorithm. Starting with an initial set C0

of coarse variables, whose values are held fixed at zero, a few sweeps of compatible

relaxation (with vanishing right-hand side so that the solution should converge to zero,

but starting from a suitable non-zero first approximation) are applied to detect conver-

gence slowness if the coarse-variable set is inadequate. In this case, a set of variables

that should be added to the coarse set needs to be determined. The typical approach is

to select a subset of the set of variables which are slow to converge (to zero) and add

these to the set of coarse variables. As in AMG, the additional variables to be added to

C0 can be chosen using a notion of connectivity of a variable to its neighbors, which is

defined via algebraic distance in BAMG.

Algorithm 2.1 : Compatible relaxation coarsening, Input: C0 Output: C

Initialize C = C0

Perform ν CR iterations

while ρcr > δ do

Update C
Perform ν CR iterations

end while

In order to illustrate the flow of the above CR coarsening process, we report results

from [14] for a specific implementation of the algorithm applied to the anisotropic

diffusion problem

−∇ · K(x, y)∇u(x, y) = f(x, y), (2.1)

where K is a tensor of the form

K =

[
a c
c b

]
,





a = cos2(θ) + ǫ sin2(θ),
b = ǫ cos2(θ) + sin2(θ),
c = (1− ǫ) cos(θ) sin(θ).

(2.2)
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Bootstrap Algebraic Multigrid 119

The parameter 0 < ǫ ≤ 1 specifies the strength of anisotropy in the problem, while

parameter θ specifies the direction of anistropy. We use 2D domain Ω = [0, 1] × [0, 1]
with Dirichlet boundary conditions with the following choice of problem parameters

ǫ = 1, d = 104, (x, y) ∈ [0, 1/2] × [0, 1/2],
ǫ = 1, d = 0, (x, y) ∈ (1/2, 1] × [0, 1/2],
ǫ = 0.01, θ = 0, d = 0, (x, y) ∈ [0, 1/2] × (1/2, 1],
ǫ = 0.01, θ = π/2, d = 0, (x, y) ∈ (1/2, 1] × (1/2, 1].

The discrete system is obtained by a finite element discretization of this problem with

bilinear basis functions on uniform quadrilateral mesh. The results of the algorithm

for this test problem are provided in Fig. 1; we refer to [14] for additional numerical

experiments and results obtained using CR in a classical AMG setup algorithm. In the

reported results, an F -point Gauss Seidel variant of CR is used, the initial set C0 = ∅
and the updating of C in the subsequent stages of the algorithm is based on adding an

independent set of coarse-point candidates that are slow to converge in the CR process.

The precise implementation of the algorithm is given in [14], see Algorithm 3.1 in

Section 3.

Fig. 1 illustrates the coarsening stages and the final coarse grid chosen by the algo-

rithm. Since we start with an empty coarse set initially, the convergence rate, ρcr, of

(compatible) relaxation is close to one for this problem. Thus, since it is greater than

our tolerance δ = .7 in Algorithm 3.1, we enter a first coarsening stage. Fig. 1(a) con-

tains a plot of the values of the candidate measures, scaled pointwise error values, that

are used in selecting coarse-grid candidates. The candidate measures are large in three

regions of the domain, signaling that coarsening is needed there. The algorithm also

correctly detects that coarsening is not needed in the bottom left region of the domain

where pointwise Gauss-Seidel is effective. The first C-point set chosen is depicted by

dotted squares in Fig. 1(b). For these updated sets, we obtain ρcr = 0.91, which leads

to a second stage.

The candidate measures at stage two of the algorithm are plotted in Fig. 1(b) and

the algorithm signals that still further coarsening is needed only in the top two regions

of the domain. The result of the second stage is the coarse grid depicted in Fig. 1(c).

The new CR convergence factor is ρcr = 0.49, so there are no additional stages in the

algorithm. Notice that the algorithm gives semi-coarsening in x in the top-left region

where the problem is anisotropic in x, semi-coarsening in y in the top-right where

the problem is anisotropic in y, full-coarsening in the bottom-right where the problem

is isotropic, and no coarsening in the bottom-left where the mass term dominates.

Further, we mention that the algorithm does not make explicit use of a strength of

connectivity measure.

Generally, while CR algorithms have been successfully applied and developed for

various model problems, there remain several design issues that must be addressed and

remain open in developing a robust implementation of the above CR algorithm. One

issue that arises is formulating an appropriate relaxation scheme for the problem being

solved. If specific features of the problem are known, e.g., it comes from a system of
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Figure 1: Candidate measures computed during stage one (a) and two (b) for the 2D anisotropic diffusion
problem. Each square depicts the value of the scaled pointwise error at grid point i according to the color
bar. Dotted squares indicate points currently in C. The final coarse grid is given by the larger red circles in
(c).

PDEs, then an appropriate smoother can be designed using knowledge of the problem.

More generally, the smoother can be adapted within the CR coarsening process. For

example, in cases where |C| or ρcr are too large, a block relaxation scheme can be used

and the blocks can be adapted using CR to test the efficiency of the smoother. This

is research topic which has not been explored much in the AMG setting, in particular,

together with CR and algebraic distance. We mention the recent work on adaptive

smoothers in [32] that shows the potential of such an approach.

The two main research questions in CR that require further investigation and with

which we conclude our discussion of CR are:

• How to define an appropriate form of CR and related convergence rate esti-

mate from ρcr that accurately predicts the performance of the resulting two-grid

method for a given interpolation strategy?
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• How to choose C0 and how to identify suitable local modifications to a given set

of coarse variables whenever the CR convergence rate is slow?

The fact that fast CR rates imply the suitability of a given coarsening scheme has

been established theoretically [23] and by the extensive numerical experiments found

in [14, 36]. However, a precise relation between the convergence rate of a given CR

iteration and the resulting two-grid convergence is not known in general. Specific ver-

sions of CR have been proposed that do provide accurate predictions of the convergence

rate of the associated two grid method, for example, F -relaxation and Habituated CR.

A single HCR iteration is given by relaxation steps applied to the entire fine-grid sys-

tem, followed by imposing constraints on the resulting error restricted to the coarse

variables:

eC := Xe = 0,

where X is a matrix that defines the averaging process for deriving coarse variables.

The solution to this problem can be calculated using the Kaczmarz iteration, starting

with the error e that results from the full relaxation steps as an initial guess or it can

be computed using the ℓ2 projection of e on range(X). The latter approach gives the

overall HCR error propagation operator

E = (I − π)(I −MA)ν , π = XH(XXH )−1X. (2.3)

Unlike the F -relaxation version of CR which can only be applied with the special coars-

ening used in classical AMG, and then only for simple relaxation schemes, HCR is appli-

cable in general setting since it only involves the fine-grid relaxation scheme followed

by a simple projection based on the averaging matrix X. Hence, in addition to giving

a better qualitative prediction of the performance of the two-grid solver, HCR is more

flexible and easier to process.

The sharpness of HCR in predicting the convergence rate of a two-grid method

depends critically on the averaging matrix X used in enforcing the constraints and,

as shown in [14], a suitable choice can be defined by X = PH , where P denotes a

sufficiently accurate and stable interpolation operator. We note that this P does not

need to be the same interpolation operator that is used in the AMG solver. Generally,

the accuracy of the iteration in (2.3) in predicting the convergence rate of the two-grid

method depends on the energy norm of π, i.e., ‖π‖A ≥ 1 (see [14]). We mention,

in addition, the work in [30], where it is shown that if the C/F partitioning is such

that the weighted Jacobi F -relaxation converges quickly, then a bound on the two-grid

convergence rate follows.

The issue of identifying suitable local modifications to the coarse variable set when-

ever the CR convergence rate is too slow is a more subtle issue. Assume that the

relaxation scheme is fixed, C is nonempty, and the convergence rate of CR is slow, in-

dicating that additional variables need to be added to C. The usual approach is to find

a candidate set, F̄ , of F -points from which an independent set is added to the existing

set C. The primary issue is to determine a set of candidates F̄ . The basic observation

from [3] that provides insight on this topic is that a set of variables that should be
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added to the coarse variable set is exposed by the CR process; it is a subset of the set

of variables which are slow to converge to zero when CR is applied. This observation

motivated the CR algorithms developed and analyzed in [14,25].

In [14], a candidate set measure based on the values of the normalized pointwise

errors that result from the CR process was studied. The set F̄ is formed by adding to

it i /∈ C for which this error is large. Intuitively, the approach is based on choosing

additional coarse grid points in regions where the CR process is inefficient. In [25],

a similar algorithm was developed for the matrix Ã that is first normalized such that

each of its rows has ℓ1-norm equal to 1. While the effectiveness of these strategies has

been demonstrated by the numerous numerical experiments reported in [14,25], there

is still no rigorous understanding of or justification for using pointwise errors of CR to

determine the variables that will most effectively reduce the convergence rate of the

CR process when added to C.

Very recent work [8] on this topic has focused on incorporating the use of algebraic

distance as a measure of strength of connectivity into the CR coarsening process. The

main idea in this context is to use algebraic distance to form a strength of connectiv-

ity graph that identifies the coupling among variables which can then be used in an

independent set algorithm to update C. In the simplest form, the notion of algebraic

distances is straightforward: For any given pair of fine-grid variables i, j ∈ Ω compute

µij =

∑k
κ=1

(
v
(κ)
i − pijv

(κ)
j

)2

∑k
κ=1

(
v
(κ)
i

)2 , (2.4)

where pij is the coefficient that minimizes this least squares problem for caliber-one

interpolation of the form vi = pijvj. Here, the set V = {v(1), · · · , v(k)} consists of prop-

erly scaled smooth TVs, and the choice of the denominator ensures that the expression

is symmetric with respect to the indices i, j. Statistically, the measure µij is based on

the idea that the nodes i and j in a graph are strongly connected only if vi and vj are

highly correlated for all TVs.

Another, more direct, way to write the algebraic distance measure is given by solv-

ing the LS problem (2.4) for the coefficient pij and substituting the minimizer into the

definition of µij . The resulting pij =
〈V(i),V(j)〉

〈V(j),V(j)〉
gives rise to an equation for the minimum

of (2.4):

µij = 1−

∣∣〈V(i), V(j)

〉∣∣2

‖V(i)‖2‖V(j)‖2
, (2.5)

where V = [v(1) · · · v(k)] ∈ C
n×k, with 〈V(i), V(j)〉 :=

∑k
κ=1 v

(κ)
i v

(κ)
j measures the angle

between V(i) and V(j). From this explicit form of the minimum it is now easy to see

that the measure µij is symmetric with respect to i, j, as noted above. The algebraic

distance measure is a specific case of the least squares interpolation process described in

more detail in the next section. More generally, the algebraic distance measure can be
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computed for sets of neighboring coarse points Ci, using the more general LS problem

defined in (3.1). In this way, µij can be used as an a posteriori measure of the quality

of the interpolatory set Ci and the resulting row of interpolation. For cases where

an algebraic notion of dependence is not sufficiently well defined, e.g., in the early

stages of the BAMG setup process when the TVs may not be smooth enough to yield an

accurate algebraic distance measure, one can assume any non-vanishing dependence

to be strong in the CR coarsening process; this may result in slow coarsening, but then

the scheme can be applied again in an iterative manner, to this new set instead of C0.

The latter CR approach that does not rely on strength of connectivity to choose C was

studied in the classical AMG setting in [14] and its extension that incorporates the

algebraic distance measure in (2.4) was developed for anisotropic problems in [8].

Generally, such algorithms that use iterative strategies for choosing C together with

CR often lead to irregular alignment of coarse variables, even for structured grid prob-

lems, which in turn can result in an increase in the number of nonzeros in the coarse-

grid matrix Ac. This issue can be treated in latter stages of the BAMG process by us-

ing more aggressive coarsening, once the TVs become more smooth and the algebraic

distance measure becomes more precise. This is the case, for example, for strongly

anisotropic problems where neighbors in the characteristic direction are much closer

than in the other directions. For such problems the appropriate long range connec-

tions in these characteristic directions are revealed only by very low energy TVs, which

normally need to be the product of subsequent bootstrap setup cycles. An algorithm

that both removes and adds variables to C in each CR coarsening stage can be used to

further control complexities, as needed. We note that in our experience, for many prob-

lems only the first coarsening stage in which C0 is formed is needed, given sufficient

accuracy of the algebraic distance measure.

3. Least squares interpolation

After the coarse set C has been selected by compatible relaxation and algebraic

distance, the interpolation operator is computed using a least squares process. The

least squares interpolation operator P is defined to fit collectively a set of test vectors

that should characterize the near kernel of the system matrix. Assuming the sets of

interpolatory variables, Ci, for each i ∈ F , and a set of test vectors, V = {v(1), · · · , v(k)},
have been determined, the ith row of P , denoted by pi, is defined as the minimizer of

the local least squares problem:

L(pi) =
k∑

κ=1

ωk


v

(κ)
{i} −

∑

j∈Ci

(pi)j v
(κ)
{j}




2

→ min . (3.1)

Here, the notation vΩ̃ denotes the canonical restriction of the vector v to the set Ω̃ ⊂ Ω,

e.g., v{i} is simply the ith entry of v. Conditions on the uniqueness of the solution to

minimization problem (3.1) and an explicit form of the minimizer have been derived

in [7].
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i ∈ F

i ∈ C

❋✐❣✉$❡ ✷✿ ❋✉❧❧ ❝♦❛$,❡♥✐♥❣ ❛♥❞ ✐♥/❡$♣♦❧❛/✐♦♥ $❡❧❛/✐♦♥, ❢♦$ ✳

Figure 2: Full coarsening and interpolation relations for i ∈ F \ C.

The weights ωκ > 0 are defined using the A-norms of the test vectors ‖v‖2A = 〈Av, v〉
when the system matrix A is Hermitian and positive definite. A main issue with this

choice of weighting is that the LS process uses the entries of the test vectors restricted

to local coarse neighborhoods to define the LS fit while the weights ωκ are defined in

terms of the global test vectors. Hence, it may happen that a given test vector is globally

smooth (i.e., produces a large weight and is emphasized in the LS process), but it does

not provide an adequate local representation of smooth error. This leads to a loss in

accuracy of interpolation and slows down the convergence of the resulting two-grid

method.

In [31] (see also [20]), a residual-based LS form of BAMG interpolation (LSR)

was introduced as a technique for addressing this issue of using global weights. The

basic idea in the LSR process is to implicitly smooth the test vectors to produce an

improved local representation of smooth error. In this respect, the approach is related

to the adaptive relaxation scheme described by Brandt in [1] (and suggested in [3])

that applies relaxation selectively to points exhibiting especially large residuals, as they

occur for example in problems with singularities. Specifically, in LSR interpolation the

test vectors are (temporarily) updated as follows:

v
(κ)
{i} ← v

(κ)
{i} −

1

aii
r
(κ)
{i} , (3.2)

and then used in computing pi, again as the solution to (3.1).

Table 1 contains results from [7] for a variational two-grid method resulting from

using standard (full) coarsening and interpolation with |Ci| ≤ 4 in (3.1) (see Fig. 2) for

the original LS formulation and the LSR version applied to the central finite difference

discretization of the Poisson problem with homogenous Dirichlet boundary conditions

on a uniform quadrilateral grid.

The reported results are the approximate asymptotic convergence rates for different

values of the number of relaxed test vectors, kr, and the number of Gauss Seidel itera-

tions, η, used to compute them. Note that here the total number of TVs is set to k = kr,
whereas, when a multilevel eigensolver is combined with relaxation (an approach that
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Table 1: Asymptotic convergence rate estimates, ρ, of the two-grid methods with two pre- and two post-
smoothing steps constructed using LS (residual-based LS) interpolation for the standard finite difference
discretization of the Poisson problem with homogenous Dirichlet boundary conditions on a uniform rectan-
gular grid with h = 1/64.

k 6 7 8 10 12

η = 2 .934 (.866) .916 (.827) .904 (.806) .878 (.786) .861 (.759)

η = 4 .735 (.524) .681 (.453) .648 (.403) .608 (.269) .575 (.316)

η = 6 .522 (.294) .451 (.242) .425 (.205) .381 (.154) .305 (.136)

η = 8 .372 (.169) .308 (.140) .287 (.123) .238 (.054) .216 (.061)

we consider in the next section) the total number of TVs is given by k = kr+ke, with ke
being the number of TVs computed by the multilevel eigensolver described in the fol-

lowing section. The test vectors are computed by applying Gauss Seidel iterations with

lexicographic ordering to the Laplace problem starting with k distinct initial guesses,

generated randomly with a normal distribution with expectation zero and variance one,

N(0, 1), and the update in (3.2) used in the LSR formulation is applied only to 20% of

the entries of the TVs for which the associated values of the residual r
(κ)
{i} are largest in

absolute value.

The improved performance of the method that results from increasing η is per-

haps expected, since applying more relaxation sweeps to the test vectors should give

a better approximation of smooth error. The situation gets more interesting and more

complicated when we fix the number of Gauss Seidel iterations and then increase the

sampling space (i.e, vary the number of test vectors), which results in an ad hoc (ran-

domized) approach for sampling the dominant part of the space that is not significantly

reduced by the smoother. Recently, randomized methods for range approximation have

been given particular attention in data mining applications and further studies of the

LS process along these lines are still needed. The paper [24] summarizes the latest

results obtained on this topic and highlights the gains which are possible with judicious

modifications of the ad hoc approach.

In Table 2, we report results from [7] for a two-grid method applied to the same

central finite difference (FD) Poisson problem for different choices of the grid spacing h.

The solver is constructed using the LS and LSR formulations for defining P with a fixed

number of relaxed test vectors kr = 8 and smoothing iterations η = 4, independent

of the choice of h. Here, we see that the convergence rates of both the LS and LSR

based two-grid methods increase as the size of the problem is increased, suggesting

that applying a constant number of relaxation steps to compute a fixed number of test

vectors does not produce a sufficiently accurate local representation of the algebraically

smooth error for defining least squares interpolation. The numerical results reported

in [20,31] further support this claim.

In Table 3, we present results of the two-grid solvers obtained by adding the con-

stant vector, 1, to V and again applying the LS and LSR schemes to the FD Poisson

problem. Here a fixed number of test vectors kr = 7 + 1 are used and η = 4 relax-

ation steps are employed to compute them. With this modification the performance of
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Table 2: Asymptotic convergence rate estimates, ρ, of the LS (LSR) based two-grid methods with two
pre- and two post-smoothing steps applied to the same FD Laplace problem as in Table 1. The solver is
constructed using the LS (LSR) schemes with η = 4 and kr = 8.

h 1/32 1/64 1/128 1/256 1/512

ρ .267 (.075) .648 (.403) .886 (.758) .966 (.917) .990 (.977)

Table 3: Asymptotic convergence rate estimates, ρ, of the LS (LSR) based two-grid methods with two
pre- and two post-smoothing steps applied to the same FD Laplace problem as in Table 1. The solver is
constructed using the LS (LSR) schemes using η = 4 Gauss Seidel iterations to compute the seven initially
random test vectors; the additional test vector is the constant vector chosen a priori.

h 1/32 1/64 1/128 1/256 1/512

ρ .089 (.039) .121 (.040) .130 (.042) .148 (.042) .150 (.043)

the LS and LSR based two-grid solvers improves significantly. In fact, both the LS and

LSR methods perform nearly optimally for the problem sizes considered. This clearly

demonstrates the ability of the LS process to incorporate geometric and spectral infor-

mation from the problem when it is available. We note, in addition, that with our choice

of full coarsening and interpolation relations (see Fig. 2), the resulting interpolation is

not derived from immediate neighbors, which further demonstrates the flexibility of the

least squares formulation in that it naturally accommodates long-range interpolation.

We refer to the paper [8] in which algebraic distance and long-range LS interpola-

tion were studied for non-grid-aligned anisotropic problems for additional details and

results on this topic.

The LSR process provides a simple technique for improving the accuracy of inter-

polation in cases where the global weights are large but the TVs are not sufficiently

smooth in some local regions. As the numerical experiments show, the main point is

to obtain extra smoothness (i.e., smaller residuals) at the points where interpolation is

defined. And such large residuals in general are the result of special local configura-

tions in the random vectors used as initial guesses. This issue can also be inexpensively

treated using adaptive relaxation together with several short V -cycles based on the

interpolation that is constructed for the first few levels.

The related problem of determining appropriate local weights in the LS definition

of interpolation is more complicated and has not been resolved in a general algebraic

setting, except for finite element discretizations of elliptic boundary value problems.

For finite element systems, the local weights can be computed using the local stiffness

matrices. The problem of determining local weights is also related to the question of

deriving local equations for computing the test vectors, as in spectral AMG [22].

4. A bootstrap algorithm for computing the test vectors

The BAMG process provides a general approach for computing the TVs used in

algebraic distance and LS interpolation. For definiteness, we provide an overview of

one specific version of bootstrap AMG designed and analyzed in [7]. The algorithm
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begins with relaxation applied to the homogenous system,

Alxl = 0, (4.1)

on each grid, l = 0, · · · , L − 1; assuming that a priori knowledge of the algebraically

smooth error is not available, these vectors are initialized randomly on the finest grid,

whereas on all coarser grids they are defined by restricting the existing test vectors

computed on the previous finer grid. Given interpolation constructed using CR, al-

gebraic distances and the LS process, the coarse-grid operators are computed, e.g.,

using the variational definition when A is HPD. Once an initial MG hierarchy has been

computed, the current sets of TVs are further enhanced on all grids using the existing

multigrid structure. Specifically, the given hierarchy is used to formulate a multigrid

eigensolver which is then applied to an appropriately chosen generalized eigenproblem

to compute additional test vectors. We note that the use of a coarse-grid eigensolver to

compute test vectors has been studied theoretically in the context of reduction-based

AMG in [29] and in the context of adaptive smoothed aggregation in [21]. The ap-

proach outlined here differs in its use of LS interpolation together with a multilevel

eigensolver as considered in [7]. This overall process is then repeated with the current

AMG method applied in addition to (or replacing) relaxation as the solver for the ho-

mogenous systems in (4.1). Fig. 3 provides a schematic outline of the bootstrap V - and

W -cycle setup algorithms. In general, V m and Wm denote setup algorithms that use

m iterations of the V - and W -cycles, respectively.

The rationale behind the multilevel generalized eigensolver (MGE) is as follows.

Assume an initial multigrid hierarchy has been constructed. Given the initial Galerkin

operators A0, A1, · · · , AL on each level and the corresponding interpolation opera-

tors P l
l+1, l = 0, · · · , L − 1, define the composite interpolation operators as Pl =

P 0
1 · · · · · P

l−1
l , l = 1, · · · , L. Then, for any given vector xl ∈ C

nl we have 〈xl, xl〉Al
=

〈Plxl, Plxl〉A. Furthermore, defining Tl = PH
l Pl we obtain

〈xl, xl〉Al

〈xl, xl〉Tl

=
〈Plxl, Plxl〉A
〈Plxl, Plxl〉2

.

This observation in turn implies that on any level l, given a vector x(l) ∈ C
nl and

λ(l) ∈ C such that Alx
(l) = λ(l)Tlx

(l), we have Rayleigh quotient (RQ)

RQ(Plx
(l)) :=

〈Plx
(l), Plx

(l)〉A
〈Plx(l), Plx(l)〉2

= λ(l). (4.2)

This provides a relation among the eigenvectors and eigenvalues of the operators in the

multigrid hierarchy on all levels with the eigenvectors and eigenvalues of the finest-grid

operator A that can be used to measure the accuracy of interpolation for smooth modes.

Note that the eigenvalue approximations in (4.2) are continuously updated within the

algorithm so that the overall approach resembles an inverse Rayleigh-Quotient iteration

found in eigenvalue computations (cf. [37]). The overall MGE process is motivated by

the following observation.
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Relax on Av = 0, v ∈ V
r , compute P

Compute v, s.t., Av = λT v, update V e

Relax on Av = λT v, v ∈ V
e

Relax on and / or solve using MG Av = 0, v ∈ V
r and Av = λT v, v ∈ V

e, recompute P

Test MG method, update V
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Figure 3: Galerkin Bootstrap AMG W -cycle and V -cycle setup schemes.

Consider the generalized eigenvalue problem

Ajxj = λ(j)Tjxj, (4.3)

on two subsequent grids, j = l, l−1, with λ(l) denoting the RQ of a given approximation

of an eigenvector on the coarser grid and λ(l−1) denoting the RQ of the vector obtained

by applying relaxation to the system (4.3) with this vector interpolated to the next finer

grid as the initial guess. Define the eigenvalue approximation measure τ
(l,l−1)
λ by

τ
(l,l−1)
λ =

|λ(l) − λ(l−1)|

|λ(l−1)|
. (4.4)

Then, at any stage of the MGE iteration, a large value of τ
(l,l−1)
λ indicates that the hi-

erarchy should be recomputed to incorporate this relaxed eigenvector approximation.

Otherwise, relaxation has not significantly changed this vector and it is accurately rep-

resented by the existing interpolation operator P l−1
l . In this way, the MGE serves as an

approach for efficiently identifying components that must be interpolated accurately

(e.g., the low modes of A), and, with the use of the eigenvalue approximation mea-

sure, a technique for determining if the current P approximates them sufficiently well.

For additional details of the algorithm and its implementation we refer to the paper [7].

To illustrate the effect of the MGE in the bootstrap process, we provide results

from [7], in which a V 2-cycle bootstrap setup using four pre- and post-smoothing steps

is applied to compute the set of relaxed vectors Vr and set of bootstrap vectors Ve

coming from the MGE process, with kr = |Vr| = 8 and ke = |Ve| = 8, respectively.

The sets Vr and Ve are then combined to form the set of TVs V that is used to compute

the least squares interpolation operator on each level. In these tests, only relaxation

is applied to the homogenous systems in both setup cycles to update the sets Vr. The

coarse grids and sparsity structure of interpolation are defined as in the previous tests

on all levels and the problem is coarsened to the coarsest level with h = 1/16.
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Table 4: Asymptotic convergence rate estimates, ρ, of the LS (LSR) based V (2, 2) BAMG solvers applied
to the FD Laplace problem. The BAMG solvers are constructed using a V 2-cycle setup with η = 4 and
kr = ke = 8.

h 1/32 1/64 1/128 1/256 1/512

ρ .041 (.038) .062 (.041) .075 (.043) .125 (.043) .971 (.043)

Table 5: Asymptotic convergence rate estimates, ρ, of the LS (LSR) based V (2, 2) BAMG solvers applied
to the FD Laplace problem. The BAMG solvers are constructed using a W -cycle setup (see Fig. 3) with
η = 4 and kr = ke = 8.

h 1/32 1/64 1/128 1/256 1/512

ρ .042 (.038) .062 (.041) .073 (.043) .130 (.043) .161 (.044)

As the results reported in Table 4 show, using the MGE to enhance the test vectors

consistently improves the performance of the resulting solvers when compared to the

results reported in Table 2, especially for the LSR scheme. Here, the LSR approach

yields an optimal method, whereas for the LS scheme, as the problem size increases,

the convergence rate of the solver also increases substantially — from ρ ≈ .125 to

ρ ≈ .971.
Next, we consider results of the W -cycle setup, illustrated at the top of Fig. 3.

In Table 5, we present results for this scheme again with kr = ke = 8 and using

only relaxation to solve the homogenous systems in both setup cycles to update the

sets Vr. We notice a marked improvement in the performance of the LS-based solver

constructed using a W -cycle setup over that of the solver constructed using a V -cycle

setup and note that the LSR scheme again scales optimally for the given problem sizes.

The improved performance of the W -cycle setup indicates the effectiveness of using

additional coarse level processing in computing accurate TVs.

We conclude the numerical experiments with results of the BAMG setup algorithm

applied to the same bilinear finite element discretization of the 2D diffusion problem

considered earlier

−∇ · K(x, y)∇u(x, y) = f(x, y), (4.5)

with homogenous Dirichlet boundary conditions. However, now we assume thatK(x, y)
denotes the two-scale permeability:

K =

{
1, (x, y) ∈ Ω1,
10ν , (x, y) ∈ Ω2,

with Ω1 given by the union of the black subdomains in Fig. 4 and Ω2 = Ω \ Ω1. The

problem is discretized on a uniform quadrilateral grid with various choices of the grid

spacing h so that the grid aligns with the interfaces for the given problem sizes (see

the plot on the right of Fig. 4). We consider the values ν = −2,−8 and various tilings,

denoted by τ = 1, 4, 8, 16 (see Fig. 4) in testing the BAMG algorithm.

The BAMG method uses standard (full) coarsening with nearest-neighbor inter-

polation on all levels of the hierarchy, and the problem is coarsened until the coars-

est systems has grid spacing h = 1/16. We note that on coarse levels, the grids and
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Figure 4: Tiling of the domain for the interface problem (2.1). The figure on the left corresponds to τ = 4
and the one on the right to τ = 1.

the interpolation patterns do not align with the jumps at the interfaces of Ω1 and Ω2.

We consider tests of the W 2-cycle setup with η = 4 relaxation steps to compute the

kr = ke = 8 TVs. For the results reported in the bottom two tables of Table 6 we use

the solver resulting from the first W -cycle setup in an adaptive step in which we solve

the homogenous system Ax = 0 using five V (2, 2) cycles on the finest level only. Here,

the initial guess is the TV from Vr with the smallest energy, which is then replaced by

the resulting approximation as the new TV in Vr.

Table 6: Asymptotic convergence rate estimates, ρ, of the LSR based V (1, 1) BAMG solver applied to the
FE discretization of the diffusion problem (2.1). The solver is constructed using a W 2-cycle BAMG setup
with η = 4 and kr = ke = 8. For the results in the bottom tables, an additional intermediate adaptive step
is applied to the TV with lowest energy on the finest level only before the second W -cycle setup.

τ

1

4

8

16

h

ν = −2

.25 .33 .57 .88

.24 .32 .55 .63

.24 .31 .50 .59

* .29 .47 .57

1/32 1/64 1/128 1/256

ν = −8

.29 .47 .64 .91

.26 .57 .79 .88

.25 .41 .71 .83

* .37 .68 .70

1/32 1/64 1/128 1/256

τ

1

4

8

16

N

ν = −2

.20 .21 .23 .23

.20 .22 .22 .22

.20 .21 .22 .22

* .18 .20 .20

1/32 1/64 1/128 1/256

ν = −8

.20 .21 .23 .23

.21 .22 .22 .22

.21 .22 .23 .23

* .18 .20 .20

1/32 1/64 1/128 1/256

As the results illustrate, the W 2-cycle setup does not yield a scalable solver for this

problem.¶ However, adding an adaptive step to the algorithm before the second W -

cycle does result in an optimal order method. We note that using additional W -cycles

¶In Table 6, * indicates that the fine grid does not resolve the variations in the permeability field.
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in the setup, i.e., a Wm-cycle with m > 2, yields similar results as obtained with this ad-

ditional adaptive step, but that these additional cycles require significantly more work

than does applying the adaptive step a few times only on the finest level, as imple-

mented in the reported experiments. Generally, using this simple modification reduces

the number of bootstrap setup cycles needed to obtain an efficient solver by at least

one and in most cases two or more for this problem, assuming the number of relaxation

steps in the setup cycles is kept fixed. We note, in addition, that in [19] adaptive AMG

was successfully applied to the same test problem and that an adaptive approach may

be preferable for this problem since only a single smooth-error component is needed to

computed effective AMG interpolation.

The use of adaptive cycles in the bootstrap setup process has also been considered

in various contexts, including the work in [15] where a BAMG solver was designed

for the non-Hermitian Dirac equation of lattice QCD and the work in [6, 16], where

a BAMG method for computing state vectors of Markov chains was developed. These

works have shown that combining the least squares interpolation with the bootstrap

setup for computing the TVs leads to an efficient and integrated self learning process

for defining algebraic multigrid interpolation. While this research has resulted in an

increased understanding of these techniques, a systematic study of how to combine

them in an optimal and robust way is still needed.

5. Future directions and open problems

Research in the design and analysis of the individual components of the BAMG

solver has led to efficient and robust multilevel algorithms for a variety of problems, in-

cluding indefinite Helmholtz and Schrödinger equations [27, 28], non-Hermitian PDE

systems such as the Dirac equation in lattice QCD [15], anisotropic diffusion problems

with highly oscillatory and strongly anisotropic diffusion coefficient [8], and the Graph

Laplacian problem [26]. More generally, this work has led to an increased under-

standing of the techniques of compatible relaxation, algebraic distances, least squares

interpolation, and the bootstrap process for algebraically computing representatives of

smooth error, the test vectors. These works have demonstrated the potential of the

BAMG methodology to deliver an efficient and robust algebraic multilevel solver for a

large class of sparse matrix equations.

The basic components of the BAMG process have been studied and are (mostly)

understood for HPD problems. The main issue to consider in developing BAMG as a

fast solver for general HPD problems concerns the integration of the BAMG components

in order to obtain an overall algorithm for use in practice. Specifically, a systematic

study of the BAMG processes for a carefully chosen and diverse set of test problems

(that includes systems of PDEs) is needed. As noted in the previous sections, the most

pressing research directions as the authors currently see them are

• An efficient mechanism for updating coarse variable set C based on a local slow-

ness of CR relaxation, see Section 2;
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• A local procedure for finding weights ωκ in (3.1) — to prevent an emphasize on a

globally smooth test vector, that will otherwise be heavily weighted everywhere,

in the regions where it has large residuals; such approach will be a generaliza-

tion of the LSR scheme which is now used concurrently with global weights, see

Section 3;

• A balance between work and accuracy when computing TVs, see Section 4;

• A procedure for incorporating all available information about a given problem, in

particular, its geometric information;

• An integration of all BAMG components to obtain an easy to tune and robust

multigrid solver.

Although the basic components of BAMG can in principle also be applied to non-

Hermitian problems, there are still several basic research questions in this setting that

require further investigation. One main unresolved issue that arises in a Galerkin-based

algebraic multigrid concerns characterizing the algebraically smooth errors that need

to be approximated by restriction and interpolation. The typical approach has been to

compute approximations to singular values with small singular vectors, e.g., in [21]

such a strategy was developed for conviction diffusion problems. These approaches

are based on the observation that the smallest singular value is less than the smallest

in magnitude eigenvalue. However, for many problems, the smallest eigenvalues of a

non-Hermitian matrix are much smaller than the second smallest singular value. Thus,

in general the near kernel of the system matrix can not be characterized by the singular

vectors (or eigenvectors) with small singular values, unless the matrix is normal.

The basic approach in BAMG is to iterate on the homogenous system using the AMG

smoother and the emerging multilevel structure in order to expose the smooth errors

that need to be treated on coarse levels. Given an appropriate relaxation scheme,

e.g., the Kaczmarz iteration, which provides a general approach for non-Hermitian

problems, the subspace of smooth error is in the most general sense related to the field

of values

F =

{
〈Ax, x〉

〈x, x〉

∣∣∣∣x ∈ C
n, x 6= 0

}
.

We note that the field of values may contain the origin even if all eigenvalues of the ma-

trix have a positive real part. Thus, it is possible that the Galerkin coarse level operator

can have a zero eigenvalue, even when the fine-level matrix does not. We have ob-

served in practice that in such cases, the resulting Galerkin method can diverge. Here,

an underestimate of the small singular values or eigenvalues on some grid can lead to

an over-correction from the coarse grid and divergence of the resulting AMG solver.

Thus, although the BAMG process provides techniques for constructing restriction R
and interpolation P , each in their own setup scheme, these processes must be carefully

tied together locally in order to obtain a suitable Galerkin coarse-grid matrix.

The challenges presented by indefinite problems, e.g., the Helmholtz and

Schrödinger operators, are again related to the character of their low eigenspace, which
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consists of many eigenfunctions that are locally different from one another. Generally,

we refer to such problems as non-elliptic systems. The key issues is that such eigenfunc-

tions cannot be accurately interpolated by a single prolongation operator (3.1) with a

small caliber, starting with some sufficiently fine scales. There and on all coarser scales

several prolongation operators have to be employed, resulting in multiple-Galerkin ap-

proach with many coarse-grid operators. To guarantee optimal computational costs,

all prolongation operators have to be locally orthogonal, and achieving that gener-

ates additional computational difficulties. To this date, the BAMG-like approach has

been implemented only for the one-dimensional Helmholtz [27] and Schrödinger [28]

problems, which require only two prolongation operators (instead of one). In higher

dimensions, the number of prolongation operators and coarse spaces increases, but

the ideas carry over in a similar way from 1d. Two important future research topics

are thus to continue to investigate developing BAMG solvers for these and other non-

elliptic problems and to determine how far these techniques can be extended as fast

solvers for general sparse matrix equations.
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