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Abstract

In this paper, we study a band constrained nonnegative matrix factorization (band

NMF) problem: for a given nonnegative matrix Y , decompose it as Y ≈ AX with A a

nonnegative matrix and X a nonnegative block band matrix. This factorization model

extends a single low rank subspace model to a mixture of several overlapping low rank

subspaces, which not only can provide sparse representation, but also can capture signifi-

cant grouping structure from a dataset. Based on overlapping subspace clustering and the

capture of the level of overlap between neighbouring subspaces, two simple and practical

algorithms are presented to solve the band NMF problem. Numerical experiments on both

synthetic data and real images data show that band NMF enhances the performance of

NMF in data representation and processing.

Mathematics subject classification: 15A23, 65F30, 90C59.

Key words: Nonnegative matrix factorization, Band structure, Subspace clustering, Sparse

representation, Image compression.

1. Introduction

In many large datasets, the relevant information often lies in a low dimensional subspace of

the ambient space, which leads to a large interest in representing data with low rank approxima-

tions. Particularly, the nonnegative matrix factorization (NMF) for nonnegative data analysis,

not only uncovers latent low dimensional structures intrinsic in high dimensional data but also

provides a nonnegative, part-based representation of data. With these strengths, NMF has

attracted intensive studies in the last decades and various factorization models, algorithms and

regularized variants have been developed for different purposes and applications [1,2,5,9,20].

Despite the growing availability of tools for NMF, many techniques ignore an underlying

information that the data often contains some type of structure that enables intelligent repre-

sentation and processing. In computer vision, for example, a collection of images of an object

taken under different illuminations has not only a low rank representation [4], but also signifi-

cant spatial structure relating to the statistics of the scene, such as sparseness on a particular

wavelet basis or low total variation [3]. Also, for monaural blind source separation [8], the

coefficient matrix X with block diagonal structure indicates where each source is active when

there is no training data for the individual sources.

In recent decade, more and more strategies have been given to represent and capture the

intrinsic structure implied in the data. Kim et al. [13] introduced a novel formulation of sparse

NMFs to get the sparse structure. Cai et al. [12] proposed a graph regularized nonnegative
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matrix factorization (GNMF) model to discover the intrinsic geometrical and discriminating

structure of the data space by constructing a nearest neighbor graph. Pei et al. [14] incorporated

neighbor isometric regularized constraint in the optimization of the NMF to extract the low

rank space that preserves neighbor isometric geometry structure. Similar to these methods, Wu

et al. [15] proposed a nonnegative low rank and group sparse matrix factorization (NLRGS)

method to capture the grouping structure by simultaneously integrating low rank and group

sparse constraints. All these methods, however, are difficult to clearly identify the implicit data

structural characteristics for two reasons. First, all these methods are essentially based on the

hypothesis that all data is approximately drawn from a low rank subspace. However, a given

dataset can seldom be well described by a single subspace. A more reasonable model is to

consider samples as a mixture of several overlapping low rank subspaces, as shown in Fig. 1.1

(left). The right is a real image whose pixels is continuously changing, so its pixels are well

characterized by its neighbor points, which favors our proposed overlapping subspace model.

Second, there are limitations of using regularization method to capture the data structural

characteristics. Indeed, when data are from a union of five overlapping subspaces, almost all of

the methods which extend the NMF problem formulation to include additional regularization

terms on A and/or X cannot capture this overlapping low rank subspace structure (see Fig.

4.3(a-c)).
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Fig. 1.1. A display of overlapping subspace model.

Besides, low rank representation (LRR) [10] and its various modified methods [16,17] in-

corporated the low rank constraint to represent each sample as a linear combination of other

samples. However, these low rank methods neither derive the projection subspace of original

examples nor get the block band structure of the coefficient matrix when data are overlapping.

More specifically, LRR and its variants can only obtain the block diagonal structure of the

coefficient matrix approximatively although some subspaces share a few bases (see Fig. 4.3(d)).

To overcome the aforementioned deficiencies, this paper proposes a band constrained non-

negative matrix factorization model (named band NMF). Particularly, band NMF extends a

single low rank subspace model to a mixture of several overlapping low rank subspaces, which

not only can provide sparse representation but also can capture significant grouping structure

from a dataset. Additionally, the coefficient matrix X with band structure is also considered as

a filtering matrix that performs continuity and removes slowly changing trends from the data

representation. Moreover, the block band matrices allow for convenient storage, which is very
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significant to represent data in the practical application. Benefiting from these properties, ex-

perimental results substantiate that band NMF has a better performance in data representation

and processing than the state-of-the-art NMF models.

The remainder of this paper is organized as follows. In Section 2, we give a brief description of

related conceptions and results. In Section 3, we state the band constrained nonnegative matrix

factorization problem and two algorithms are proposed to solve this problem approximately.

The experimental results are highlighted in Section 4. Finally, the conclusions are given in

Section 5.

The following notation is used. Rm×n
+ denotes the set of nonnegative real matrices with

order m by n. [X ]ij or xij denotes the (i, j) th element of the matrix X , Xij denotes the

(i, j) th block of the block matrix X = (Xij)m×n, and X(:, j) (X(j, :)) the j th column (row)

of the matrix X . XT denotes the transpose of X , and X ≥ 0 means the elements of X are

nonnegative. span(U) denotes the linear space spanned by the columns of the matrix U .

2. Related Conceptions and Known Results

In this section, we first briefly review an important special matrix–block band matrix and

its some properties. Next, the nonnegative matrix factorization and related algorithms are

presented. Finally, we introduce the subspace clustering by low rank representation.

2.1. Block band matrix

Definition 2.1. The block matrix X = (Xij)m×n, Xij ∈ Rmi×nj , is called a {c1, c2} block

band matrix if, for nonnegative integers c1 and c2, its blocks satisfy

Xij = 0 when i > j + c1 or j > i+ c2.

The reasonably small nonnegative integers c1 and c2 are called the lower and upper band-

width, respectively. There are many special block band matrices that occur frequently, such as

m×n block upper triangular matrices ({0, n−1} block band matrices), m×n block tridiagonal

matrices ({1, 1} block band matrices) and m× n block lower Hessenberg matrices ({m− 1, 1}

block band matrices).

Since the block band matrices are special sparse matrices, many efficient methods for storing

sparse matrices, such as hierarchical storage format [24] and arithmetical-coding-based format

[25], can be used for the storage of the block band matrices. Particularly, for a {c1, c2} block

band matrix X = (Xij)m×n, when Xij ∈ Rmr×mj (that is, each block Xij has the same number

of rows), then such a matrix can be stored in a (c1 + c2+1)×n block matrix BX with the rule

that

BX(i− j + c2 + 1, j) = Xij ,

for all (i, j) that fall inside the band, and the rest blocks of the matrix BX are implicitly zero.

For example, a {1, 2} block band matrix with 6× 6 blocks is stored as a 4× 6 block matrix as

below.
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From a computational point of view, working with block band matrices is always preferential

to working with similarly dimensional dense matrices. For example, suppose X ∈ Rn×n is a

{c1, c2} band matrix (that is, each block of this matrix is 1 × 1 submatrix), c1, c2 are much

smaller than n and y, z ∈ Rn, the arithmetic operation count for y+Xz is just 2n(c1 + c2 +1)

flops, while the count is 2n2 flops if the matrix X is a dense matrix. Thus the work involved in

performing operations such as multiplication falls significantly, often leading to huge savings in

terms of computing time and complexity.

2.2. Nonnegative matrix factorization

The NMF problem can be stated as follows: for a given nonnegative matrix Y ∈ Rm×n
+

and a positive integer k ≪ min(m,n), we aim to find two nonnegative matrices A ∈ Rm×k
+ and

X ∈ Rk×n
+ to minimize the squared Frobenius norm

DF (Y ‖ AX) =
1

2
‖ Y −AX ‖2F . (2.1)

Generally, A is called a basis matrix, X is called a coefficient matrix.

In NMF, it is often assumed that the factorization rank k is given. In practice, however,

the given value k is suboptimal and therefore we must choose a suitable value depending on the

data and setting. Two popular approaches are: trial and error (that is, test different values of

k and pick the one performing best for your model), estimation using the SVD (that is, look

at the decay of the singular values of the input data matrix). In this paper, k is automatically

chosen according to the dimension of the subspace and level of overlap (that is, the number of

the common bases between two subspaces), as will be shown in Section 3.

Lee and Sueng [6] proposed classical multiplicative update algorithm (MU) for NMF as

follows:

aij ← aij
[Y XT ]ij

[AXXT ]ij + ε
, (2.2)

xjt ← xjt

[ATY ]jt
[AATX ]jt + ε

. (2.3)

The constant ε, usually taken as 10−9, is added to avoid division by zero, and the following

theorem ensures its convergence.

Theorem 2.1. ([6]) The objective function (2.1) is nonincreasing under the update rules (2.2)

and (2.3).

In contrast, alternating nonnegative least squares (ANLS) is a class of methods where the

subproblems min
A≥0

‖ Y T − XTAT ‖2F and min
X≥0

‖ Y − AX ‖2F are solved exactly, that is, the
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update for A is given by

A = argmin
A≥0
‖ Y T −XTAT ‖2F , (2.4)

where X is fixed, and

X = arg min
X≥0

‖ Y − AX ‖2F , (2.5)

where A is fixed. Many methods can be used to solve the two subproblems (2.4) and (2.5), and

dedicated active-set methods [22] have shown to perform very well in practice. Importantly,

ANLS has the convergence property that every limit point is a stationary point [22].

2.3. Subspace clustering by low rank representation

Low rank representation [10] learns the structural representation Z over the specific dictio-

nary Y via the low rank constraint. Thus, the final objective function is

min
Z,E
‖ Z ‖∗ +λ ‖ E ‖2,1, st Y = Y Z + E, (2.6)

where λ > 0 is a predefined constant and ‖ Z ‖∗ indicates the nuclear norm of the matrix Z,

and ‖ E ‖2,1=
∑

i ‖ E(:, i) ‖2.

Let Z∗ be the minimizer of the problem (2.6), and the skinny SVD of Z∗ is U∗Σ∗(V ∗)T , an

affinity matrix W is constructed as follows:

[W ]ij = [Ũ(Ũ)T ]ij
2
, i, j = 1, 2, · · · , n, (2.7)

where Ũ is formed by U∗(Σ∗)
1

2 with normalized rows. Finally, the spectral clustering algorithms

[18] are used to segment the data samples into l clusters. Algorithm 2.1 summarizes the whole

procedure of performing cluster.

Algorithm 2.1. Subspace Clustering.

1. Input data matrix Y , number l of clusters;

2. Obtain the minimizer Z∗ of problem (2.6);

3. Compute the skinny SVD Z∗ = U∗Σ∗(V ∗)T ;

4. Construct an affinity matrix W by (2.7);

5. Use W to perform Normalized Cuts [19] and segment the data samples into l clusters.

Instead of using LRR, different subspace clustering methods are proposed based on various

schemes. Fischler et al. [7] proposed a robust statistical approach, named random sample

consensus (RANSAC), which fits a subspace of dimension d to randomly chosen subsets of d

points until the number of inliers is large enough. In [23], Yan et al. presented a local spectral

clustering-based approaches (LSA) by using local information around each point to build a

similarity between pairs of points. In addition, Elhamifar et al. [11] proposed a sparse subspace

clustering method (SSC) by solving a sparse optimization program whose solution is used in a

spectral clustering framework to infer the clustering of the data into subspaces. About other

subspace clustering algorithms, one can see paper [11,26] and the references therein.
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3. Nonnegative Matrix Factorization with Band Constraint

The band constrained nonnegative matrix factorization (band NMF) studied in this paper

can be stated as

Problem 3.1. For a given nonnegative matrix Y ∈ Rm×n
+ , find a positive integer k ≪

min(m,n), a nonnegative matrix A ∈ Rm×k
+ , and a nonnegative block band matrix X ∈ Rk×n

+

to minimize the squared Frobenius norm

DF (Y ‖ AX) =
1

2
‖ Y −AX ‖

2
F .

To solve Problem 3.1, we mainly consider how to determine the factorization rank k and the

optimal block band structure of the coefficient matrix X . To do this, we study the following

two contents. First, since our band NMF model extends a single low rank subspace model to

a mixture of several overlapping low rank subspaces, we need to segment all data points (i.e.,

all of the columns of the data matrix Y ) into their respective subspaces–overlapping subspace

clustering. Second, we need to capture the level of overlap between neighboring subspaces.

Based on these two contents, two algorithms are presented for band NMF.

(1) Overlapping subspace clustering

Completing overlapping subspace clustering for all columns of Y , we first use the soft thresh-

olding approach [10] to estimate the number l of subspaces.

In the clustering process, one of the drawbacks of the Algorithm 2.1 is that the clustering

performance is not accurate enough when some subspaces share a few base vectors. To get

more accurate results, we propose the Algorithm 3.1 based on the idea of reassignment. That

is, after the initial l clusters S1, S2, · · · , Sl have been completed using Algorithm 2.1 (or other

clustering algorithms like SSC [26]), we repeat the following two steps until convergence: 1)

compute the measure matrix Q by (3.1) to capture closeness between data points and clusters.

2) reassign data points into the closest cluster.

Here, the measure matrix Q is defined as follows:

[Q]ij = min
x
‖ yi −Ajx ‖2, (3.1)

where yi indicates the i th columns of the matrix Y , and Aj is a m× dj matrix whose columns

are randomly selected from the j th cluster Sj, i = 1, 2, · · · , n, j = 1, 2, · · · , l. Note that the

value of dj is obtained according to the priori information. For example, all of dj(j = 1, 2, · · · , l)

are set as 9 when processing face images because face images under different illuminations can

be well-approximated by a 9 dimensional linear subspace.

Algorithm 3.1. Overlapping Subspace Clustering.

1. Input data matrix Y , the number l of clusters and the subspace dimensions dj , j =

1, 2, · · · , l;

2. Class initialization using Algorithm 2.1 (or SSC) to obtain Sj ;

3. For each {yi}
n

i=1, compute the measure matrix Q by (3.1);

4. For each {yi}
n

i=1, reassign yi to the j th cluster Sj if the value [Q]ij is the smallest;

5. Repeat 3,4 until convergence.
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The following definitions are presented to build neighboring relations between subspaces and

capture their levels of overlap, which determine the factorization rank k and the block band

structure of the coefficient matrix X .

Definition 3.1. Suppose Uj and Uh are two nonnegative matrices, the nonnegative principal

angles θ
(1)
j,h, · · · , θ

(min(dj ,dh))
j,h between two subspaces span(Uj) and span(Uh) of dimensions dj

and dh are recursively defined by

cos(θ
(i)
j,h) = max

y∈span(Uj),y≥0
max

z∈span(Uh),z≥0

yT z

‖ y ‖2‖ z ‖2
:=

yTi zi

‖ yi ‖2‖ zi ‖2
,

with the constraints that y, y1, · · · , yi−1 and z, z1, · · · , zi−1 are linearly independent respectively.

For the sake of simplicity, if the columns of Uj and Uh are nonnegative normalized bases, then

the cosine of the nonnegative principal angles between two subspaces span(Uj) and span(Uh)

can be approximated as the first dj (if dj ≤ dh) maximums from different rows and columns of

UT
j Uh.

Definition 3.2. The similarity between two subspaces is defined by

sim(span(Uj), span(Uh)) =

√

cos2 θ
(1)
j,h + · · ·+ cos2 θ

(min(dj,dh))
j,h .

Based on overlapping subspace clustering and the similarity between subspaces, we can

partition the data matrix Y into [Y1 Y2 · · · Yl] where
∑l−1

j=1 sim(Yj , Yj+1) is the maximum for

all permutations. Note that Y1, Y2, · · · , Yl are approximated as l linear subspaces. For this

permutation, we may reasonably conclude that Yj and Yj+1 have a few common nonnegative

basis vectors. To capture the level of overlap (that is, the number of common nonnegative

bases) between neighboring subspaces, we define a measure vector Mc = [m1,2
c m2,3

c · · · ml−1,l
c ]

as follows:

mj,j+1
c = #{i | cos(θ

(i)
j,j+1) > σ, i = 1, 2, · · · ,min(dj , dj+1)}, (3.2)

where σ is a threshold parameter and taken as 0.9 in this paper, #{·} is the function that

counts the number of elements of a finite set, and j = 1, 2, · · · , l − 1.

After obtaining the measure vector Mc, we suggest the factorization rank k is taken as

k =

l
∑

j=1

dj −

l−1
∑

j=1

mj,j+1
c . (3.3)

This practice has two main advantages. One lies in the usage of prior information (i.e., the

dimension dj); the other one is to avoid using overlapping basis vectors to represent the same

group data.

Accordingly, the block band structure of the coefficient matrix X = [X1 X2 · · · Xl] can be

obtained based on levels of overlap. It is worth noting that the band property of the matrix X

does not require the data samples to have been grouped together according to their subspace

memberships. There is no loss of generality to assume that the indices of the samples have

been rearranged to satisfy the true subspace memberships, because the Frobenius norm keeps

the orthogonal invariance.
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(3) Algorithms for band NMF

In this subsection, two algorithms for band NMF are presented.

The first one is based on the multiplicative update formulas mentioned in Section 2.2. To

do this, the initial values of every block Xj ( j = 1, 2, · · · , l) are taken as

Xj(p, :) =

{

1 if 1 ≤ j ≤ l, qj ≤ p ≤ qj + dj − 1,

0 otherwise.
(3.4)

Here, Xj(p, :) denotes the p th row of the matrix Xj , and qj is defined as follows:

qj =











1 if j = 1,

max(j, 1 +
j−1
∑

i=1

(di −mi,i+1
c )) if j = 2, 3, · · · , l.

(3.5)

Algorithm 3.2 summarizes the whole procedure of band constrained multiplicative update for-

mulas (band MU), where ⊗(⊘) indicates the element-wise product (division), and ε is taken as

10−9 in this paper.

Algorithm 3.2. Band Constrained Multiplicative Update Formulas (band MU).

1. Input data matrix Y , and the dimensions dj , j = 1, 2, · · · , l;

2. Obtain the measure vector Mc by (3.2), compute the value k by (3.3);

3. Initialize X by (3.4), and let A = Y XT ;

4. Update A and X :

A = A⊗ (Y XT )⊘ (AXXT + ε);

X = X ⊗ (ATY )⊘ (ATAX + ε);

5. Repeat 4 until convergence.

Theorem 3.1. Each iteration of the matrix X is a block band matrix, and the objective function

DF (Y ‖ AX) of Problem 3.1 is nonincreasing under the band constrained multiplicative update

formulas.

Proof. As a result of the multiplicative update rule to keep the zero element invariant, and

the start matrix X is a block band matrix, so each iteration of matrix X is block band matrix.

From Theorem 2.1, we can obtain that the objective function DF (Y ‖ AX) is nonincreasing.

Table 3.1: The computing complexity of band MU.

MU update for A(r+1) MU update for X(r+1)

B1 = Y X(r)T −→
∑l

i=1 2mdili flops B2 = A(r+1)TY −→ 2mnk flops

C1 = X(r)X(r)T −→
∑l

i=1 2d
2
i li flops C2 = A(r+1)TA(r+1) −→ 2mk2 flops

D1 = A(r)C1 −→ 2mk2 flops D2 = C2X(r) −→
∑l

i=1 2kdili flops

A(r+1) = A(r) ⊗ (B1⊘D1) −→ 2mk flops X(r+1) = X(r) ⊗ (B2 ⊘D2) −→
∑l

i=1 dili flops
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For each iteration, the computing complexity of band MU is presented in Table 3.1. Note

that here li denotes the number of data points in the set Si, and n =
∑l

i=1 li . Apparently, the

total arithmetic operation for band MU is no more than 2km(n+2k+1)+2dmn(m+dm+k+1)

flops, where dm = max
i

di. However, the computing complexity for general NMF is 2k(2mn+

2mk + 2nk +m+ n) flops, so the band NMF leads to a saving of computing complexity.

Since each iteration of ANLS computes an optimal solution of the nonnegativity constrained

least squares subproblems, ANLS decreases the error the most among NMF algorithms in each

iteration and every limit point of the sequence {A(r), X(r)} is a stationary point. In order

to take advantage of the ANLS algorithm and the block band structure, a band alternating

nonnegative least squares (band ANLS) method for band NMF, is described in Algorithm 3.3.

Algorithm 3.3. Band Alternating Nonnegative Least Squares (band ANLS).

1. Input data matrix Y , and the dimensions dj , j = 1, 2, · · · , l;

2. Obtain the measure vector Mc by (3.2), compute the value k by (3.3), and the qj by

(3.5);

3. Initialize nonnegative matrix A ∈ Rm×k
+ , X = 0k×n;

4. Update A and X :

for j = 1 : l

s = qj + dj − 1, Aj = A(:, qj : s),

Xj(qj : s, :) = arg min
X′≥0

‖ Yj −AjX
′ ‖

2

F
,

end

A = argmin
A≥0
‖ Y −AX ‖

2
F ;

5. Repeat 4 until convergence.

Theorem 3.2. Any limit point of the sequence {A(r), X(r)} generated by Algorithm 3.3 is a

stationary point of Problem 3.1.

Proof. SupposeX∗ is the limit point of the sequenceX(r), since all variables of the coefficient

matrixX(r) are in the band, and the bandwidth of the matrixX(r) in each iteration is invariant,

then X∗ is a block band matrix whose bandwidth is no more than the bandwidth of X(r).

Directly from Corollary 2 of [21], we have that any limit point of the sequence {A(r), X(r)} is

a stationary point.

4. Numerical Experiments

In this section, we investigate the performance of our proposed overlapping subspace clus-

tering method (named OSC) by comparing to four popular methods, that is, RANSAC [7],

LSA [23], LRR [10] and SSC [11]. For band NMF, we first compare the band MU with the

band ANLS on different datasets, and then compare the approximate error and sparseness of

band NMF with standard NMF [6], sparse NMFs [13] and NLRGS [15]. In addition, we apply
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the band NMF to image compression to test its compressibility. The datasets we employed are

detailed below.

Synthetic dataset: We generate 10 groups of data and each group contains 100 data points

drawn from five overlapping subspaces in the following procedure: the bases Ui of each subspace

are 30×8 nonnegative matrices with full column rank, and Ui and Ui+1 have some common base

vectors. The data points from each subspace are sampled by Yi = UiRi, 1 ≤ i ≤ 5, with Ri

being a 8×20 matrix with uniform distribution.

YaleB dataset1) : This dataset has 38 subjects and around 64 near frontal images under

different illuminations per subject. Each image is manually cropped and normalized to the size

of 32× 32 pixels. 20 images of each subject are randomly selected to form test data.

It should be pointed out that, in follow-up experiments, the evaluations are conducted by

running 10 times and the average performance is recorded as the final result to remove the

influence of randomness in the process of testing.

4.1. Experiments for overlapping subspace clustering

We do experiments on synthetic and Yale B data to test the performance of OSC. First,

to observe how the performances vary between the feature dimensions (i.e., the rows of basis

matrix), we carry out 6 trails on simple synthetic data in which the data points are drawn

from R10, · · · , R60 respectively with their levels of overlap being three. The clustering errors of

LRR (Algorithm 2.1, where λ = 0.1) and OSC (where dj = 8) are shown in Table 4.1. Next,

to observe how the performances vary between the levels of overlap, we do experiments on the

synthetic data points drawn from the first two subspaces whose levels of overlap range from 1 to

7, then report the clustering errors in Table 4.2. Finally, Table 4.3 presents the performance of

OSC against other four popular subspace clustering algorithms when applied to the employed

datasets.

Table 4.1: Clustering errors of LRR and OSC versus the feature dimension.

dimension 10 20 30 40 50 60

LRR 0.186 0.132 0.082 0.063 0.020 0.016

OSC 0.033 0.014 0.002 0.000 0 0

Table 4.2: Clustering errors of LRR and OSC versus the level of overlap.

level of overlap 1 2 3 4 5 6 7

LRR 0.000 0.006 0.013 0.065 0.125 0.162 0.280

OSC 0 0 0 0 0 0.000 0.150

Experimental results confirm that OSC makes an effective improvement of LRR in term of

various feature dimensions and levels of overlap, and it obtains the best performance among

all the competing algorithms on overlapping subspace clustering. Besides, it is noted that the

value of dj can be taken as a value higher than the true value if there is no prior information

about dj , because which can effectively avoid a confusion of neighboring subspaces especially

when they have quite high levels of overlap.

1) http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html:
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Table 4.3: Clustering error of different algorithms on the synthetic and Yale B datasets.

results LSA RANSAC LRR SSC OSC

Synthetic 0.088 0.218 0.034 0.076 0.000

YaleB(2 subjects) 0.225 0.2755 0.1 0.025 0.025

YaleB(3 subjects) 0.3667 0.3415 0.1167 0.1333 0.0833

YaleB(5 subjects) 0.51 0.4923 0.18 0.13 0.1

YaleB(10 subjects) 0.5643 0.6714 0.3650 0.2929 0.2571

4.2. Experiments for band NMF

To observe the performances of the band MU and band ANLS, Fig. 4.1 displays the evolution

of the Frobenius errors (12‖ Y −AX ‖2F ) of the band NMF: on the left, the synthetic dataset,

and, on the right, the YaleB dataset with m = 1024 and n = 200. We observe that: 1) the band

MU converges rather slowly, but costs less computation time. 2) the band ANLS converges very

fast and obtains a smaller approximate error, but each iteration is time consuming.
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Fig. 4.1. Comparison of band MU and band ANLS. Here, t (second) indicates the time required.
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Fig. 4.2. Frobenius errors (left), sparseness (right) of NMF, sparse NMFs, NLRGS and band NMF on

10 trails
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(a) (b) (c)

(d) (e)

Fig. 4.3. The structure of coefficient matrix X by NMF (a), sparse NMFs (b), NLRGS (c), LRR (d)

and band NMF (e) when samples are from a union of several overlapping subspaces.

Moreover, we use synthetic dataset to compare the Frobenius errors and sparseness (that

is, the number of the zero elements in X over kn) of NMF, sparse NMFs (parameter β = 10),

NLRGS (λ =0.1, µ = 0.008 and ρ = 1.05) and band NMF (using band MU algorithm) on

10 trails, in which all of the used NMF methods have the same factorization rank k. Fig.

4.2 shows that band NMF has the highest sparseness, leading to the final errors which is

comparable with the values reached by NMF. In other words, band NMF provides a optimal

sparse representation among these models. Besides, Fig. 4.3 shows the structure of coefficient

matrix X of all factorization models. From the results, we can see that band NMF captures

the real data structure nicely but other models do not.

4.3. Experiments for image compression

In this section, we build a collection of images, which is presented in Fig. 4.4. The first

five images are web images with gradually-changed color and the last five are from BSDS 300

databases. SSIM [27] is used to evaluate their performance, and all of NMF models have the

same value of k. As can be seen from Table 4.4, band NMF achieves the best performance

among all the competing NMF methods. In fact, band NMF stores the least data to get these

compressed images. To better understand the behavior of band NMF, Fig. 4.5 shows the sample

compressed images using band NMF, NMF and sparse NMFs respectively. The experimental

results also show that band NMF approximates the ground truth images more accurately than

the other two methods.
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Fig. 4.4. Ten employed images

Table 4.4: Compression performances of three competing NMF methods on the ten employed images.

SSIM image 1 image 2 image 3 image 4 image 5

NMF 0.7813 0.8184 0.8093 0.8499 0.7862

sparse NMFs 0.9774 0.8980 0.8957 0.8672 0.8268

band NMF 0.9866 0.9479 0.9768 0.9136 0.8291

SSIM image 6 image 7 image 8 image 9 image 10

NMF 0.8190 0.7209 0.6055 0.6604 0.7503

sparse NMFs 0.8003 0.7586 0.8334 0.9058 0.8673

band NMF 0.9450 0.8567 0.8680 0.9340 0.9184

orignal NMF sparse NMFs band NMF

orignal NMF sparse NMFs band NMF

Fig. 4.5. Sample compressed images by NMF, sparse NMFs and band NMF.

5. Conclusion

In this paper we proposed a band NMF model to extend a single low rank subspace model

to a mixture of several overlapping low rank subspaces. To efficiently solve band NMF, we
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developed two algorithms in the frame of the MU and the ANLS by capturing the level of

overlap between two neighbouring subspaces. We conducted different numerical experiments to

verify that band NMF enhances the performance of NMF in data representation and processing.

In the future, we will explore a better way to reduce the impact from the clustering method to

band NMF, and explore the applications of this idea on other methods.
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