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Abstract. In this paper, first, we consider closed convex and bounded subsets of
infinite-dimensional unital Banach algebras and show with regard to the general con-
ditions that these sets are not quasi-Chebyshev and pseudo-Chebyshev. Examples of
those algebras are given including the algebras of continuous functions on compact
sets. We also see some results in C∗-algebras and Hilbert C∗-modules. Next, by con-
sidering some conditions, we study Chebyshev of subalgebras in C∗-algebras.
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1 Introduction

The subject of approximation theory is an old branch of analysis and has attracted the
attention of several mathematicians during last years. This theory which has many im-
portant applications in mathematics and some other sciences has been studied by many
authors, e.g., [4, 15]. A basic problem in the theory is ”Given a point x and a set W in
normed space X, determine a point w0 of W which is at a minimum distance from x” i.e.
to find w0∈W such that

‖x−w0‖=dW(x)= inf
w∈W

‖x−w‖. (1.1)

The set of all best approximations to x from W is denoted by PW(x). Thus

PW(x) :={w∈W| ‖x−w‖=dW (x)}. (1.2)

∗Corresponding author. Email addresses: m.iranmanesh2012@gmail.com (M. Iranmanesh), enfazh.bmaam
@gmail.com (F. Soleimany)

http://www.global-sci.org/ata/ 92 c©2018 Global-Science Press



M. Iranmanesh and F. Soleimany / Anal. Theory Appl., 34 (2018), pp. 92-102 93

If each x∈X has at least one best approximation in W, then W is called a proximinal set
and W is said to be non-proximinal if PW(x)=∅ for some x∈X\W. A problem which
has been intensively studied is to check whether a Banach space X does or does not con-
tain bounded closed non-proximinal sets. The results in general Banach spaces can be
found in [1, 5, 6]. A subset W of a Banach space X is called quasi-Chebyshev if PW(x) is
a non-empty and compact set in X for every x∈X (see [10]). Some results on characteri-
zations of quasi-Chebyshev subspaces in Banach spaces can be found in [9,10]. In the pa-
per, we introduce the problem exist non-quasi-Chebyshev and non-pseudo -Chebyshev
sets in unital Banach algebras. All this works done by applying the related fixed point
and approximation theory results. We give characterizations of quasi-Chebyshev sub-
algebras in C∗-algebras in terms of substate function. The structure of this paper is as
follows. In Section 2 we records some facts about Banach algebras, spectral properties
of C∗-algebras A and Hilbert C∗-modules. In Section 3, we approach the question on
the existence of non-quasi-Chebyshev sets in unital abelian Banach algebras by using the
related fixed points and invariant approximation results. As a consequence, we obtain
some results on the algebra of continuous functions C(S), where S is a compact set. We
show that every closed bounded convex set in a C∗-algebra A is quasi-Chebyshev if and
only if A be finite dimensional. Similarly, we get some results for Hilbert C∗-modules.
Best approximation and quasi-Chebyshev of subalgebra in C∗-algebras, is discussed and
characterized in Section 4.

2 Preliminaries

Let us start with some basic definitions, which will be used later. Consider A as a unital
algebra with the unit e. If A is a Banach space with respect to a norm which satisfies the
multiplicative inequality

‖xy‖≤‖x‖‖y‖ (x,y∈A), (2.1)

then the pair (A,‖·‖) is called a normed algebra. A complete unital normed algebra is
called unital Banach algebra. a∈A is said to be invertible if there is an element b in A

such that ab= ba= e. The fields of real and complex numbers are denoted by R and C,
respectively. The symbol F denotes a field that can be either R or C. The spectrum of an
element x of a unital algebra A over F is the set

σ(x)={λ∈F : x−λ is non-invertible}. (2.2)

The spectral radius of x is defined by

r(x)= sup
λ∈σ(x)

|λ|. (2.3)

A nonzero homomorphism τ : A → F, where A is a unital algebra over F, is called
a character. We denote by Ω(A) the set of all characters on A. If A is a unital abelian
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Banach algebra and x∈A, we define a continuous function x̂ by

x̂ : Ω(A)→F, τ 7−→τ(x). (2.4)

We call x̂ the Gelfand transform of x. We denote by Â the set {x̂ : x∈A}. It is easy to see
that Â is self-adjoint if and only if for each x∈A, there exists an element y∈A such that

τ(x)=τ(y) for each τ∈Ω(A). If A is a unital abelian complex Banach algebra, Ω(A) 6=∅

and σ(a)= {τ(a) : τ ∈Ω(A)} for all a∈A. If A is a unital Banach algebra, then Ω(A) is
compact (see [11]). We follwed with the concept of C∗-algebras. An involution ∗ on an
algebra A is a mapping x→x∗ from A onto A such that (λx+y)∗=λx∗+y∗,(xy)∗=y∗x∗

and (x∗)∗= x, for all x,y∈A and λ∈C. An involutive Banach algebra is called a Banach
∗-algebra. A Banach ∗-algebra A is said to be a C∗-algebra if ‖xx∗‖=‖x‖2, for each x∈A.
Clearly under the norm topology on B(H), the set of all bounded linear operators on a
Hilbert space H is a C∗-algebra relative to involution T→T∗, which is defined by

〈x,Ty〉= 〈T∗x,y〉, ∀x,y∈H.

Let A be an algebra then Mn(A) denotes the algebra of all n×n-matrices a = [aij ]
with entries aij in A. If A is a C∗-algebra, so Mn(A), where the involution is given by
[aij]

∗ = [a∗ji]. If A and B be two C∗-algebras, we denote by A⊗B their algebraic tensor

product. Note that for any C∗-algebra one can identify the space Mn(A) with the tensor
product Mn(C)⊗A.

A (right) Hilbert C∗-module V over a C∗-algebra A is a linear space which is a right
A-module equipped with an A-valued inner-product 〈·,·〉 :V×V→A that is sesquilinear,
positive definite and respects the module action, i.e.,

(1) 〈x,αy+βz〉=α〈x,y〉+β〈x,z〉 for x,y,z∈V, α,β∈C,

(2) 〈x,ya〉= 〈x,y〉a for x,y∈V, a∈A,

(3) 〈x,y〉∗= 〈y,x〉 for x,y∈V,

(4) 〈x,x〉≥0 for x∈V; if 〈x,x〉=0 then x=0,

and V is complete with respect to the norm defined by ‖x‖=‖〈x,x〉‖
1
2 , for each x∈V.

Lemma 2.1 (see [3]). Let E be a C∗-module over a C∗-algebra A. Then E can be isometrically
embedded in B(H,K), where H,K are Hilbert spaces.

In the following, we recall some useful lemmas in fixed point theory that will be
needed in the sequel. Let (X,·‖) be a Banach space, A mapping T : E ⊆ X → X is non-
expansive if ‖Tx−Ty‖ ≤ ‖x−y‖ for each x,y ∈ E. The fixed point set of mapping T is
denoted by F (T)={x∈X : T(x)= x}.

Lemma 2.2 (see [14]). Let X be a Banach space, C a compact convex subset of X and T : C→C
a continuous map. Then T has at least one fixed point in C.
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Definition 2.1 (see [8]). Let K be a convex subset of a Banach space X. A map V : K→X
is called convex if ‖V( x+y

2 )‖≤ 1
2 [‖V(x)‖+‖V(y)‖] for x,y∈K.

Lemma 2.3 (see [8]). Let K be a non-empty weakly compact convex subset of a Banach space X
and let T : K→X be non-expansive and suppose I−T is convex on K. Then T has a fixed point.

3 A non-quasi-Chebyshev sets of Banach algebras

In this section, we consider closed, convex and bounded subsets of infinite dimensional
unital Banach algebras and show with regard to the general conditions that these sets are
not quasi-Chebyshev and pseudo- Chebyshev.

Definition 3.1. A closed subset W of a normed linear space X is called non-quasi-
Chebyshev if it is not quasi-Chebyshev.

Definition 3.2. Let U be a closed subset of a normed linear space X. Then U is called
ω-quasi-Chebyshev if the set PU(x) is non-empty and weakly compact for all x∈X\U.
And U is ω-non-quasi-Chebyshev if it is not ω-quasi-Chebyshev.

Definition 3.3. Let X be a Banach algebra, we say X has property (N) if Ω(X) 6=∅ and
for x,y∈X, |τ(x)|≤ |τ(y)| for each τ∈Ω(X) implies that ‖x‖≤‖y‖.

Fupinwong and Dhompongsa studied the fixed-point property of unital commutative
Banach algebras over a field F (see [7]). They obtained the following results.

Consider X as an infinite-dimensional unital abelian Banach algebra, which has prop-
erty (N) such that X̂ is self-adjoint and

inf{r(x) : x∈A, ‖x‖=1}>0, (3.1)

then

(1) there exists a sequence {xn}∈X such that

{τ(xn) : τ∈Ω(X)}⊆ [0,1].

For each n∈N, and An={(̂xn)
−1
{1} is a sequence of non-empty pairwise disjoint subsets

of Ω(X).

(2) Consider the mapping Tn on X by

Tn : X−→X, x−→ xnx, (3.2)

and sets

En ={x∈X : 0≤τ(x)≤1,τ∈Ω(X) and τ(x)=1 for τ∈An}. (3.3)

Then Tn hasn’t any fixed-point in En.
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Theorem 3.1. Let X be an infinite dimensional unital abelian Banach algebra with property (N)
such that X̂ is self-adjoint and satisfying (3.1), then X contains a non-quasi-Chebyshev subset
(Moreover, X contains a non-w-quasi-Chebyshev set).

Proof. Assume on the contrary X and every of its closed subsets be quasi-Chebyshev (ω-
quasi-Chebyshev). Let Tn and En defined by (3.2) and (3.3). Since X has property (N)
and |τ(xn)|≤1=τ(e) then ‖xn‖≤1 for n∈N. For x,y∈X, we have

‖Tn(x)−Tn(y)‖=‖xn(x−y)‖≤‖xn‖‖x−y‖≤‖x−y‖.

Then Tn is non-expansive on X. For n∈N, En is a Tn-invariant convex set of X, then for
x∈X, PEn(x) is convex and by assumption is non-empty compact (weakly compact) set.
We show that for x=0, PEn(0) is Tn-invariant so. Let y∈PEn(0), further y∈En and then
Tny is in En since Tn(En)⊆En. As Tn is non-expansive, it follows that for g∈En,

‖Tny−0‖=‖Tny−Tn0‖≤‖y−0‖≤‖g−0‖,

and therefore Tny is in PEn(0). Thus Tn maps PEn(0) into itself. On the other hand,
since the multiplication operation (a,b)→ ab is jointly continuous in Banach algebras.
Then Tn is a continuous map. As I−Tn is convex by applying Lemma 2.2 and Lemma 2.3
there exist pn ∈PEn(0)∩F (Tn) for each n∈ N. Therefore pn ∈ En∩F (Tn). But this is a
contradiction by part (2) of the results of Fupinwong and Dhompongsa.

Definition 3.4. A closed subset W of a normed linear space X is called pseudo-Chebyshev,
if the set PW(x) be a non-empty and finite-dimensional subset of X for all x∈X\W.

A closed subset W of a normed linear space X is non-pseudo-Chebyshev if it is not
pseudo-Chebyshev.

Theorem 3.2. Let X be an infinite dimensional unital abelian Banach algebra with property (N)
such that X̂ is self-adjoint and satisfying (3.1). Then X has an non-pseudo-Chebyshev subset.

Proof. Assume on the contrary that X and every of its closed subsets are pseudo-
Chebyshev. Let Tn and En be in such as (3.2) and (3.3). First we show that En is a bounded
set for each n∈N. For x∈En,

1

‖x‖
sup

τ∈Ω(X)

|τ(x)|=
1

‖x‖
sup

τ∈Ω(X)

|τ(x)|

=sup|τ(
x

||x||
)|= r

( x

||x||

)

≥inf{r(y) : y∈X,‖y‖=1}= β.

Since Ω(X) is compact there is a character τ0 on X such that supτ∈Ω(X) |τ(x)|= |τ0(x)|.
Thus

‖x‖≤
|τ0(x)|

β
.
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Hence En is bounded. Moreover, PEn(x) is bounded for x∈X. Since a closed, bounded
and finite dimensional subset of a normed space is compact, so by Bolzano Weierstrass
theorem PEn(x) is a compact set. Similar to the proof of Theorem 3.1 we can show a
contradiction under this assumption.

We denoted by CF(S) the Banach algebra of continuous functions from a topological
space S to F, with the supremom norm. By results in [7], for each x∈CF(S), σ(x)= x(S)
and

r(x)= sup
λ∈σ(x)

|λ|=sup
s∈S

|x(s)|=‖x‖, (3.4)

therefore if x,y∈CF(S) and |x(s)|≤ |y(s)| for each s∈S, then ‖x‖≤‖y‖.

Corollary 3.1. Let S be a compact Hausdorff topological space. If CF(S) is infinite-
dimensional then CF(S) has a closed convex non-quasi and a closed convex non-pseudo-
Chebyshev subset.

Proof. Clearly CF(S) has property (N). By (3.4) we have inf{r(x) : x∈X,‖x‖=1}=1>0.
Since CF(S) satisfies the conditions of Theorem 3.1, will get that CF(S) has a closed convex
non-quasi- Chebyshev subset.

Also as a consequence of Theorem 3.2, we conclude that CF(S) has a closed convex
non-pseudo-Chebyshev subset.

In the following, we prove some results on C∗-algebras. This will done by using
Gelfand theorem.

Theorem 3.3. Let A be a C∗-algebra, then dim(A) =∞ if and only if A has a bounded non-
quasi-Chebyshev subset.

Proof. If dim(A)=∞ then by a result of Ogasawara theorem (Theorem 1 in [12]) A con-
tains an infinite dimensional commutative C∗-subalgebra B. Then by Gelfand Theorem
(see [11]) B ≃ C(Ω(A)) hence as a consequence of Corollary 3.1, B has an non-quasi-
Chebyshev subset This is true also for A.

For the inverse let dim(A)< ∞ and W be a closed and bounded subset of A. By
Bolzano Weierstrass Theorem, W is compact. Thus for each a∈A, PW(a) is non-empty
and compact, which make a contradiction. Thus dim(A)=∞.

Theorem 3.4. Let A be a C∗-algebra then dim(A) = ∞ if and only if A has a non-pseudo-
Chebyshev subset.

Proof. The proof is similar to the that of Theorem 3.3.

Corollary 3.2. Let E be a C∗-module over a C∗-algebra A, then dim(E)=∞ if and only if
E has an non-quasi-Chebyshev subset.



98 M. Iranmanesh and F. Soleimany / Anal. Theory Appl., 34 (2018), pp. 92-102

Proof. By Lemma 2.1, E is isometrically embedded in C∗-subalgebra B(H,K), where H, K
are Hilbert spaces. Now, it is a consequence of Theorem 3.3.

Corollary 3.3. Let E be a C∗-module over a C∗-algebra A then dim(E)=∞ if and only if
E has a non-pseudo-Chebyshev subset.

Proof. It is a consequence of Theorem 3.4.

4 Characterizations of quasi-Chebyshev in C*-algebras

In this section, we give some characterizations of best approximations and quasi-Chebyshev
subalgebras in C∗-algebras.

Definition 4.1. Let A be a Banach space and B be a proper closed subspace of A. An
element Z∈A is called B-minimal if 0 is the best approximation to Z in B.

Definition 4.2. The mapping p : A→R is substate function if for h,g∈A and α∈R+,

i) ‖p‖=1.

ii) p(h+g)≥ p(h)+p(g) and p(αh)=αp(h).

iii) p be a positive function i.e., p(h)≥0, for h≥0.

In Definition 4.2 if P be a linear function then p is called a state.
Let A be a C∗-algebra, an element x∈A is hermitian if x= x∗, we denote by Ah, the

set of all hermitian element of A. in fact

Ah={x∈A : x= x∗}. (4.1)

By the above assumptions, we have the following lemmas.

Lemma 4.1 (see [13]). Let A be a unital C∗-algebra, B a unital C∗-subalgebra of A and a∈Ah.
If a is B-minimal, then there exists a state φ of A such that φ(a2)=‖a‖2 and φ(ab+b∗a)=0 for
all b∈B.

Let x, y be two elements of a normed linear space X, then x is orthogonal to y in the
Birkhoff-James sense [2] if ‖x‖≤‖x+λy‖ for all λ∈C. If x be Birkhoff-James orthogonal
to y, we write x⊥B y. Let G be a subset of X and x∈X. Then x is said to be orthogonal to
G (x⊥B G) whenever x⊥B g, ∀g∈G.

Lemma 4.2 (see [2]). Let A be a C∗-algebra, a,b∈A. Then a⊥B b if and only if there exists a
state ϕ on A that ϕ(a∗a)=‖a‖2 and ϕ(a∗b)=0.

Lemma 4.3. Let M be a subalgebra of C∗-algebra A and a∈Ah. If |PM(a)|≥1 then there exist
g0∈PM(a) is hermitian.
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Proof. Suppose m0∈PM(a), we show the real part of representation m0=
m0+m∗

0
2 +i

m0−m∗
0

2
is sightly element. We have for m∈M,

‖a−
m0+m∗

0

2
‖=‖

a+a∗

2
−

m0+m∗
0

2
‖

≤‖
a−m0

2
‖+‖

a∗−m∗
0

2
‖

≤‖a−m‖.

Hence
m0+m∗

0
2 ∈PM(a)∩Ah.

Theorem 4.1. Let M be a subalgebra of A, m0∈M and a∈A\M. Then the following statements
are equivalent.

i) m0∈PM(a).

ii) There exists a substate ϕ on A such that for m∈M

ϕ((a−m0)
∗(a−m0))=‖a−m0‖

2, (4.2a)

ϕ(m∗(a−m0))≤0. (4.2b)

Proof. i)→ ii). Let m0∈PM(a) so a−m0⊥Bm, for m∈M then by Lemma 4.2 there exists a
state ϕm such that ϕm((a−m0)∗(a−m0))=‖a−m0‖2 and ϕm(m∗(a−m0))=0.

Define ϕ:A−→R, by ϕ(h)=infm∈M Re ϕm(h). We show that it is a substate. For α∈R+

and h∈A

ϕ(αh)= inf
m∈M

Reϕm(αh)=α inf
m∈M

Reϕg(h)=αϕ(h),

and for each h,k∈A we have

ϕ(h+k)= inf
m∈M

Reϕm(h+k)

= inf
m∈M

Reϕm(h)+ inf
m∈M

Reϕg(k)

≥ inf
m∈M

Reϕm(h)+ inf
m∈U

Reϕm(k)= ϕ(h)+ϕ(k).

Since ϕm is positive function and ‖ϕm‖= 1 = ϕm(e) (see Corollary 3.3.4 [11]) then ϕ is
positive and ‖ϕ‖=1. Also

ϕ((a−m0)
∗(a−m0))=‖a−m0‖

2,

and for m∈M, we have

ϕ(m∗(a−m0))≤ ϕm(m∗(a−m0))=0.

This completes the proof of this part.
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ii)→ i). Suppose that such a substate exists. By the Cauchy-Schwartz inequality for
m∈M we get,

‖a−m0‖
2=ϕ((a−m0)

∗(a−m0))

≤−ϕ((m−m0)
∗(a−m0))+ϕ((a−m0)

∗(a−m0))

≤−ϕ((m−a)∗(a−m0))−ϕ((a−m0)
∗(a−m0))

+ϕ(a−m0)
∗(a−m0))

=−ϕ((m−a)∗(a−m0))

≤|−ϕ((m−a)∗(a−m0))|≤‖ϕ‖‖(m−a)∗‖‖a−m0)‖

≤‖a−m‖‖a−m0‖.

Hence ‖a−m0‖≤‖a−m‖, i.e., m0∈PM(a), which completes the proof.

Theorem 4.2. Let M be a unital proximinal *-subalgebra of A. Then the following statements
are equivalent.

i) M is a quasi-Chebyshev subalgebra.

ii) There do not exist substate ϕ on A, x0 ∈A and a sequence xn ∈A without a convergent
subsequence with x0−xn ∈M (n=1,2,···) such that for m∈M,

ϕ(x∗nxn)=‖xn‖
2, (4.3a)

ϕ(m∗xn)≤0. (4.3b)

Proof. i)⇒ii) Suppose that (ii) does not hold, then there is ψ on A, x0∈A and a sequence
xn ∈ A without a convergent subsequence and x0−xn ∈ M, sataisfid conditions (4.3a),
(4.3b). Put gn = x0−xn by Theorem 4.1, gn ∈PM(x0), without a convergent subsequence,
this is a contradiction.

ii)⇒ i). Assume if possible that M is not quasi-Chebyshev in A. Since M is proxim-
inal in A, for x ∈A, PM(x) 6=∅, let a∈A such that gn ∈PM(a) without a convergent
subsequence. We assume that a is a hermitian element of A, also by Lemma 4.3, {gn} is

hermitian (If a 6= a∗, then we can consider the Hermitian element X=

[
0 a∗

a 0

]
in M2(A).

If this element has a best approximation in M2(M) then it is easy to see that it has a

best approximation in M2(M) with the form M0 =

[
0 m∗

m 0

]
where m∈M). By applying

Lemma 4.1 there exist state function φn such that

φn((a−gn)
2)=‖a−gn‖

2,

φn((a−gn)(g)∗+g(a−gn))=0.
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Now we define ϕ(h) = infn∈N Reϕn(h), similar to the proof of the pervious theorem we
can show that it is a substate. Also for i,n∈N, φn((a−gi)

2)=‖a−gi‖
2 because

φn((a−gi)
2=φn((a−gn+gn−gi)(a−gn+gn−gi)

∗)

=φn((a−gn)(a−gn)
∗)+φn((a−gn)(gn−gi)

∗

+(gn−gi)(a−gn)
∗)+φn((gn−gi)(gn−gi)

∗)

≥φn((a−gn)(a−gn)
∗)=‖a−gn‖

2=‖a−gi‖
2.

On the other hand, we have

φn((a−gi)
2)≤‖φn‖‖a−gi‖

2 =‖a−gi‖
2.

Hence φn((a−gi)
2)=‖a−gi‖

2. Therefore for n∈N we have

ϕ((a−gn)(a−gn)
∗)= ϕ((a−gn)

2)=‖a−gn‖
2.

But ϕ(g∗(a−gn))≤Reϕn(g∗(a−gn))=
1
2(ϕn((a−gn)g∗+g(a−gn))=0. Hence

ϕ(g∗(a−gn))≤0,

which is a contraction by part (ii).
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