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Abstract

The weak Galerkin (WG) finite element method was first introduced by Wang and Ye

for solving second order elliptic equations, with the use of weak functions and their weak

gradients. The basis function spaces depend on different combinations of polynomial spaces

in the interior subdomains and edges of elements, which makes the WG methods flexible

and robust in many applications. Different from the definition of jump in discontinuous

Galerkin (DG) methods, we can define a new weaker jump from weak functions defined on

edges. Those functions have double values on the interior edges shared by two elements

rather than a limit of functions defined in an element tending to its edge. Naturally, the

weak jump comes from the difference between two weak functions defined on the same

edge. We introduce an over-penalized weak Galerkin (OPWG) method, which has two

sets of edge-wise and element-wise shape functions, and adds a penalty term to control

weak jumps on the interior edges. Furthermore, optimal a priori error estimates in H1

and L2 norms are established for the finite element (Pk(K), Pk(e), RTk(K)). In addition,

some numerical experiments are given to validate theoretical results, and an incomplete LU

decomposition has been used as a preconditioner to reduce iterations from the GMRES,

CG, and BICGSTAB iterative methods.

Mathematics subject classification: 65N15, 65N30.
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1. Introduction

A weak Galerkin (WG) method was first introduced by Wang and Ye [1] for solving gen-

eral second order elliptic equations, and a series of related numerical analysis and numerical

applications to the method are conducted in Ref. [2], which show the WG method efficient and

reliable in scientific computing. In general, the WG method refers to a finite element method

where differential operators can be approximated by the linear space of vector polynomial func-

tions. The original WG schemes include the polynomial combination (Pk(K),Pk(e), RTk(K))

and (Pk(K),Pk+1(e), [Pk+1(K)]d) for k ≥ 0, where RTk(K) represents the kth order Raviart-

Thomas elements [3], [Pk(K)]d is a set of polynomials of order no more than k, and d is a

dimension of space. To get flexible basis functions and to maintain some kind of weak continu-

ity, Wang and Ye [4, 5] add a stabilizer in variational forms of PDEs. Moreover, WG has been

developed for solving more applications, such as elliptic interface problems, Stokes, Helmholtz,

Maxwell, etc [6–10].
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For second-order elliptic problems, the weak functions in weak finite element spaces are

expressed in a form of v = (v0, vb) with v0 representing the value of v in the interior of each

element and vb on the edges of each element. Generally, polynomial combination Pl(K)×Pm(e)

were chosen to be weak finite element spaces, where e denotes the edges or faces of element K,

l and m are non-negative integers. The approximation spaces RTk(K) or [Pk(K)]d are chosen

for weak differential operators. As far as we know, all WG schemes are based on the fact that

weak function vb along every interior edge is single-valued, however, in this work, we consider

the function vb double-valued on interior edges and for every element and its corresponding

edges, the pair of functions (v0, vb) are separately defined well.

Due to the treatment of the jumps appearing in the DG methods, we introduce an over-

penalized weak Galerkin (OPWG) method for second-order elliptic problems by using a new

stabilized term of weak jumps. In other words, shape functions have two traces along each

interior edge shared by two neighboring elements, where a weak jump could be generated.

Different from the definition of jump in interior-penalty discontinuous Galerkin (IPDG) [11]

finite element methods, weak jump comes from the weak functions rather than a limit passing

from an interior domain to its edges. We introduce a penalty on the weak jumps, characterizing

a new WG method and strengthening the stability and analysis. Therefore, we can also present

a new DG method with the use of the definitions of weak functions, because the functions have

discontinuity just on the interior edges.

Our main idea is to connect WG with DG methods, and investigate the possibility of penal-

ized methods. In the present work, we do not modify the definition of weak gradient. To change

the definition of weak gradient, the reader is referred to a modified WG method [12], in which

Wang and Malluwawadu developed a new weak gradient operator defined on piecewise poly-

nomial spaces. We keep the weak finite element spaces and weak gradient operator unchanged

except that the shape functions along the interior edges are double-valued. Therefore, many

primary results about the WG methods developed before can be easily applied to the present

penalized WG method. Furthermore, due to the complete independence of elementwises shape

functions similar as in DG, OPWG seems more convenient in parallel computing than the WG

methods.

For the sake of simple and easy presentation of the new method, we consider the following

second order elliptic equation with nonhomogeneous Dirichlet boundary condition:

−∇ ·A∇u = f, in Ω, (1.1)

u = g, on ∂Ω, (1.2)

where Ω is a polygonal or polyhedral domain in Rd (d = 2, 3), f ∈ L2(Ω) and A is a symmetric

and positive definite matrix-valued function in Ω, i.e., there exist two positive numbers λ1, λ2 >

0 such that

λ1ξ
tξ ≤ ξtAξ ≤ λ2ξ

tξ, ∀ ξ ∈ Rd,

where ξ is a column vector and ξt means the transpose of ξ.

The paper is organized as follows. In Section 2, we give some preliminary notations and

definitions. In Section 3, the OPWG scheme was introduced. In Section 4, optimal error

analysis in H1 and L2 norms is established. In Section 5, numerical experiments are conducted

to confirm the theoretical results. Some conclusions and remarks are given in the final section.
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2. Notations and Preliminaries

We begin with some basic notations and definitions. Let Th be a shape regular partition [13]

of the domain Ω, E be all edges(or faces), and EI be all interior edges. If there is no further

specification, we always assume elements in Th are simplex. The sign hK means the diameter of

an element K ∈ Th, and h := max
K

hK represents the maximum mesh size for Th. Let Pk(K) be

a space of piecewise polynomials whose degrees are no more than k in each K ∈ Th. Similarly,

Pk(e) is denoted by a space of piecewise polynomials on e whose degrees are no more than k

on each e ∈ E .

Now on any element K, we define a weak function by v = {v0, vb} such that v0 ∈ L2(K)

and vb ∈ L2(∂K). The first part v0 can be understood as the value of v in K, and the second

part vb is the boundary value of K. Define by W (K) the space of weak functions on K, i.e.,

W (K) =
{

v = (v0, vb) : v0 ∈ L2(K), vb ∈ L2(∂K)
}

.

As in [1], we define the same local weak gradient operator for any v ∈ W (K).

Definition 2.1. For any v ∈ W (K), the weak gradient operator, denoted by ∇w, is defined as

the unique vector-value function (∇wv) ∈ [H1(K)]d satisfying the following equation:

(∇wv, q)K = −(v0, ∇ · q)K + 〈vb, q · n〉∂K , ∀ q ∈ [H1(K)]d,

where n is the outward normal direction to ∂K, (·, ·)K is the inner product in L2(K), and

〈·, ·〉∂K is the inner product in L2(∂K).

We can define a discrete weak gradient operator by approximating ∇w in a space of vector

polynomials.

Definition 2.2. For any v ∈ W (K) and K ∈ Th, the discrete weak gradient operator, denoted

by ∇w,k,K, is defined as the unique polynomial (∇w,k,Kv) ∈ Vk(K) satisfying the following

equation:

(∇w,k,Kv, q)K = −(v0, ∇ · q)K + 〈vb, q · n〉∂K , ∀ q ∈ Vk(K),

where Vk(K) is a subspace of vector-valued polynomials of degree no more than k in element

K. For simplicity of notation, we always denote by ∇w the discrete weak gradient operator

∇w,k,K . Here we take Vk(K) = RTk(K).

Define the weak Galerkin finite element space associated with Th as follows

Vh =
{

(v0, vb) : v0|K ∈ Pj(K), K ∈ Th,

vb|e ∈ Pl(e)× Pl(e), e ∈ EI ; vb|e ∈ Pl(e), e ∈ ∂Ω, j, l ≥ 0
}

,
(2.1)

V 0
h =

{

(v0, vb) : v ∈ Vh, vb = 0 on ∂Ω
}

, (2.2)

where vb is a double-valued function on each interior edge. Since elements RTk(k ≥ 0) are

mainly analyzed, the shape of element K shall be triangle or tetrahedron. Here we set j = l = k.

Let the normal vector space N consist of all unit normal vectors ne associated with each

edge e ∈ E . When e ∈ EI , ne can be any normal pointing from one element to its neighboring

element; when e ∈ ∂Ω, ne is a unit normal vector exterior to the boundary. Assume elements
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Ke
1 and Ke

2 are neighbors and share one common edge e, so there are two traces vb along e. We

denote by JvbK the weak jump for vb:

JvbK = vb|Ke
1
− vb|Ke

2
, ∀ e = ∂Ke

1 ∩ ∂Ke
2 .

We also extend the definition of jump to sides that belong to the boundary, i.e., JvbK =

vb|Ke
1
, ∀ e = ∂Ke

1 ∩ ∂Ω. In addition, we denote by |e| length or area of edge/face.

Let (x̄, ȳ) be a barycenter of any element K and X = x − x̄, Y = y − ȳ. Then for two-

dimensional problems, the local basis for RT0(K) elements are

[

1

0

]

,

[

0

1

]

,

[

X

Y

]

, (2.3)

and the local basis for RT1(K) element are

[

1

0

]

,

[

0

1

]

,

[

X

0

]

,

[

0

X

]

,

[

Y

0

]

,

[

0

Y

]

,

[

X2

XY

]

,

[

XY

Y 2

]

. (2.4)

To investigate the approximation properties of the finite element space Vh and weak gradient

space Vk(K), we introduce the following three standard L2 projections:

Q0 : L2(K) → Pk(K), ∀K ∈ Th,

Qb : L
2(e) → Pk(e), ∀ e ∈ E ,

Qh : [L2(K)]2 → RTk(K), ∀K ∈ Th.

We combine Q0 with Qb by writing as Qh = {Q0, Qb}. To investigate error estimates, we

introduce a projection operator Πh, which is widely used in the mixed finite element method,

and satisfies the following property: for any τ ∈ H(div,Ω), Πhτ ∈ H(div,Ω); and on each

element K ∈ Th, one has Πhτ ∈ RTk(K) satisfying

(∇ · τ , v0) = (∇ ·Πhτ , v0), ∀ v0 ∈ Pk(K).

Moreover, the following identity holds (see [1]):

∇w(Qhv) = Qh(∇v), ∀ v ∈ H1(K). (2.5)

3. The Over-penalized Weak Galerkin Scheme

For any w, v ∈ Vh, we define the following bilinear form

a(w, v) := (A∇wwh,∇wv) +
∑

e∈EI

1

|e|β0

∫

e

JwbKJvbK,

where β0 ≥ 1 is selected as conventionally named after an over-penalized parameter. Note that

this bilinear form does not need a penalty factor, which often appears in the interior penalty

discontinuous Galerkin methods.

Algorithm 3.1. A weak Galerkin approximation for (1.1)-(1.2) is to seek uh = (u0, ub) ∈ Vh

satisfying ub = Qbg on ∂Ω and such that

a(uh, v) = (f, v0), ∀ v = (v0, vb) ∈ V 0
h . (3.1)
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Next, we justify the well-posedness of the scheme (3.1). For any v ∈ Vh, an energy norm is

written as

9v9 :=
√

a(v, v). (3.2)

It is easy to see that 9 · 9 define a semi-norm in Vh. Moreover, it is a norm in V 0
h . Indeed, it

suffices to check the positivity property for 9 ·9. To this end, assume that v ∈ V 0
h and 9v9 = 0.

It follows that

(A∇wv,∇wv) +
∑

e∈EI

1

|e|β0

∫

e

JvbK
2 = 0,

which implies that ∇wv = 0 on each element K and JvbKe = 0 on e. Thus, v0 = vb = const on

every K ∈ Th. On a common edge e shared by two neighboring elements K1 and K2, we have

vb|e∩∂K1
= vb|e∩∂K2

. Together with vb = 0 on ∂Ω, it follows that v0 = vb = 0.

Lemma 3.1. The over-penalized weak Galerkin finite element scheme (3.1) has one and only

one solution.

Proof. It suffices to prove the uniqueness. If u
(1)
h and u

(2)
h are two solutions of (3.1), then

eh = u
(1)
h − u

(2)
h would satisfy the following equation

a(eh, v) = 0, ∀ v ∈ V 0
h .

Note that eh ∈ V 0
h . Then by taking v = eh in the above equation we arrive at

9eh92 = a(eh, eh) = 0.

It follows that eh ≡ 0, or equivalently, u
(1)
h ≡ u

(2)
h . This completes the proof of the lemma. �

Remark 3.1. The OPWG method preserves local mass conservation. The model problem

(1.1) can be rewritten in a conservative form as follows:

∇ · q = f, q = −A∇u.

Let K be any control volume. Integrating the first equation over K yields the following integral

form of mass conservation:
∫

∂K

q · n =

∫

K

f. (3.3)

Following a similar proof in [1], one can show that the numerical approximation from the over-

penalized weak Galerkin finite element method for (1.1) retains the mass conversation property

(3.3) with a numerical flux qh = Qh(A∇wuh).

4. Convergence Theory

The goal of this section is to establish some error estimates for the weak Galerkin finite

element solution uh arising from (3.1). The error estimates will be conducted in two natural

norms: the energy norm as defined in (3.2) and the standard L2 norm. We first state an

approximation property of the operator Πh, which has been proved in [1].
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Lemma 4.1. Assume that Πh be the local projection operator satisfying Πhτ ∈ RTk(K), τ ∈

H(div,Ω), and Qh = {Q0, Qb} defined in Section 2. For u ∈ Hk+2(Ω) with k ≥ 0, we have

‖Πh(A∇u)−A∇w(Qhu)‖ ≤ Chk+1‖u‖k+2. (4.1)

Next, we state an important result for the projection operator Πh.

Lemma 4.2. Let τ ∈ H(div,Ω) be a smooth vector-valued function and Πh be the local projec-

tion operator defined in Section 2. Then, the following identity holds true

∑

K∈Th

(−∇ · τ , v0)K =
∑

K∈Th

(Πhτ ,∇wvh)K −
∑

e∈EI

〈JvbK,Πhτ · ne〉e, vh ∈ V 0
h . (4.2)

Proof. It follows from the definitions of Πh and ∇w that
∑

K∈Th

(−∇ · τ , v0)K =
∑

K∈Th

(−∇ · Πhτ , v0)K

=
∑

K∈Th

(Πhτ ,∇wvh)K −
∑

K∈Th

〈vb,Πhτ · n〉∂K

=
∑

K∈Th

(Πhτ ,∇wvh)K −
∑

e∈EI

〈JvbK,Πhτ · ne〉e,

where the last equality results from the definition of weak jump and unit outer normal vector

ne in Section 2, thus the proof is completed. �

Testing (1.1) with v0 of v = (v0, vb) ∈ V 0
h and using (4.2) leads to

∑

K∈Th

(ΠhA∇u,∇wvh)K −
∑

e∈EI

〈JvbK,ΠhA∇u · ne〉e = (f, v0), (4.3)

which can be rewritten as
∑

K∈Th

(A∇wQhu,∇wvh)K +
∑

K∈Th

(ΠhA∇u−A∇wQhu,∇wvh)K

−
∑

e∈EI

〈JvbK,ΠhA∇u · ne〉e = (f, v0). (4.4)

Set eh := (e0, eb) = (Q0u− u0, Qbu− ub). Subtracting (3.1) from (4.4) leads to

a(eh, vh) = (A∇weh,∇wvh) +
∑

e∈E

1

|e|β0

∫

e

JebKJvbK

=
∑

e∈EI

〈JvbK,ΠhA∇u · ne〉e −
∑

K∈Th

(ΠhA∇u −A∇wQhu,∇wvh)K , (4.5)

which is called the error equation for the over-penalized weak Galerkin approximation (3.1).

Then we give a convergence theorem for the error in the energy norm as follows.

Theorem 4.1. Suppose that the exact solution u of (1.1)-(1.2) belongs to Hk+2(Ω) with k ≥ 0.

Then the error eh between the L2 projection of exact solution Qhu ∈ Vh and WG solution

uh ∈ Vh satisfies

9eh9 ≤ C
(

hk+1 + h
β0−1

2

)

‖u‖k+2,Ω, (4.6)

where C is a positive constant independent of h and β0 > 1.
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Proof. From equation (4.5), we obtain by the Cauchy-Schwarz inequality that for any

vh ∈ V 0
h ,

|a(eh, vh)| ≤

∣

∣

∣

∣

∣

∑

e∈EI

〈JvbK,ΠhA∇u · ne〉e

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

K∈Th

(ΠhA∇u−A∇wQhu,∇wvh)K

∣

∣

∣

∣

∣

≤
∑

e∈EI

‖JvbK‖e‖ΠhA∇u · ne‖e +
∑

K∈Th

‖ΠhA∇u−A∇wQhu‖K‖∇wvh‖K

≤
∑

e∈EI

‖JvbK‖e‖ΠhA∇u · ne‖e + Chk+1‖u‖k+2,Ω 9 vh 9 .

We only need to estimate the first term in the above inequality. By using trace inequalities

in [13], we arrive at

∑

e∈EI

‖JvbK‖e‖ΠhA∇u · ne‖e ≤
∑

K∈Th

Ch
β0

2

K 9 vh 9K h
− 1

2

K ‖∇u‖K

≤
∑

K∈Th

Ch
β0−1

2

K 9 vh 9K ‖u‖k+2,K ≤ Ch
β0−1

2 ‖u‖k+2 9 vh9,

which completes the proof of (4.6) by replacing the vh by eh. �

In the rest of the section, we shall derive an optimal-order error estimate for the over-

penalized weak Galerkin finite element scheme (3.1) in the L2-norm by using a duality argument

as in the standard Galerkin finite element methods. To this end, we consider a dual problem

with a homogeneous Dirichlet boundary condition to seek a solution w ∈ H1
0 (Ω) satisfying

−∇ · (A∇w) = e0, in Ω, (4.7)

Assume that the above dual problem has the usual H2-regularity. This means that there exists

a constant C such that

‖w‖2 ≤ C‖e0‖. (4.8)

Theorem 4.2. Under the condition of Theorem 4.1, and assume that the dual problem (4.7)

has the H2-regularity. Then, the error eh ∈ Vh in the L2-norm has the following estimate

‖e0‖ ≤ Chk+2‖f‖k + C
(

hk+2 + h1+
β0−1

2 + hβ0−1
)

‖u‖k+2, (4.9)

where C is a positive constant independent of h and β0 > 1.

Proof. By testing (4.7) with the weak function e0 we obtain

‖e0‖
2 =

∑

K∈Th

(−∇ · (A∇w), e0)K

=
∑

K∈Th

(Πh(A∇w),∇weh)K −
∑

e∈EI

〈JebK,Πh(A∇w) · ne〉e

=: I + II, (4.10)

where

I = (Πh(A∇w),∇w(Qhu− uh))

= (Πh(A∇w),Qh(∇u)−∇wuh) = (Πh(A∇w),∇u −∇wuh)

= (Πh(A∇w) −A∇w,∇u −∇wuh) + (A∇w,∇u −∇wuh).
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From Theorem 4.1 and inequality (4.8), the two terms in the above equation can be bounded

as follows

|(Πh(A∇w) −A∇w,∇u −∇wuh)|

≤|(Πh(A∇w) −A∇w,∇u −∇w(Qhu))|

+ |(Πh(A∇w) −A∇w,∇w(Qhu)−∇wuh)|

≤‖Πh(A∇w) −A∇w‖(‖∇u −∇w(Qhu)‖+ ‖∇w(Qhu)−∇wuh‖)

≤Ch(‖∇u−∇w(Qhu)‖+ ‖∇weh‖)‖e0‖

≤C
(

hk+2 + h
β0−1

2
+1

)

‖u‖k+2‖e0‖.

Applying the fact JQbwKe = 0 for w ∈ H1(Ω) in the following term, we have

|(A∇w,∇u −∇wuh)|

=|(A∇w,∇u) − (A∇w,∇wuh)|

=|(A∇w,∇u) − (A(∇w −Qh(∇w)),∇wuh)− (A∇w(Qhw),∇wuh)|

=|(A∇w,∇u) − (A∇w(Qhw),∇wuh)− (A(∇w −Qh(∇w)),∇wuh −∇u)

− (∇w −Qh(∇w), A∇u −Qh(A∇u))|

=|(A∇w,∇u) − (A∇w(Qhw),∇wuh)−
∑

e∈E

1

|e|β0

∫

e

JubKJQbwK

− (A(∇w −Qh(∇w)),∇wuh −∇u)− (∇w −Qh(∇w), A∇u −Qh(A∇u))|.

Thanks to the facts that (A∇w,∇u) = (f, w) and a(uh, Qhw) = (f,Q0w), the above equation

can be written as

|(A∇w,∇u −∇wuh)|

=|(f, w) − (f,Q0w)− (A(∇w −Qh(∇w)),∇wuh −∇u)

− (∇w −Qh(∇w), A∇u −Qh(A∇u))|

≤|(f −Q0f, w −Q0w)|+ |(A(∇w −Qh(∇w)),∇wuh −∇u)|

+ |(∇w − Qh(∇w), A∇u −Qh(A∇u))|

≤Chk+2‖f‖k‖e0‖+ C
(

hk+2 + h
β0−1

2
+1

)

‖u‖k+2‖e0‖,

where we have used the following estimates in the last inequality

|(f −Q0f, w −Q0w)|

≤ Ch2‖f −Q0f‖‖e0‖ ≤ Chk+2‖f‖k‖e0‖,

|(A(∇w −Qh(∇w)),∇wuh −∇u)|

≤ Ch(‖∇u−Qh(∇u)‖+ ‖∇w(Qhu− uh))‖e0‖

≤ C
(

hk+2 + h
β−1

2
+1

)

‖u‖k+2‖e0‖,

|(∇w − Qh(∇w), A∇u −Qh(A∇u))|

≤ Ch‖A∇u−Qh(A∇u)‖‖e0‖ ≤ Chk+2‖u‖k+2‖e0‖.



874 K.F. LIU, L.J. SONG AND S.F. ZHOU

Consequently, it arrives at

|I| ≤ Chk+2‖f‖k‖e0‖+ C
(

hk+2 + h
β0−1

2
+1

)

‖u‖k+2‖e0‖. (4.11)

Furthermore, following the proof of Theorem 4.1, we have

|II| =

∣

∣

∣

∣

∣

∑

e∈EI

〈JebK,Πh(A∇w) · ne〉e

∣

∣

∣

∣

∣

≤ h
β0−1

2 ‖w‖2 9 eh9

≤ C
(

hk+1+
β0−1

2 + hβ0−1
)

‖u‖k+2‖e0‖.

From (4.10), the sum of I and II is bounded

‖e0‖
2 ≤ |I|+ |II|

≤ Chk+2‖f‖k‖e0‖+ C
(

hk+2 + h
β0−1

2
+1 + hβ0−1

)

‖u‖k+2‖e0‖,
(4.12)

which completes the proof of (4.9). �

5. Numerical Experiments

In this section, we give some numerical results using scheme (3.1) in section 3 to verify the

error estimates in Theorems 4.1 and 4.2.

In all numerical examples, we take Ω = (0, 1)× (0, 1) and employ RTk (k = 0, 1) elements

in the weak Galerkin discretization. Multilevel uniform triangular meshes are generated by

the following ways. First, we partition the square domain into N × N subsquares uniformly;

then we divide each subsquare into two triangles by the diagonal line with a negative slope,

completing the construction of uniformly refined triangular meshes.

Example 5.1. We consider the Poisson’s equation

−∆u = f, in Ω,

u = g, on ∂Ω.

Here let the exact solution be u(x, y) = e−x−y2

, which admits high regularity.

The errors are listed in Tables 5.1-5.2 for RT0 elements and in Tables 5.3-5.5 for RT1 elements.

On the one hand, it can be seen for RT0 elements from Table 5.1 that the over-penalized

WG solution converges poorly for β0 = 1, and has low-order convergence rates about 0.48 in

Table 5.1: Errors for Example 5.1 with (P0,P0, RT0) and β0 = 1, 2.

h β0 = 1 β0 = 2

9eh9 ‖e0‖ 9eh9 ‖e0‖

1/16 5.7902e-01 1.8504e-02 2.8636e-01 3.2236e-03

1/32 5.8036e-01 1.8448e-02 2.1333e-01 1.6640e-03

1/64 5.8099e-01 1.8475e-02 1.5517e-01 8.4869e-04

1/128 5.8129e-01 1.8503e-02 1.1135e-01 4.2907e-04

Rate -7.4476e-04 -2.1848e-03 0.4787 0.9840
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Table 5.2: Errors for Example 5.1 with (P0,P0, RT0) and β0 = 3, 4.

h β0 = 3 β0 = 4

9eh9 ‖e0‖ 9eh9 ‖e0‖

1/16 9.0716e-02 4.2043e-04 2.9669e-02 2.0304e-04

1/32 4.5839e-02 1.0617e-04 1.1694e-02 4.9946e-05

1/64 2.3000e-02 2.6652e-05 4.8595e-03 1.2358e-05

1/128 1.1515e-02 6.6741e-06 2.1383e-03 3.0775e-06

Rate 0.9981 1.9976 1.1843 2.0155

Table 5.3: Errors for Example 5.1 with (P1,P1, RT1) and β0 = 2, 3.

h β0 = 2 β0 = 3

9eh9 ‖e0‖ 9eh9 ‖e0‖

1/4 1.0169e-01 7.9897e-04 5.9035e-02 2.9159e-04

1/8 7.3594e-02 2.6721e-04 2.9946e-02 4.7429e-05

1/16 5.2662e-02 1.0785e-04 1.5077e-02 9.4341e-06

1/32 3.7461e-02 4.9846e-05 7.5645e-03 2.1713e-06

1/64 2.6568e-02 2.4347e-05 3.7886e-03 5.2843e-07

Rate 0.4956 1.0337 0.9976 2.0388

Table 5.4: Errors for Example 5.1 with (P1,P1, RT1) and β0 = 4.

h β0 = 4

9eh9 Rate. ‖e0‖ Rate.

1/4 3.4462e-02 1.4098e-04

1/8 1.2276e-02 1.4892 1.5700e-05 3.1667

1/16 4.3545e-03 1.4953 1.9271e-06 3.0263

1/32 1.5420e-03 1.4977 2.4322e-07 2.9861

1/64 5.4559e-04 1.4989 4.8043e-08 2.3399

Table 5.5: Errors for Example 5.1 with (P1,P1, RT1) and β0 = 5.

h β0 = 5

9eh9 Rate. ‖e0‖ Rate.

1/4 2.0385e-02 1.0749e-04

1/8 5.1426e-03 1.9869 1.3559e-05 2.9869

1/16 1.2916e-03 1.9933 1.7487e-06 2.9549

1/32 3.2365e-04 1.9967 2.2262e-07 2.9736

1/64 9.2389e-05 1.8086 9.6887e-06 - 5.4436

the triple-bar norm and 0.98 in the L2-norm for β0 = 2. When β0 = 3 (see Table 5.2), the

numerical solution has optimal convergent rates in the triple-bar and L2-norms. On the other

hand, for RT1 elements, similar convergence results can be found in Tables 5.3-5.5, producing

the optimal convergence as β0 = 5. However, convergence rates seem to be influenced by the

condition numbers of stiff matrix when the finest mesh size has been used in the case β0 = 5.

Thus, a preconditioning technique shall be considered to modify the ill-conditioned systems as

β0 increases.
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Table 5.6: Comparison of iterations and CPU time for CG with IC preconditioner for Example 5.1.

h Without preconditioning With IC preconditioning

Cond. Iter. Time(s) Cond. Iter. Time(s)

1/8 5.4388e+03 149 0.0100 1.1778e+03 38 0.0100

1/16 7.9701e+04 313 0.0500 4.9571e+03 72 0.0300

1/32 1.2458e+06 634 0.6400 2.0088e+04 132 0.3300

1/64 1.9816e+07 1226 5.8400 8.0612e+04 252 1.8800

Table 5.7: Comparison of iterations and CPU time for GMRES(restart=100) with IC preconditioner

for Example 5.1.

h Without preconditioning With IC preconditioning

Cond. Outer Inner Time(s) Cond. Outer Inner Time(s)

1/8 5.4388e+03 2 88 0.1092 1.1778e+03 1 4 0.0624

1/16 7.9701e+04 5 27 0.5616 4.9571e+03 1 75 0.3744

1/32 1.2458e+06 14 49 41.6520 2.0088e+04 2 44 4.0404

1/64 1.9816e+07 45 2 306.2800 8.0612e+04 4 56 24.8670

For RT0 elements and refined meshes, we compare the Conjugate Gradient (CG) method,

Generalized Minimum Residual method (GMRES) and Biconjugate Gradient Stabilized method

(BICGSTAB) [14] with a preconditioner to solve the linear algebraic systems. Note that we

choose the incomplete Cholesky (IC) factorization [14] as a preconditioner. In this section, all

the tests start from a zero vector and terminate when the residual r(k) at the k-th iteration

satisfies ‖r(k)‖2/‖r(0)‖2 ≤ 10−6. The stiff matrices are given as β0 = 3 in Algorithm 3.1.

Comparisons of the three iterative methods are listed in the Tables 5.6-5.8 respectively. The

conditon number (Cond.), iterations (Iter.) and CPU time (Time(s)) are listed in Table 5.7,

where the terminologies ”Outer” and ”Inner” mean the total (100*Outer+Inner) iterations

required by GMRES, respectively. We observe that the linear system can be handled well by

the three iterative methods with IC preconditioning.

In addition, we first propose a symmetric positive-definite bilinear form b(·, ·)

b(w, v) :=
∑

K∈Th

∑

e∈∂K

(〈w0, v0〉e + 〈wb, vb〉e) +
∑

e∈EI

1

|e|β0

∫

e

JwbKJvbK, (5.1)

which can be used to construct a suitable block-diagonal preconditioner as β0 increases for any

w, v ∈ Vh. Table 5.9 states that the new preconditioner works well and reduces the orders of

condition number from O(h−4) to O(h−2) when k = 0, β0 = 3, and from O(h−6) to O(h−3)

when k = 1, β0 = 5.

Example 5.2. Consider the problem (1.1)-(1.2) with the following analytical solution

u(x, y) = sin(πx) cos(πy),

and the diffusion matrix A =

[

x2 + y2 + 1 xy

xy x2 + y2 + 1

]

, which was also investigated in [4].

The errors eh in the triple-bar and L2 norms are listed in the Table 5.10 with β0 = 2, 3 for

RT0 elements, illustrating the optimal convergence rates of the OPWG method as β0 = 3. For
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Table 5.8: Comparison of iterations and CPU time for BICGSTAB with IC preconditioner for Example

5.1.

h Without preconditioning With IC preconditioning

Cond. Iter. Time(s) Cond. Iter. Time(s)

1/8 5.4388e+03 127 0.0468 1.1778e+03 21 0.00

1/16 7.9701e+04 473 0.3120 4.9571e+03 40 0.0624

1/32 1.2458e+06 1539 4.3368 2.0088e+04 79 0.3588

1/64 1.9816e+07 4914 36.9570 8.0612e+04 156 2.4336

Table 5.9: Comparison of condition number with k = 0, β0 = 3 and k = 1, β0 = 5 for Example 5.1.

h Without preconditioning With block-diagonal preconditioning

k = 0, β0 = 3 k = 1, β0 = 5 k = 0, β0 = 3 k = 1, β0 = 5

1/4 4.5487e+02 2.1535e+05 8.9443e+02 8.2693e+03

1/8 5.4388e+03 1.2758e+07 3.6572e+03 6.6793e+04

1/16 7.9701e+04 8.0454e+08 1.4799e+04 5.2943e+05

1/32 1.2458e+06 5.1315e+10 5.9440e+04 4.1972e+06

1/64 1.9816e+07 3.2815e+12 2.3801e+05 3.3384e+07

Rate 3.9915 5.9988 2.0015 2.9917

Table 5.10: Errors for Example 5.2 with (P0,P0, RT0) and β0 = 2, 3.

h β0 = 2 β0 = 3

9eh9 ‖e0‖ 9eh9 ‖e0‖

1/16 1.4183e+00 5.8015e-02 4.5651e-01 5.5156e-03

1/32 1.0614e+00 3.1045e-02 2.3150e-01 1.3987e-03

1/64 7.7559e-01 1.6126e-02 1.1633e-01 3.5167e-04

1/128 5.5832e-01 8.2305e-03 5.8281e-02 8.8137e-05

Rate 0.4742 0.9703 0.9971 1.9964

Table 5.11: Errors for Example 5.2 with (P1,P1, RT1) and β0 = 2, 3.

h β0 = 2 β0 = 3

9eh9 ‖e0‖ 9eh9 ‖e0‖

1/4 4.9460e-01 7.5216e-03 2.8824e-01 2.6080e-03

1/8 3.6435e-01 3.6510e-03 1.4757e-01 6.1349e-04

1/16 2.6297e-01 1.8325e-03 7.4658e-02 1.5111e-04

1/32 1.8783e-01 9.2338e-04 3.7552e-02 3.7770e-05

1/64 1.3347e-01 4.6422e-04 1.8832e-02 9.4626e-06

Rate 0.4929 0.9921 0.9957 1.9969

RT1 elements, the results are listed in the Tables 5.11-5.13, illustrating the optimal conver-

gence orders as β0 = 5. Moreover, when RT0 elements are employed, we compare iterations

and CPU time required for the CG, GMRES and BICGSTAB methods with/without the IC

preconditioning in Tables 5.14-5.16, respectively.
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Table 5.12: Errors for Example 5.2 with (P1, P1, RT1) and β0 = 4.

h β0 = 4

9eh9 Rate. ‖e0‖ Rate.

1/4 1.7175e-01 1.1953e-03

1/8 6.1053e-02 1.4921 1.5828e-04 2.9168

1/16 2.1578e-02 1.5005 2.0334e-05 2.9605

1/32 7.6232e-03 1.5010 2.5738e-06 2.9819

1/64 2.6938e-03 1.5007 3.2419e-07 2.9889

Table 5.13: Errors for Example 5.2 with (P1, P1, RT1) and β0 = 5.

h β0 = 5

9eh9 Rate. ‖e0‖ Rate.

1/4 1.0807e-01 9.5709e-04

1/8 2.7655e-02 1.9663 1.2735e-04 2.9098

1/16 6.9782e-03 1.9866 1.6310e-05 2.9649

1/32 1.7518e-03 1.9940 2.0575e-06 2.9867

1/64 4.3883e-04 1.9971 2.9945e-07 2.7805

Table 5.14: Comparison of iterations and CPU time for CG with IC preconditioner for Example 5.2.

h Without preconditioning With IC preconditioning

Cond. Iter. Time(s) Cond. Iter. Time(s)

1/8 4.1111e+03 199 0.0200 1.5287e+03 37 0.0100

1/16 5.3413e+04 512 0.0800 6.6883e+03 76 0.0300

1/32 8.0446e+05 1173 1.1800 2.7536e+04 153 0.3500

1/64 1.2664e+07 2482 11.6100 1.1097e+05 301 2.2500

Table 5.15: Comparison of iterations and CPU time for GMRES (restart=100) with IC preconditioner

for Example 5.2.

h Without preconditioning With IC preconditioning

Cond. Outer Inner Time(s) Cond. Outer Inner Time(s)

1/8 4.1111e+03 3 13 0.2600 1.5287e+03 1 38 0.0800

1/16 5.3413e+04 8 51 1.5100 6.6883e+03 1 78 0.1400

1/32 8.0446e+05 28 31 63.8100 2.7536e+04 2 76 3.8700

1/64 1.2664e+07 94 22 643.2200 1.1097e+05 4 74 23.8900

Table 5.16: Comparison of iterations and CPU time for BICGSTAB with IC for Example 5.2.

h Without preconditioning With IC preconditioning

Cond. Iter. Time(s) Cond. Iter. Time(s)

1/8 4.1111e+03 142 0.0300 1.5287e+03 23 0.0100

1/16 5.3413e+04 466 0.1400 6.6883e+03 49 0.0300

1/32 8.0446e+05 1682 3.2600 2.7536e+04 97 0.4200

1/64 1.2664e+07 5785 54.0900 1.1097e+05 196 2.7700
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6. Summary and Forecasting

In this paper, we have introduced the over-penalized weak Galerkin (OPWG) finite element

method and prove the optimal convergence rates in the H1 and L2 norms. The OPWG method

offers complete independence of elementwises shape functions and results in two sets of values

on interior edges, which can be handled conveniently by the penalty terms on the jumps to

maintain a weak continuity. This method is given as an efficient WG approximation with the

penalized jump term. Based on our analysis, the optimal choices of the penalty parameters β0

can be derived such that the OPWGmethod has optimal convergence orders for the second order

elliptic problems, with RTk elements employed. Some experiments in the piecewise constant

and linear approximation spaces with RTk elements (k = 0, 1) have been conducted and the

numerical results are in good agreement with the theoretical analysis in Section 4. Based on our

analysis, the present method is flexible in selecting penalty parameters, simple shape functions,

and easy-to-implement stiff matrix. Furthermore, due to the discontinuity between neighboring

elements, the novel WG is promising in adaptive approximation, because different orders of

polynomials can be used for any elements. Furthermore, the new method has potentials as

discontinuous Galerkin methods in parallel computing [15] and in discretizations of other PDEs

with interface conditions [6, 16]. Nevertheless, there are open questions to be considered, such

as more degrees of freedom generated on edges than those in the conventional WG methods.
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