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Abstract

A new two-level subspace method is proposed for solving the general unconstrained

minimization formulations discretized from infinite-dimensional optimization problems. At

each iteration, the algorithm executes either a direct step on the current level or a coarse

subspace correction step. In the coarse subspace correction step, we augment the tradition-

al coarse grid space by a two-dimensional subspace spanned by the coordinate direction

and the gradient direction at the current point. Global convergence is proved and conver-

gence rate is studied under some mild conditions on the discretized functions. Preliminary

numerical experiments on a few variational problems show that our two-level subspace

method is promising.

Mathematics subject classification: 65N06, 65B99.
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1. Introduction

Consider an infinite-dimensional minimization problem

min
u∈V

F(u), (1.1)

where F is a mapping from V to R and V is the infinite-dimensional space where u lives in.

Infinite-dimensional optimization problems are a major source of large-scale finite dimensional

optimization problems, such as partial differential equations (PDEs) and optimal control prob-

lems governed by PDEs. Since it is very hard or almost impossible to obtain explicit solutions

for these problems, they are usually solved numerically either by a “discretize-then-optimize”

strategy or an “optimize-then-discretize” strategy. For these kind of problems, usually a very
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fine discretization is needed to obtain a satisfactory discretization error, but the computation-

al cost is much expensive. In this paper, we follow the second strategy and propose a new

numerical scheme to solve them.

Quite a few numerical optimization methods for large-scale problems have been developed

using a fundamental technique named subspace optimization directly or indirectly. It attracts

more and more attention in recent years [1–3]. The conjugate gradient method arose originally

in [4] to solve linear systems and were introduced in nonlinear minimization in [5]. It defines a

new search direction by a given linear combination of the negative gradient direction and the

previous search direction. Yuan and Stoer [6] viewed the conjugate gradient method from the

subspace point of view, namely, to find a best trial direction, even an approximate minimum, in

the 2-dimensional subspace spanned by the two conjugate directions. Another popular method

in nonlinear programming is the limited-memory quasi-Newton method proposed by Shanno [7]

and Nocedal [8]. It generates the quasi-Newton matrix by using some historical information.

The block coordinate descent (BCD) and the alternating direction method of multipliers (ADM-

M) are de facto subspace techniques. More general subspace methods and latest developments

are referred to [3, 9–11].

Although existing optimization methods can be applied to solve problem (1.1), they make

little use of its underlying hierarchical structure. In contrast, multigrid/multilevel method is a

more natural concept. It was originally proposed for solving linear elliptic partial differential

equations with simple boundary value and proved to work well [12–15]. It takes advantage

of different levels discretization of infinite-dimensional problems to execute the coarse grid

corrections recursively with a combination of smoothing steps on fine grid. It not only reduces

the computational cost but also accelerates the convergence rate. It is well-known that good

performance of iterative methods may depend on a good initial guess. The mesh refinement,

or full multigrid method [14,15], uses the nested iteration idea to solve fine grid problems with

an initial point interpolated from the solution of the next coarser grid. Multigrid methods

were also extended to solve nonlinear PDE problems. One approach is called Newton-MG

method [14–16], in which a linear expansion at the current iterate is used in outer iterations

and multigrid methods were used for Jacobian systems in inner iterations. Another extension

is full approximation scheme (FAS) [15–17], in which the multigrid methodology is directly

applied to the original system of nonlinear equations and its corresponding system of nonlinear

residual equations. It obtains a full approximation rather than an error correction term in

coarse grid problems. A combination of Newton-MG and FAS was proposed by Yavneh and

Dardyk [18]. The other extension is projection multilevel method [19–21], which regards a series

of discretization spaces as projections from the infinite-dimensional space, and represents them

with nodal or finite element. Taking projections onto various subspaces, it solves the problems

by correcting the current iterate.

Multigrid method has also be applied to infinite-dimensional optimization problems, es-

pecially optimal control problems governed by PDEs [22–25]. It is used for solving the KKT

systems derived from optimality conditions and inner loops of optimization scheme derived from

original problems. An approach was proposed by Nash [26] and developed in [27–30] for solving

the unconstrained convex infinite-dimensional optimization problems, in which a linear term is

added in the discretized nonlinear problems at each level other than the finest one to enforce

first order coherence in the neighborhood of current iterate between the neighboring levels of

grid. This is a new reinterpretation of multigrid from an optimization point of view and uses

it as outer iterative scheme [25]. Based on this scheme, Wen and Goldfarb [31] proposed a
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method using a line search approach by adding an additional condition to keep the coarser step

to be a descent direction at the current level. Gratton, Sartenaer and Toint [32,33] proposed a

recursive trust region method using trust region technique in the multilevel scheme recursively.

Both of these methods converge for nonconvex problems and especially the latter one can deal

with box-constraints. Some numerical results can be found in [34]. Ziems and Ulbrich [35]

coupled this method with adaptive mesh refinement and established rigorous posteriori error

estimators in multilevel scheme. In Frandi and Papini [36, 37], this approach is also used for

solving non-differentiable problems. Especially, for convex infinite-dimensional problems, Xu,

Tai and their collaborators in [38,39] developed a subspace correction framework and proved the

convergence rate. The multigrid method is included as a specical case. This framework has also

been extended to solve constrained minimizations [39,40] and applied in image processing [41].

It also makes the concept of multigrid to be implemented in parallel with theoretical convergent

guarantee, taking advantages of modern high performance computing hardware structures. A

review of the recent developments is referred to [25].

In this paper, we propose a new two-level subspace optimization method by combining

the idea of multigrid optimization and subspace technique. Our algorithm executes either a

direct step at the current level or a coarse level correction step when the coarser gird satisfies

some certain criteria, while the coarse level construction is different from previous multigrid

optimization methods. Taking advantage of the subspace framework of Yuan and Stoer’s [6],

we augment the traditional coarse grid space by a two-dimensional subspace spanned by the

coordinate direction and the gradient direction of the current point in the construction of coarse

space correction step and try to find an approximate minimum in this new subspace. For coarse

level correction step, we follow the “optimize-then-discretize” strategy to derive the formulation

of infinite-dimensional coarse space sub-problem first and solve its discretized version. Without

adding the linear term as in Nash’s scheme [26], our coarse subspace model keeps the zeroth-

order coherence with fine level discretization of the problem, which guarantees the algorithm

to be a monotone descent one with coarse subspace correction step. We also prove the global

convergence and convergence rate which is at least R-linear for strongly convex case and O(1/ǫ2)

for nonconvex case. Numerical experiments show that our two-level subspace method performs

comparably efficiently in solving very large-scale dimensional problems.

This paper is organized as follows. In Section 2, we give the problem statement and a

detailed description of our new two-level subspace method. The global convergence, R-linear

convergence rate for strongly convex case and O(1/ǫ2) for nonconvex case are proved in Section

3. Numerical experiments are showed in Section 4. Finally, some conclusion and future works

are given in the last section.

2. A New Two-level Subspace Method

2.1. Problem statement and notations

We first introduce the hierarchical properties of our discretization. For the levels ℓ =

N0, N0 + 1, · · · , N , there exists a set of nested finite dimensional girds spaces VN0
⊂ VN0+1 ⊂

· · · ⊂ VN ⊂ V . For every Vℓ, let Φℓ = {φ
(j)
ℓ }nℓ

j=1 be a suitable basis of Vℓ, where nℓ is the

dimension of Vℓ. The discretization of u at level ℓ is denoted as

uℓ = Φℓxℓ =

nℓ
∑

j=1

x
(j)
ℓ φ

(j)
ℓ , (2.1)
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where xℓ = (x
(1)
ℓ , . . . , x

(nℓ)
ℓ )⊤ ∈ R

nℓ . Letting fℓ(xℓ) = F(uℓ), the discretized version of problem

(1.1) becomes

min
xℓ∈R

nℓ

fℓ(xℓ). (2.2)

Let DF(u) be the gradient of F(u). We can also discretize DF(uℓ) at level ℓ in the same

discretized space Vℓ as

DℓF(uℓ) = Φℓzℓ =

nℓ
∑

j=1

z
(j)
ℓ φ

(j)
ℓ , (2.3)

where zℓ = (z
(1)
ℓ , · · · , z

(nℓ)
ℓ )⊤ satisfies the weak formulation

〈DℓF(uℓ), vℓ〉 = 〈DF(uℓ), vℓ〉 , ∀vℓ ∈ Vℓ, (2.4)

where 〈u, v〉 is a given inner product on V . By letting vℓ = φ
(1)
ℓ , . . . , φ

(nℓ)
ℓ , we obtain a system

of nℓ equations as

〈

DℓF(uℓ), φ
(i)
ℓ

〉

=
〈

DF(uℓ), φ
(i)
ℓ

〉

, i = 1, . . . , nℓ. (2.5)

Consequently, the gradient of the discretized function fℓ(xℓ) at level ℓ and the discretized

gradient DℓF(uℓ) can be related as

Mℓzℓ = ∇fℓ(xℓ), (2.6)

where Mℓ is the mass matrix at the level ℓ, whose (i, j) element is
〈

φ
(j)
ℓ , φ

(i)
ℓ

〉

. In fact, it follows

from (2.5) that we only need to prove

〈

DF(uℓ), φ
(i)
ℓ

〉

= (∇fℓ(xℓ))
(i), for each i = 1, . . . , nℓ.

Let e
(i)
ℓ be a nℓ dimensional vector whose ith component is equal to 1 and others are equal to

0. According to the definition of directional derivative, for any i, we have

(∇fℓ(xℓ))
(i) = lim

t→0

fℓ(xℓ + te
(i)
ℓ )− fℓ(xℓ)

t

= lim
t→0

F(uℓ + tφ
(i)
ℓ )−F(uℓ)

t

=
〈

DF(uℓ), φ
(i)
ℓ

〉

. (2.7)

We further adopt the following notations in this paper. We denote the kth iterate on level

ℓ by xℓ,k, where the first subscript ℓ denotes the discretization level and the second subscript k

denotes the iteration count. If a vector has only one subscript, as for example xℓ, the subscript

ℓ refers to the level of the multigrid. The component of a vector is marked by superscripts,

for example, x(i) means the ith component of the vector x. The same notations are applied to

zh,k as well. We also use fℓ,k ≡ fℓ(xℓ,k) and ∇fℓ,k ≡ ∇fℓ(xℓ,k). For convenience, we use h to

denote a finer level and H to denote the coarser level with respect to h, which stand for any

two of N0, N0 + 1, · · · , N , respectively.
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2.2. A general two-level subspace optimization framework

Instead of simply finding a point uh,k+1 in the coarser grid space VH , we seek a point uh,k+1

in Sh,k+VH , satisfying some conditions, where Sh,k is a subspace including descent information,

such as the coordinate direction of current iteration and the previous iterations or gradients, in

Vh. The choice of Sh,k is, of course, not unique. We first consider

Sh,k = span{uh,k,DhF(uh,k)} ⊆ Vh, (2.8)

which consists of the current point and the current gradient. We compute the gradientDF(uh,k)

in the original infinite dimensional space at uh,k for each step and then discretize it as DhF(uh,k)

in the weak formulation (2.4) in the same finite space Vh.

Since the computational cost of the subspace minimization problem usually is dominate,

a small subspace is preferred. In addition, the subspace should be able to provide as much

information as possible and the chosen subspace should be helpful for us to make progress on

decreasing function values. Based on these two rules, we properly choose the coarsest level H

only if it is helpful, then a new solution uh,k+1 is obtained by

uh,k+1 ≈ argmin F(u), s.t. u ∈ Sh,k + VH . (2.9)

A general algorithm framework is outlined in Algorithm 2.1.

Algorithm 2.1. A general two-level subspace optimization framework

Choose h to be the finest level N . Set uh,0 ∈ Vh, Sh,0 = ∅ and k = 0.

while stopping conditions not met do

if uh,k is not optimal at a coarser level H ∈ {N0, N0 + 1, . . . , N − 1} then

compute uh,k+1 by solving (2.9).

else

find a point uh,k+1 ∈ Vh on level h.

Set Sh,k+1 as (2.8).

In the next few subsections, we specify the conditions on whether uh,k is optimal, the

approaches for choosing the coarse level H and the methods for computing uh,k+1.

2.3. Switching conditions for coarse level correction

Since our algorithm works on different levels of grid, we need to give the relationship of points

on different levels. Firstly we define the prolongation operator from the coarser level to finer level

from our discretization. For any uℓ−1 in the next coarser level, we have uℓ−1 =
∑nℓ−1

i=1 x
(i)
ℓ−1φ

(i)
ℓ−1.

Since for every i = 1, · · · , nℓ−1, φ
(i)
ℓ−1 also lives in the finer level, we have φ

(i)
ℓ−1 =

∑nℓ

j=1 p
(j,i)
ℓ φ

(j)
ℓ .

Therefore, we have

uℓ−1 =

nℓ−1
∑

i=1

x
(i)
ℓ−1(

nℓ
∑

j=1

p
(j,i)
ℓ φ

(j)
ℓ ) =

nℓ
∑

j=1

(

nℓ−1
∑

i=1

p
(j,i)
ℓ x

(i)
ℓ−1)φ

(j)
ℓ . (2.10)

From (2.10) we can summarize that

xℓ = Pℓxℓ−1, (2.11)

by letting Pℓ be the matrix form of (p
(j,i)
ℓ ). Then we define Rℓ to be the restriction operator

from the finer level to the coarser level and assume the following relationship between them.
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Assumption 2.1. The prolongation operator Pℓ and the restriction operator Rℓ satisfy

Pℓ = σℓR
⊤
ℓ , (2.12)

where σℓ is a constant at level ℓ, and we always suppose that ‖Rℓ‖ ≤ 1.

We let this assumption hold for every level ℓ in the multilevel case. For a more extensive

coverage we refer to see [14, 15].

Similar to the traditional multigrid method, for each iteration step, our algorithm alternates

between two kinds of steps, a direct search step, which is generated in the current level, and a

coarse subspace correction step, which is generated from the proposed subspace. Therefore, it

is important to decide when the algorithm executes a coarse level correction. Here we use

‖Rℓ∇fℓ,k‖ ≥ max{κg‖∇fℓ,k‖, ǫℓ}, (2.13)

to avoid the discretized gradient ∇fℓ,k falling into the null space of the coarser grid, where

κg ≤ min{1,minℓRℓ} and ǫℓ ∈ (0, 1) denotes the tolerance for first order optimality condition

at the fine grid. It was first used in [42]. The reason is that if ∇fℓ,k lives in the null space

of coarse grid, i.e., Rℓ∇fℓ,k = 0, it can make little progress from the current iterator xℓ,k to

perform a coarse level correction.

2.4. Coarse subspace construction

If a coarse subspace correction step is chosen in Nash’s scheme [26], a new function is

defined by adding a linear term to the discretized function on coarser level, i.e., ϕH(xH) =

fH(xH) − v⊤HxH , where vH = ∇fH,0 − Rh∇fh,k. Following this kind of formulation, the first

order coherence between the two adjoining levels around the current iterate can be satisfied

[26, 31, 32].

Different from this scheme, as what is mentioned in Subsection 2.1, we define a new subspace

by augmenting the coarse grid space with some information on fine level. Note that Dh(uh,k) is

the gradient of the original functional, which is the best descent direction locally. The addition

of Dh(uh,k) in the searching subspace yields a nice descent property. Adding uh,k helps the

coarse subspace correction step to keep the zeroth order coherence with the finer level at the

iterate uh,k and makes the procedure monotonically decreasing.

For our general framework, we can define

T (h) = max
ℓ







ℓ | ℓ ≤ h,

∥

∥

∥

∥

∥

∥

h
∏

j=ℓ

Rj∇fℓ,k

∥

∥

∥

∥

∥

∥

< κg‖∇fℓ,k‖ or

∥

∥

∥

∥

∥

∥

h
∏

j=ℓ

Rj∇fℓ,k

∥

∥

∥

∥

∥

∥

< ǫℓ







. (2.14)

If T (h) = h, it means that it can make little progress even at the next coarser level. Hence,

a direct step should be chosen at the current iterate. Otherwise, a coarse level correction

step is executed at the coarse level H = T (h). After choosing the coarse level H , we specify

uh,k+1 = argminu∈Sh,k+VH
F(u). We follow the “optimize-then-discretize” strategy to get

DF(uh,k+1) firstly and compute the discretized gradient zℓ,k in (2.5). Then there exists a set
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of coefficients x
(i)
H (i = 1, · · · , nH), t1, t2 such that

uh,k+1 =

nH
∑

i=1

x
(i)
H φ

(i)
H + t1uh,k + t2DhF(uh,k)

=

nH
∑

i=1

x
(i)
H

nh
∑

j=1

P
(i,j)
H,h φ

(j)
h + t1

nh
∑

i=1

x
(i)
h,kφ

(i)
h + t2

nh
∑

i=1

z
(i)
h,kφ

(i)
h

= ΦhPH,hxH + t1‖xh,k‖Φh

xh,k

‖xh,k‖
+ t2‖zh,k‖Φh

zh,k
‖zh,k‖

= ΦhP̃H,hx̃H ,

(2.15)

where

P̃H,h = [PH,h,
xh,k

‖xh,k‖
,

zh,k
‖zh,k‖

] (2.16)

is a new prolongation matrix and x̃H = (x⊤
H , t′1, t

′
2)

⊤. We can easily derive that PH,h =
∏h

ℓ=H+1 Ph+H+1−ℓ and t′1 = t1‖xh,k‖, t′2 = t2‖zh,k‖, respectively.

According to our construction of the subspace, the objective function at the coarse level H

is not simply the discretized function fH(xH), but rather

f̃H(x̃H) = fh(P̃H,hx̃H). (2.17)

We choose the first iteration point to be x̃H,0 = (0, · · · , 0, ‖xh,k‖, 0)⊤, then P̃H,hx̃H,0 = xh,k.

Thus, we have the zeroth order coherence

f̃H(x̃H,0) = fh(xh,k). (2.18)

Moreover, we always minimize (2.17) to find x̃∗
H such that f̃H(x̃∗

H) ≤ f̃H(x̃H,0). After obtaining

x̃∗
H , we interpolate it to the finer level by letting xh,k+1 = P̃H,hx̃

∗
H . This leads to another zeroth

order coherence f̃H(x̃∗
H) = fh(xh,k+1). Gathering the mechanics of coarse correction steps and

the zeroth order coherence makes our algorithm monotonically decreasing.

We should mention that since the definition of P̃H,h depends on the point xh,k at the next

finer level h, the objective function f̃H is different at different points. We omit this dependence

by using f̃H(·) to simplify our notation. Actually, this is an extension from optimization per-

spective of FAS scheme [15], where we update for a full approximation of the new point rather

than an error term.

2.5. Direct search step

If condition (2.13) is not satisfied, a direct search step is to execute from xh,k. The construc-

tion of search steps is based on the basic iterative scheme, such as gradient method, conjugate

method, Newton method or quasi-Newton method for just one single level.

A descent direction dh,k can be computed by many unconstrained optimization algorithms

which are mentioned before. For proving the global convergence, we firstly choose the descent

direction dh,k satisfying

‖dh,k‖ ≤ β‖∇fh,k‖ and −∇f⊤
h,kdh,k ≥ η‖∇fh,k‖

2, (2.19)

where β and η are positive constants.
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Then we find a proper step size αh,k along this direction. On one hand, we require the step

size αh,k to satisfy the Armijo condition

fh(xh,k + αh,kdh,k) ≤ fh,k + ραh,k∇f⊤
h,kdh,k, (2.20)

where 0 < ρ < 1
2 . It helps the the next iterate xh,k+1 to generate a sufficient decrease of function

value from the current point xh,k. On the other hand, αh,k should avoid being a “too-short”

step. It is required to satisfy the Wolfe condition

∇f⊤
h,k+1dh,k ≥ µ∇f⊤

h,kdh,k, (2.21)

where ρ < µ < 1, or the Goldstein condition

fh(xh,k + αh,kdh,k) ≥ fh,k + (1− ρ)αh,k∇f⊤
h,kdh,k. (2.22)

Alternatively, a backtracking strategy can be used with

α = τpα0, (2.23)

where 0 < τ < 1, α0 is the initial step size and p is the smallest integer satisfying condition

(2.20).

Finally, we give the Algorithm 2.2 as the detailed version for our two-level subspace algorithm

(Algorithm 2.1) below.

Algorithm 2.2. Two-level Subspace Method x∗
h = TLS(h, xh,0)

Choose h to be the finest level N , initialize the parameters.

for k = 1, 2, . . . do

if ‖∇fh,k‖ < ǫh or k > Kh then

return solution xh,k.

if T (h) == h then

Direct Search Computation.

Compute a descent search direction dh,k.

Find a proper stepsize αh,k.

xh,k+1 = xh,k + αh,kdh,k.

else

Coarse Subspace Correction Computation

Set H = T (h).
Construct P̃H,h = [PH,h,

xh,k

‖xh,k‖
,

zh,k

‖zh,k‖
] and f̃H .

Compute x̃∗
H by solving minx̃H

f̃H(x̃H).

xh,k+1 = P̃H,hx̃
∗
H .

2.6. Full Multigrid Skill

Since starting from a good initial point may reduce the number of iterations in most occasion-

s, we use the so-called full multigrid skill or mesh refinement technique in our implementation.

Firstly we start at the coarsest level ℓ = N0 where the problem is easily solved. After getting a

minimum x∗
ℓ at the current level, we prolongate the solution to the next finer level ℓ + 1 with

interpolation as an initial point, and then apply Algorithm 2.2 to the discretized problem at

this new level to obtain the minimum x∗
ℓ+1. We repeat this process until we reach the finest

level and get the final solution. The detailed method is described in Algorithm 2.3.
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Algorithm 2.3. Full Two-level Subspace Method

Set an initial approximation xN0,0.

for ℓ = N0, N0 + 1, . . . , Nt do

Call x∗
ℓ = TLS(ℓ, xℓ,0), i.e., apply Alg. 2.2 to solve the discretized problem

minxℓ
fℓ(xℓ) on level ℓ.

if ℓ < N then

Compute the initial point xℓ+1,0 = Pℓ+1x
∗
ℓ on level ℓ+ 1.

3. Convergence Analysis

3.1. Assumptions and properties for functions of all levels

In this section, we make the following assumptions.

A.1 (smoothness) fN(xN ), the discretized function at the uppermost level, is continuously

differentiable with Lipschitz gradient, i.e., there exists 0 < LN < ∞ such that

‖∇fN(xN )−∇fN (yN )‖ ≤ LN‖xN − yN‖. (3.1)

A.2 (boundedness) fN (xN ), the discretized function at the uppermost level, has a bounded

level set {xN |fN(xN ) ≤ fN (xN,0)} for any xN,0.

A.3 (convexity) fN (xN ), the discretized function at the uppermost level, is strongly convex,

i.e., there exists 0 < mN < ∞ such that

fN (yN ) ≥ fN (xN ) +∇fN (xN )⊤(yN − xN ) +
1

2
mN‖yN − xN‖2. (3.2)

From the assumptions above, we can prove the smoothness, boundedness and convexity of

discretized functions at all levels in the following three lemmas.

Lemma 3.1. Suppose that assumption A.1 holds. Let fℓ(xℓ) be the discretized function at the

level ℓ other than the uppermost level. Then fℓ(xℓ) is continuously differentiable and its gradient

is Lipschitz continuous, i.e., there exists 0 < Lℓ < ∞ such that

‖∇fℓ(xℓ)−∇fℓ(yℓ)‖ ≤ Lℓ‖xℓ − yℓ‖, (3.3)

where Lℓ ≤ (
∏N

i=ℓ+1 σi)
2LN .

Proof. From the definition of fℓ(·), we have

fℓ(xℓ) = F(Φℓxℓ) = F(ΦNPℓ,Nxℓ) = fN (Pℓ,Nxℓ).

So fℓ(·) is continuous differentiable. For any xℓ and yℓ, we have

‖∇fℓ(xℓ)−∇fℓ(yℓ)‖ = ‖P⊤
ℓ,N (∇fN (Pℓ,Nxℓ)−∇fN (yℓ))‖

≤‖Pℓ,N‖LN‖Pℓ,N(xℓ − yℓ)‖ ≤ ‖Pℓ,N‖2LN‖(xℓ − yℓ)‖

=

∥

∥

∥

∥

N
∏

i=ℓ+1

PN+ℓ+1−i‖
2LN‖(xℓ − yℓ)

∥

∥

∥

∥

≤

( N
∏

i=ℓ+1

σi

)2

LN‖xℓ − yℓ‖,

where the last inequality is derived from Assumption 2.1. This completes the proof. �
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Lemma 3.2. Suppose that assumption A.2 holds. Let fℓ(xℓ) be the discretized function at the

level ℓ other than the uppermost level. Then fℓ(xℓ) also has the bounded level set {xℓ|fℓ(xℓ) ≤

fℓ(xℓ,0)} for any xℓ,0.

Proof. From the proof of the former lemma, for any level ℓ, we have fℓ(xℓ) = fN(Pℓ,Nxℓ).

Assume that there exists xℓ,0 such that the level set {xℓ|fℓ(xℓ) ≤ fℓ(xℓ,0)} is unbounded. It

means that {Pℓ,Nxℓ|fN (Pℓ,Nxℓ) ≤ fN (Pℓ,Nxℓ,0)} is unbounded. This contradicts with the fact

that {xN |fN(xN ) ≤ fN (Pℓ,Nxℓ,0)} is bounded. �

Lemma 3.3. Suppose that assumption A.3 holds. Let fℓ(xℓ) be the discretized function at

the level ℓ other than the uppermost level. Then fℓ(xℓ) is strongly convex, i.e., there exists

0 < mℓ < ∞ such that

fℓ(yℓ) ≥ fℓ(xℓ) +∇fℓ(xℓ)
⊤(yℓ − xℓ) +

1

2
mℓ‖yℓ − xℓ‖

2. (3.4)

Proof. Since Pℓ is column full rank for any ℓ, Pℓ,N =
∏N

i=ℓ+1 PN+ℓ+1−i is also column full

rank and P⊤
ℓ,NPℓ,N is positive definite. Let λP

min be the minimal eigenvalue of the latter matrix.

According to the strong convexity of fN (·), for any yℓ, we have

fℓ(yℓ) = fN (Pℓ,Nyℓ)

≥ fN (xN ) +∇fN (xN )⊤(Pℓ,Nyℓ − xN ) +
1

2
mN‖Pℓ,Nyℓ − xN‖2.

Letting xN = Pℓ,Nxℓ, we have

fℓ(yℓ) ≥ fN (Pℓ,Nxℓ) +∇fN (Pℓ,Nxℓ)
⊤(Pℓ,N (yℓ − xℓ)) +

1

2
mN‖Pℓ,N(yℓ − xℓ)‖

2

= fℓ(xℓ) +∇fℓ(xℓ)
⊤(yℓ − xℓ) +

1

2
mN (yℓ − xℓ)

⊤(P⊤
ℓ,NPℓ,N )(yℓ − xℓ)

≥ fℓ(xℓ) +∇fℓ(xℓ)
⊤(yℓ − xℓ) +

1

2
mNλP

min‖yℓ − xℓ‖
2.

This completes the proof. �

Based on the lemmas above, furthermore, we let L = maxℓ Lℓ and m = minℓ mℓ. In the

following lemma, we show that the step size generated by any of the three kinds of line search

methods has a lower bound.

Lemma 3.4. Suppose that assumption A.1 holds, dℓ,k is a descent direction at xℓ,k and Armijo

condition (2.20) is satisfied. The step size αℓ,k has a lower bound for any kind of line search

method referred in Section 2, specifically, min{α0,
2τ(ρ−1)d⊤

ℓ,k∇fℓ,k

Lℓ‖dℓ,k‖2 } for the backtracking strategy,

−2ρd⊤

ℓ,k∇fℓ,k

Lℓ‖dℓ,k‖2 for Goldstein condition and
(µ−1)d⊤

ℓ,k∇fℓ,k

Lℓ‖dℓ,k‖2 for Wolfe condition.

Proof. 1. For backtracking strategy (2.23), we refer to see [31].

2. For Goldstein condition (2.22), since zℓ is Lipschitz continuous, it follows from Taylor’s

theorem (Theorem 1.2.22 in [43]) that

fℓ(xℓ,k + αdℓ,k) ≤ fℓ,k + α∇f⊤
ℓ,kdℓ,k +

1

2
Lℓα

2‖dℓ,k‖
2.

Combining with (2.22), we can derive that α ≥
−2ρ∇f⊤

ℓ,kdℓ,k

Lℓ‖dℓ,k‖2 .
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3. For Wolfe condition (2.21), we subtract a term ∇f⊤
ℓ,kdℓ,k to the both sides of (2.21) and

get

Lℓα‖dℓ,k‖
2 ≥ (∇fℓ,k+1 −∇fℓ,k)

⊤dℓ,k ≥ (µ− 1)∇f⊤
ℓ,kdℓ,k,

where the first inequality comes from the Lipschitz continuous gradient of fℓ. This implies the

lower bound of Wolfe condition. �

From this Lemma, we can always have a lower bound of step size ᾱℓ as

ᾱℓ = min{α0,
2τ(1 − ρ)

Lℓ

,
2ρ

Lℓ

,
1− µ

Lℓ

}, (3.5)

if the negative gradient direction is used, or

ᾱℓ = min{α0,
2τ(1− ρ)η

Lℓβ2
,
2ρη

Lℓβ2
,
(1− µ)η

Lℓβ2
}, (3.6)

if a descent direction other than the negative gradient is used, where β and η are constants in

(2.19).

The following lemma gives some properties of strongly convex functions.

Lemma 3.5 (Theorem 5.3.4 in [43]) . Suppose that assumptions A.1 and A.3 hold, for all

xℓ, it holds
m

2
‖xℓ − x∗

ℓ‖
2 ≤ fℓ(xℓ)− fℓ(x

∗
ℓ ) ≤

1

2m
‖∇fℓ(xℓ)‖

2, (3.7)

where x∗
ℓ is the unique minimizer of fℓ(xℓ) on level ℓ.

3.2. Some properties for coarse subspace correction

In this subsection, we analyze the properties in coarse subspace correction. The following

lemma shows that the new constructed prolongation matrix P̃H,h is bounded.

Lemma 3.6. The prolongation matrix P̃H,h has bounded ℓ2 norm, i.e., there exists an upper

bound B such that

‖P̃H,h‖ ≤ B. (3.8)

Proof. From the relationship of the transfer matrix (2.12) and the definition of P̃H,h (2.16),

we have

‖P̃H,h‖
2 ≤ ‖PH,h‖

2 +

∥

∥

∥

∥

xh,k

‖xh,k‖

∥

∥

∥

∥

2

+

∥

∥

∥

∥

zh,k
‖zh,k‖

∥

∥

∥

∥

2

.

Then ‖P̃H,h‖ ≤
√

(
∏h

ℓ=H+1 σℓ)2 + 2. Since there are finite levels of grids, there exists a positive

constant B such that ‖P̃H,h‖ ≤ B. �

From this lemma and the fact that ∇fh is Lipschitz continuous, we can prove that ∇f̃H is

also Lipshchitz continuous in the following lemma.

Lemma 3.7. Suppose assumption A.1 hold for fh. At any point xh,k, f̃H also has Lipschitz

continuous gradient, and the Lipschitz constant L̃H satisfies

L̃H ≤ B2Lh. (3.9)
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Proof. From assumption A.1 and Lemma 3.1, we have

‖∇fh(xh)−∇fh(yh)‖ ≤ Lh‖xh − yh‖, ∀xh, yh.

Then according to the definition of f̃H , we can derive that

‖∇f̃H(x̃H)−∇f̃H(ỹH)‖ = ‖P̃⊤
H,h∇fh(P̃H,hx̃H)− P̃⊤

H,h∇fh(P̃H,hỹH)‖

≤ ‖P̃H,h‖Lh‖P̃H,h(x̃H − ỹH)‖

≤ B2Lh‖x̃H − ỹH‖.

This proves the lemma and implies (3.9). �

The following lemma gives the progress with one coarse subspace correction step.

Lemma 3.8. Suppose assumption A.1 holds for f̃H and the Lipschitz constant is L̃H . If the

algorithm executes a coarse subspace correction step at the point xh,k, we have

fh,k − fh,k+1 ≥ ρᾱ((κg

h
∏

ℓ=H+1

σℓ)
2 + (

λM
min

λM
max

)2)‖∇fh,k‖
2, (3.10)

where λM
min and λM

max are the minimal and maximal eigenvalues of the mass matrix Mh, re-

spectively.

Proof. When a coarse subspace correction step is chosen, we have

fh,k − fh,k+1 ≥ f̃H(x̃H,0)− f̃H(x̃H,1) ≥ ρᾱ‖∇f̃H(x̃H,0)‖
2. (3.11)

The first inequality is due to the descent property of coarse subspace correction and the second

inequality comes from the Armijo condition (2.20) by choosing the negative gradient as the

descent direction.

According to the definition of ∇f̃ , we have

∇f̃H(x̃H,0) = P̃⊤
H,h∇fh(P̃H,hx̃H,0)

= P̃⊤
H,h∇fh,k

=

(

(P⊤
H,h∇fh,k)

⊤,
1

‖xh,k‖
x⊤
h,k∇fh,k,

1

‖zh,k‖
z⊤h,k∇fh,k

)⊤

=

( h
∏

ℓ=H+1

σℓ(

h
∏

ℓ=H+1

Rℓ∇fh,k)
⊤,

1

‖xh,k‖
x⊤
h,k∇fh,k,

1

‖zh,k‖
z⊤h,k∇fh,k

)⊤

.

This relation, together with (2.13) and (2.6), implies that

‖∇f̃H(x̃H,0)‖
2 ≥

(

(κg

h
∏

ℓ=H+1

σℓ)
2 + (

λM
min

λM
max

)2
)

‖∇fh,k‖
2. (3.12)

Consequently, our lemma follows from (3.11) and (3.12). �
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3.3. Convergence properties and complexity

The following theorem shows the global convergence for general functions.

Theorem 3.1. Suppose (2.19) is satisfied for all direct search directions. Then under assup-

tions A.1-2 the iterative sequence {xh,k} generated by Algorithm 2.2 at the finer level converges

to the minimizer or first order stationary point of fh(xh).

Proof. For direct search step, the step size αh,k has a lower bound ᾱ from Lemma 3.4. From

Armijo condition (2.20) we have

fh,k − fh,k+1 ≥ −ρᾱ∇f⊤
h,kdh,k.

From (2.19), we have

−∇f⊤
h,kdh,k ≥ ηh‖∇fh,k‖

2.

Hence,

fh,k − fh,k+1 ≥ ρᾱηh‖∇fh,k‖
2.

For coarse subspace correction step, we have

fh,k − fh,k+1 ≥ ρᾱκ2
g‖∇fh,k‖

2

from Lemma 3.8. Let δ = min{ηh, (κ2
g + λM

min)}. The above two inequalities imply that

fh,k − fh,k+1 ≥ ρᾱδ‖∇fh,k‖
2.

Since fh(xh) is bounded below by assumption A.2, we have

lim
k→∞

‖∇fh,k‖ = 0,

which completes the proof. �

In the following theorem and corollary, we prove the R-linear convergence rate for strongly

convex functions.

Theorem 3.2. For convex functions, suppose assumptions A.1-3 hold and (2.19) is satisfied for

all direct search directions. Assume that the iterative sequence {xh,k} generated by Algorithm

2.2 at the finer level converges to a unique minimizer x∗
h. Then the convergence rate is at least

R-linear.

Proof. Similar to Theorem 3.1, we can derive that

fh,k − fh,k+1 ≥ ρᾱδ‖∇fh(xh,k)‖
2

from (2.19), Lemma 3.4, Lemma 3.8 and the definition of δ. From the second inequality of (3.7)

in Lemma 3.5, we get

‖∇fh(xh,k)‖
2 ≥ m(fh(xh,k)− fh(x

∗
h)).

Hence,

fh(xh,k)− fh(xh,k+1) ≥ ρᾱδm(fh(xh,k)− fh(x
∗
h)),

where 0 < ρᾱδm < 1. By adding fh(x
∗
h) to both sides of the above inequality, we have

fh(xh,k+1)− fh(x
∗
h) ≤ (1− ρᾱδm)(fh(xh,k)− fh(x

∗
h)).
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From the first inequality of (3.7) in Lemma 3.5, we have that

fh(xh,k)− fh(x
∗
h) ≥

m

2
‖xh,k − x∗

h‖
2.

From all above, we can derive that

‖xh,k − x∗
h‖ ≤

√

2

m
(fh(xh,k)− fh(x

∗
h))

1

2

≤

√

2

m
(1− ρᾱδm)

1

2 (fh(xh,k−1)− fh(x
∗
h))

1

2

≤

√

2

m
(1− ρᾱδm)

k
2 (fh(xh,0)− fh(x

∗
h))

1

2 .

(3.13)

This completes the proof. �

Corollary 3.1. For any ǫ > 0, suppose assumptions A.1-3 hold, after t = 2 log c
log (1−ρᾱδm) itera-

tions at most, where

0 < c =

√

mǫ2

2(fh(xh,0)− fh(x∗
h))

,

we have ‖xh,k − x∗
h‖ ≤ ǫ.

Proof. From inequality (3.13) and the convergence analysis for convex functions [44], we

obtain the result. �

The last theorem shows the convergence rate for general function, including nonconvex

functions.

Theorem 3.3. For functions where assumptions A.1-2 hold, suppose (2.19) is satisfied for all

direct search directions. Assume that Algorithm 2.2 generates a sequence {xh,k} converging to

the first order stationary point x∗
h at the finer level. Then the convergence rate is sub-linear and

min
k

‖∇fh,k‖
2 ≤

ρᾱδ

K + 1
(fh(xh,0)− fh(x

∗
h)), (3.14)

which guarantees accuracy mink ‖∇fh,k‖ ≤ ǫ in K = O(1/ǫ2) iterations.

Proof. Similar to Theorem 3.1, we can derive that

fh,k − fh,k+1 ≥ ρᾱδ‖∇fh(xh,k)‖
2

from (2.19), Lemma 3.4, Lemma 3.8 and the definition of δ. By summing up the above inequal-

ities for k = 0, . . . ,K, we obtain

ρᾱδ

K
∑

k=1

‖∇fh(xh,k)‖
2 ≤ fh,0 − fh,K+1 ≤ fh,0 − fh(x

∗
h).

From this we can derive (3.14), which completes the proof. �
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4. Numerical Experiments

4.1. Test problems

To demonstrate the efficiency of our algorithms, we consider a few variational minimization

problems including Bratu problem, nonlinear ellipse problem and nonconvex problem. The

parameters in each problem will be specified following its introduction while some common

settings are given here. All problems are lived in 2D functional space with a fixed domain

Ω = (0, 1) × (0, 1). We discretized Ω into square grids and the term ∇u with finite difference

methods. Also, we define Pℓ as a nine-point prolongation operator and Rℓ =
1
4P

⊤
ℓ .

Our three test problems are listed as follows. The first two problems are convex while the

last one is nonconvex.

1. Bratu equation
{

−∆u(x, y) + eu(x,y) = 0, (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ ∂Ω.
(4.1)

The variational form of (4.1) is

{

minu F(u(x, y)) =
∫

Ω
1
2 |∇u(x, y)|2 + eu(x,y)dxdy

s.t. u(x, y) = 0, (x, y) ∈ ∂Ω.
(4.2)

2. Nonlinear ellipse equation

{

−∆u(x, y)− λu(x, y)eu(x,y) = b(x, y), (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ ∂Ω,
(4.3)

where b(x, y) =
(

9π2 + λe((x
2−x3) sin(3πy))(x2 − x3) + 6x− 2

)

sin(3πy) and λ = 10. The varia-

tional form of (4.3) is

{

minu F(u(x, y)) =
∫

Ω
1
2 |∇u(x, y)|2 − λ(u(x, y)eu(x,y) − eu(x,y))− b(x, y)u(x, y)dxdy

s.t. u(x, y) = 0, (x, y) ∈ ∂Ω.
(4.4)

3. Nonconvex variational problem















minF(u(x, y)) =
∫

Ω
1

1+|∇u(x,y)|2 + γ|∇u(x, y)|2dxdy

s.t. u(x, y) = 1000(x− 0.5)2, y = 0 or 1,

u(x, y) = 1000(y− 0.5)2, x = 0 or 1,

(4.5)

where γ = 10−3.

4.2. Evaluation of mesh size independent convergence rates

We first evaluate the convergence rates of our algorithm (TLS) and multigrid method in [31]

with conventional multigrid spaces. We change Algorithm 2.1 in [31] to a two-level version with

a fixed coarse level, and refer it as Two-Grid Line Search (TGLS). The initial point of all

unconstrained problems are chosen as zero vectors. The algorithms stop when ‖∇fh(xh)‖ ≤

ǫh = 10−7. For each V-cycle, the numbers of presmoothing and postsmoothing are set to 2.

Both presmoothing and postsmoothing operators are L-BFGS. The level ℓ means there are 2ℓ
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Fig. 4.1. The gradient norms of TGLS and TLS on Problems (4.2) and (4.4) at the level h = 6.

Table 4.1: The numbers of V-cycles performed by TGLS and TLS over different fine spaces on Problems

(4.2) and (4.4).

Prob. Problem (4.2) Problem (4.4)

h TGLS TLS TGLS TLS

6 12 10 12 12

7 12 10 13 12

8 12 10 15 14

9 14 12 20 15

10 16 10 20 17

grids in each direction. For convenience, coarse spaces in both methods are always chosen as

H = h− 3.

Then we test the convergence rate by taking h = 6 which means a grid of size 26 × 26. We

compare the decrease of the gradients norms over V-cycles of TGLS and TLS on problems (4.2)

and (4.4). The results are given in Fig. 4.1. They show that both algorithms converge linearly.

Furthermore, we compare the numbers of V-cycles over different fine level spaces from 6 to 10.

The results are listed in Table 4.1. It shows that the numbers of V-cycles on each level are

almost the same. Hence, our multigrid methods can produce a mesh size independent linear

convergence rate.

4.3. Performance evaluation with full multigrid methods

We compare our algorithm with the state-of-art full multigrid with Line Search method

proposed in [31]. FMLS-LBFGS denotes the Algorithm 2.3 in [31]. It uses LBFGS in direct

steps and coarse level corrections. For the implementation of our Algorithm 2.3, we use LBFGS

in direct steps and gradient method with BB stepsize for convex cases and LBFGS for nonconvex

cases in coarse level corrections. We denote them by FTLS-LBFGS-BB and FTLS-LBFGS,

respectively. We also use backtracking for all algorithms in implementation for line search.

Preventing cycling with similar point sequences, we also add an additional switching condition

‖xh,k − xlc
h ‖ ≥ κx‖x

lc
h ‖ (4.6)

for coarse level correction, where xlc
h is the initial point of last coarse step and κx ∈ (0, 1).

Otherwise we will choose a direct step at a fine grid.
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Table 4.2: Summary of computational results of problem (4.2).

Alg. FMLS-LBFGS FTLS-LBFGS-BB

ℓ nf ng nv nf ng nv

3 91 80 0 83 81 0

4 100 76 11 49 46 2

5 85 57 9 30 26 3

6 79 47 6 46 41 3

7 38 29 5 33 28 2

8 44 40 3 57 52 2

9 52 49 1 6 4 1

10 27 26 0 12 11 0

11 3 2 0 3 2 0

time 20.241 9.476

‖g∗‖ 8.3e-8 8.2e-8

Table 4.3: Summary of computational results of problem (4.4).

Alg. FMLS-LBFGS FTLS-LBFGS-BB

ℓ nf ng nv nf ng nv

3 160 144 0 148 147 0

4 131 105 17 32 28 3

5 118 76 12 42 31 3

6 65 48 7 64 60 4

7 66 38 5 50 45 3

8 38 22 4 16 14 2

9 37 21 3 12 9 1

10 17 14 2 7 5 1

11 11 6 0 1 1 0

time 17.643 5.547

‖g∗‖ 1.4e-7 3.8e-8

For parameters in practical consideration, we set

ǫℓ = 10−7/5h−ℓ, κg = 10−2, κx = 10−2, ρ = 10−3

on all levels. We add another two termination rules to prevent stagnating of algorithms,

fℓ,k(f̃ℓ,k)− fℓ,k+1(f̃ℓ,k+1)

max (|fℓ,k(f̃ℓ,k)|, |fℓ,k+1(f̃ℓ,k+1)|, 1)
≤ 10−16 or ‖xℓ,k − xℓ,k+1‖ ≤ 10−12

Both conditions are also used in [31]. As for the maximal iteration number, we set K = 1000

for direct search steps. For coarse level correction, K always equals to 10 in LBFGS while in

BB, K = 10 if the level ℓ is no finer than 5 and the difference between the finer level h and

the coarser level H is no greater than 3, otherwise K = 20. The algorithms described above

were coded in MATLAB 2015a (Release 8.5.0) and all experiments below were run on a Dell

Optiplex 9020 with an Intel-Core i7-4790 3.60 GHz CPU and 8 GB RAM.

We summarize the computational costs on different levels of both methods in Table 4.2-

4.4. We report the numbers of function evaluations and gradient evaluations at different levels
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Table 4.4: Summary of computational results for nonconvex problem (4.5).

Alg. FMLS-LBFGS FTLS-LBFGS

ℓ nf ng nv nf ng nv

3 1456 1099 0 358 241 0

4 3135 1970 270 250 164 8

5 4739 2989 504 452 257 11

6 4409 3020 550 505 328 19

7 3236 2212 383 632 382 36

8 3357 1470 221 954 787 97

9 1836 1014 173 478 449 8

10 833 573 102 142 124 5

11 372 318 46 69 67 4

time 1049.071 282.648

‖g∗‖ 6.5e-7 4.8e-7
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Fig. 4.2. Performance plots for iterations and gradient values for problem (4.2). The first line corre-

sponds to comparison of iteration history and the second line corresponds to comparison of logarithm

of gradient where recursive steps are marked by “o”.

and total CPU time measured by seconds, and the attained accuracies which are measured by

the Euclidean norm of gradient ‖g∗‖. We also compare the iteration behavior between two

algorithms in Fig. 4.2-Fig. 4.4. Iteration histories of two algorithms are showed in Fig. 4.x(a)

and Fig. 4.x(b), respectively. The norm of gradients basing on the common logarithm are

depicted in Fig. 4.x(c) and Fig. 4.x(d).

In convex occasions, our algorithm FTLS-LBFGS-BB takes less than half and one third of

the time FMLS-LBFGS uses, respectively. FMLS-LBFGS fails to satisfy the target gradient
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Fig. 4.3. Performance plots for iterations and gradient values for problem (4.4). The first line corre-

sponds to comparison of iteration history and the second line corresponds to comparison of logarithm

of gradient where recursive steps are marked by “o”.
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Fig. 4.4. Performance plots for iterations and gradient values for problem (4.5). The first line corre-

sponds to comparison of iteration history and the second line corresponds to comparison of logarithm

of gradient where recursive steps are marked by “o”.



900 C. CHEN, Z.W. WEN AND Y.X. YUAN

tolerance in the nonlinear ellipse example, while FTLS-LBFGS-BB reaches the target tolerance

successfully and efficiently. In nonconvex case, FMLS-LBFGS fails to reach the target gradient

tolerance after stopping the algorithm because it can hardly make progress on function value.

FTLS-LBFGS just uses about one fourth of the time to reach the similar achieved gradient

norm with FMLS-LBFGS.

5. Conclusion and Future Work

In this paper, we proposed a new two-level subspace method framework for general nonlin-

ear optimization discretized from the infinite-dimensional problems. The main contribution of

our method is the combination of the subspace technique and multigrid. In the coarse subspace

correction steps, we augment the coarse grid space with some subspace consisting of descent

directions. We establish a two-level subspace multigrid framework based on traditional opti-

mization methods and a new coarse level subspace correction. We prove the linear convergence

rate for strongly convex case and the sublinear convergence rate for nonconvex case. We im-

plement the direct search direction step with limited memory BFGS and the coarse subspace

correction with gradient method with BB stepsize for convex cases and limited memory BFGS

for nonconvex cases. Preliminary numerical experiments show that our algorithm performs

efficiently on unconstrained optimization. Our future work includes designing the coarse s-

pace with more information of historical descent directions and extending this framework to

constrained optimization, especially box-constrained problems as in [33, 39, 40].
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