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Abstract

This paper develops a framework to deal with the unconditional superclose analysis of
nonlinear parabolic equation. Taking the finite element pair Q11/Qo1 X Q10 as an example,
a new mixed finite element method (FEM) is established and the T-independent superclose
results of the original variable « in H'-norm and the flux variable ¢ = —a(u)Vu in L*-
norm are deduced (7 is the temporal partition parameter). A key to our analysis is an
error splitting technique, with which the time-discrete and the spatial-discrete systems are
constructed, respectively. For the first system, the boundedness of the temporal errors are
obtained. For the second system, the spatial superclose results are presented uncondition-
ally, while the previous literature always only obtain the convergent estimates or require
certain time step conditions. Finally, some numerical results are provided to confirm the
theoretical analysis, and show the efficiency of the proposed method.

Mathematics subject classification: 65N15, 65N30
Key words: Nonlinear parabolic equation, Mixed FEM; Time-discrete and spatial-discrete
systems, T-independent superclose results.

1. Introduction

Let 2 C R? be a rectangle with boundary 9Q and 0 < T < co. We develop and analyze a
mixed FEM to the following time-dependent nonlinear parabolic equation:

us — V- (a(u)Vu) = f(X,t), (X,t) € Qx(0,T],

u =0, (X,t) € 99 x (0,T), (1.1)
U(Xa 0) - UO(X)v X eqQ,
where X = (z,y), a(u) and f(X,¢) are smooth functions. Assume that there exist con-

stants p, M, B such that 0 < g < a(u) < M, |a'(u) + a”(u)] < B. For the nonlinear
problem of (1.1), [1] constructed the linearized Galerkin FEM and derived optimal error of or-
der O(h? +72) in L?>-norm. With the linearized Galerkin FEMs, [2] and [3] discussed three-level
Galerkin method and implicit-explicit multistep FEMs, and obtained optimal order error esti-
mates, respectively. For other nonlinear problems, numerious efforts have been devoted to the
development of efficient numerical schemes, such as the nonlinear parabolic integro-differential
equations [4-6], nonlinear Schrédinger equations [7-10], Navier-Stokes equations [11-13] and
others [14-18].
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It is known that the approximating spaces should satisfy the so-called Babuska-Brezzi con-
dition in the usual mixed FEMs. In order to make the requirement to be satisfied easier, a
mixed finite element form was established in [19] for second elliptic problems, in which the two
spaces just need to fulfill a very simple inclusion relationship. Motivated by this work, the non-
conforming pair EQ7°'/Q10 x Qo1 was used to research a linear Sobolev equation and optimal
error estimates and superclose results were received in [20]. For the linear parabolic problem,
[21] deduced optimal error estimates based on the triangular nonconforming finite element pair
Py /Py x Py, and [22] showed the supercloseness as well as the extrapolation results with the
nonconforming element pair EQ7°/Q10 X Qo1 of [20]. Note that [23,24] discussed the linear
elasticity problem and the nonlinear Schrodinger equation with conforming finite element pairs,
respectively.

Generally speaking, to deduce optimal error estimates of linearized Galerkin FEMs, one
may use mathematical induction with an inverse inequality to bound the numerical solution in
L norm, such as

U — Ry < Ch™2 (U — Ryu™[lo < Ch™ % (A7+! 4 7™), (1.2)

Here and later, U}’ and u™ are the finite element approximation and the exact solution at time
t™, respectively, and Ry is a certain projection operator, C' is a positive constant independent
of 7 and h. The inequality (1.2) results in the time-step restriction, and extremely time-
consuming in practical computations see, e.g., [3-18,24,25]. However, it has been shown that
the time restriction may not be necessary in many cases (see [26 — 33]). Not long ago, a new
error analysis technique was proposed by [26] (also see [27]) for a Joule heating system with
a standard Galerkin FEM, which splitted the numerical error into two parts, the spatial error
and the temporal error. Then, the estiamte of (1.2) can be replaced by

|UP — RyU™ ||~ < Ch™ 5 |UP — RyU™|jo < Ch™2 A", (1.3)

where U™ is the time-discrete solution. Therefore, the bouneness of U;} can be deduced without
any time-restriction. Consequently, [28-31] applied this idea to investigate various nonlinear
problems and obtained the unconditional error estimates, respectively. But in the above studies,
they only focused on the analysis of time-independent error estimates for the lineared Galerkin
FEMs. Recently, [32] studied a mixed finite element scheme for the nonlinear Sobolev equation,
and obtain the unconditionaliy superclose and superconvergent results by avoiding the estimate
of the numerical solution in L*°-norm. Of course, the method can’t be used in this equation of
(1.1). [33] derived the unconditionally superconvergent results for nonlinear parabolic equation
with nonconforming EQ’° elemrnt. In this paper, we study the linearized mixed finite element
scheme for problem (1.1) with element pair Q11/Qo1 X Q10, and deduce the 7-independent
superclose results through rigorous analysis.

The rest of the paper is organized as follows. In Section 2, the linearized time-discrete
system is presented and the boundedness of the numerical solution in L norm for the original
variable u and the flux variable § = —a(u)Vu are deduced, which will play an important role
in the superclose analysis. In Section 3, we develop the new mixed finite element scheme and
some notations. In Section 4, we give the linearized FEM for the spatial-discrete system and
derive the corresponding superclose estimates of order O(h? + 72) unconditionally. In Section
5, some numerical results are provided to verify the theoretical analysis.
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2. Error Analysis for the Time-Discrete System

Let ¢ = —a(u)Vu. We can rewrite problem (1.1) as

u+V-q=f, (X,t) € Q% (0,T],

¢+ a(u)Vu =0, (X,t) € 2 x (0,77, (2.1)
u(X,t) =0, (X,t) € 002 x (0,7,

w(X,0) = ug(X), X eq.

For positive integer N, let 0 = tg < t; < ... < ty = T be a given partition of [0,7] with
step length 7 = T/N, by 1= %(tn +tp-1),and t, =nT,n=0,1,...,N.
Let u™ = u(X,t,) (n=0,1,...,N), we define
_ 1
o™ = (u™ —u" /7, A" = §(u” +u" Y, n=1,2,---,N,
" ==Bu" ' —u"?), n=2,---,N.

For n > 2, With above notations, Eq. (2.1) can be rewritten as

du"+V-§ =f"E+RP+V Ry, (X,0)eQx (0,T),

¢ +a(@)Va" =Ry + Ry, (X.1) € 2 x (0,7, 22)
u" =0, (X,t) € 80 x (0,7,

u® = up(X), X e,

= n—1 - 1 — ~ -1 -1
where R} = 0yu —u, %, Ry =§ — " 2, R} =a(@)Vu" —a(u™ 2)Vu""=.
~n
Then we can formulate the following time-discrete system for (2.1): Find {U™,Q } (n > 2)
such that

RU"+V-Q =frF, (X,t) € 2% (0,T],
Q +aU")VU™ =0, (X,t) € Q2 x (0,7, (2.3)
ur =0, (X,t) € 002 x (0,77,
U° = up(X), X eqQ,
~1
For n = 1, we calculate {U',Q } in the following two steps (see [1]).
Step 1:
1,0 _ 771,0 Wall .10 L
o0 VAV xineax01]
.
30 31,0 o Ulo
% + a(UO)¥ = 07 (X7t) € Q x (O7T]a (24)
Ut =0, (X,t) € 092 x (0,77,
U° = up(X), X eqQ,
together with
- ~1 N
8tu1+V~¢7:f5+R?+V~R8, (th)GQX(OvT]a
7 +a(@®)Val = RY + RY, (X,1) € Q x (0,T], 2.5
ul =0, (X,t) € 9Q x (0,77,

u® = up(X), X e,
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[SIE

— 1 ~1
where RY = u! —u?, R =¢ — @2, RY = a(u®)Va' — a(u?)Vuz.

Step 2:
5tU1+v.51:f%, (X,t) € Qx (0,7,
G T =0, (X eQx (0.7] (2.)
Ul =0, (X,t) € 0Q x (0,77,
U° = up(X), X e,
together with

Etu1+v-5‘1=f%+Ri+v-R§, (X,t) € 2 x (0,7,

7 +a(@)va' = R} + R}, (X,1) € 2 x (0,71, @7)

ul =0, (X,t) € 0Q x (0,77,

u® = up(X), Xeq,

N

— 1 ~1
where R} = du' —u?, Ry =¢ —q2, R} = a(i")Va' — a(u?)Vuz.

Let e = u” —U", e'0 = ! — U0 and 0" = ¢" — Q", 010 = u! — U, Then we have the

following important theorem.

Theorem 2.1. Let that {u",;]:'n} and {U™, @ } (n>2) be the solutions of (2.2) and (2.3) re-
~1 =1
spectively. And the time-discrete system (2.7) and (2.6) have the solutions {u',q } and {U',Q }

respectively. Assume thatu € L%(0,T; H*(Q)NHE(Q)),us € L°(0,T; H*(Q)), uy € L?(0,T; H?
(), uge € L?(0,T; L*(Q)). Then forn=1,--- N, there exists 7o > 0, such that 7 < 79,

~n ~n ~1,0
le™ [l + lema + e 0llo + 72 l|e 0l + 7l 0]z + |7 o+ 716 |1 +7]F 1 < Cor?, (2:8)

— — _7n ~n ~1,0
10U |2 + 11U [z + [10:U 12 + U]z + [10:Q 11 +1Q 1 +1Q 11 < Co. (2.9)
Proof. The results can be proved by using a similar technique given in [33]. O

3. Mixed Finite Element Spaces

Our domain (2 is a rectangle whose edges parallel to the x and y-axis. Moreover, T}, is
a regular rectangular subdivision of ). The associated finite element spaces V}, and W}, are
defined by

Vi = {'UQUlK S Qll(K)avK € Th}’ Voh - {U;U € Vh’vlag - 0}7
Wi, = {@ = (w',w?) € (L*(2))% @]k € Qui(K)x € Quo(K),VK € Ty},

where Q;; = span{z"y®,0 <r <4,0<s<j}.
Then for all v € H%(Q), @), = (w1, w2) € (H*(Q))?, we define the interpolation operators
Ih, Hh as

I, : U€H2(Q)—)Ih’l)€vh, Ih|K:IK; IKv(ai):v(ai), 1 =1,2,3,4,

Hhi q_'G(Hl(Q))Q—)th_’E Wh, H}1|K:HK7 /(@—HKQ-ﬁdS:O,
l;
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respectively, where 7; is the unit tangent vector of [;.
For u € H3(Q), 7€ (H?(2))?, there hold (see [35])

(V(u — Inyu), Vo) < Ch?|Julls||v|li,  Von € Vi, (3.1)
(7 — Taq, @) < Ch2||q2]l@nllo, Vi@, € Wi (3.2)
4. Superclose Analysis for the Spatial-discrete System

In this section, we will establish a 7-independent estimate. The fully-discrete approximation
>n —
to (2.1) reads as: for n > 2, find {U}}, Q, } € Vi x Wi, such that

@:UP,vn) — (@, Vou) = (773, v), You € Vi,
(Qh,wh) + (a(UZ)Vﬁ,?,u?h) =0, VB}L S Wh, (4.1)
U}? = IhuO(X)a X e Q.

~1
For n =1, {U},Q,} will be determined by

(atUhvvh) (Q )h = (f2 Uh) Yo, € Vi,
~1
(Qmwh ( ( Uy +Uh)VUh,wh> =0, Vi, € Wh, (4.2)
Uy, = Inuo(X), X eq.
together with
1,0 170 21,0 , 5 1
(uﬂ}h) - (thJrQ?vavh :(fiavh)a VUh tha
31,0 30 1,0 hO -
(Qh ;Q}L,,u—jh) + (a(U}OL)VUh 2+VU;L, —ah> =0, Vﬁ}l c Wh, (43)
Uf?:IhUO(X), X €.

Theorem 4.1. Assume that f(X,t) and uo(X) are known smooth functions. Then the system
(4.1)-(4.3) is uniquely solvable.

Proof. In terms of the bases {¢;};2, for V}, and {wz , for Wh, we can suppose that

Uy = Z;hi(t"Wu Qp = 291‘(7571)1;1

On one hand, choosing v, = ¢;, W), = V¢;, summing the first equation and the second equation
of (4.1), then we have

(2M + TA)H" =2MH" ' — 7 AH""' 4 27F"" > (4.4)

where H" = [hi(t")]o, x1, M = [(¢, &j)]orxor, F"7% = [(f(""2),V - )], x1, and
K %( Zh (t"2) Zh (1) qz)wz,
%( Zh (t"2) ——Zh () qz)w])}

o1 X071
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In view of the positive definite matrix A, M and the initial value H' determined by (4.2)-(4.3),
we have that H" is determined uniquely.
On the other hand, choosing @, = 1; in the second equation of (4.1), it follows that

NG" = -NG" '~ BH"' - BH" (4.5)
where G" = [g:(t")]osx1, N = [(¢5, )]s x5, and

[( é( Zh (t"2) ——Zh ") )V%
é( Zh (t"2) ii;hi(tnl)@)@ﬂ

Because of the positive definite matrix N and the initial value G* determined by (4.2)-(4.3), we
have that G™ is determined uniquely. It can be followed that the system (4.1)-(4.3) has unique
solutions for ¢ € (0,T]. The proof is completed. O

o2 X011

To alleviate the notations, we write
U™ = Uy =U" = U™ + U™ = Uy £ 9" + 0",
— U =u" — " + yu™ = U & 9™ + &7,
Q"-Qr=Q"~ILQ" + 1, Q" ~ G} & " + ",
- Qh ="~ W + 1" — G &7+ 0",
Ut — U0 = g0 — Ut 4 1, Ul,o — UM & L0 4 p10
ul — U,}’O =u' — Iu' + Iyu! — U}} 02 n +§170
GHO - GO = G101, GM0 4+ T, G0 — L0 £ oy (Lo
¢~ Q)" =7 ~@ + Mg - G, &7 + 0.
Theorem 4.2. Let {u,q} and {Uﬁ,é:} be the solutions of (2.1) and (4.1) respectively. As-

sume that u € L>=(0,T; H3(Q) N H(Q)),us € L>=(0,T; H*(Q)),us € L>=(0,T; H*(Q)), user €
L>(0,T; L*(S2)). Then we have

1

~ "3 + LIV OIE < O+ on2?,
1

~ 618 + IV I3 < Ch* + Ch22,
le™§ + 7> IVE™(ls < Ch* + Ch?7?,

7Y 1015+ IVe"lI3 < O,
=2

Proof. For v, € Vi, W), € Wh, subtracting (4.3) from (2.4) gives

(Erfom) - (S5 5wm) () (o).
(L) (a0 T ) o
= (P ) (a@) T ) () - iy VAL VIO )
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Noting ¢° = 0, V? = 0, taking v, = ¢, Wy, = VY in (4.6), we have

1,0|

3+ SIVe I3 < cnta.u)

1 vy + V!0
—lle — Ve’

3+ Clet Ol - (a0 T

VI,U° +2 VILUM WLO).

- <<a<U°> —a(@D)) (47)

Let plx = ‘—Il(‘fK pdxdy, Yo € WH*(K). Then |(¢ — ?)|x|
together with (2.9), gives

0 1,0
‘(a(UO)M,VgoLO)|

0,00, < Chl¢ll1,00,k. This,

2
1,0 _ 1,0 1 1 0 _ 0
< C" (Ve 2VIhe ,V(pl’o) ‘ N C‘ (Vu VIu —;—Vu ViInu ,V(pl’o)‘
< Ch' + Ch27 + %HWLOH%- (4.8)

By Gagliardo-Nirenberg inequality (see [34]): ||¢°]/o.4 < C’|1/}0|1% ||1/10||§ + C||¥°]|o, we have

2

((a(0) - apy VLTI gm0 )

(100 - a0y T 9010) + (@) - @) Y= 95
+ (@) - awp) T v
<Ch*+ Ch*r? + %wang. (4.9)
Inserted into (4.6) these estimates of (4.7)-(4.9) and by (2.9), we obtain
Llp IR + 19 I3 < CR* + O3, (4.10)
Then from (4.2) and (2.6), we have
— =l — ~1
(a) (O, vn) — (€, Vo) = — (0 o) + (77, Vun), (4.11a)
(b) (El,tﬁh) + (a((]’?%w)v@lﬁh) (4.11b)
G - (P 3,) - () B o 0.
In the same way as above, taking v, = ¢!, W, = V! in (4.11)
Loz, M 192 4)13.771.0)|12 12 U+ UMY oy 1
LB+ 5196 < CatIB I + Ol - (o5 v
- <(a(UO%U1’O) - a(M))whﬁl,wl). (4.12)
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Just as (4.8), we have

‘<G<UO+U1’O)V1Z1,V@1>‘

2
UO+U1’O u0+u1 N u0+u1
K(a(f) - G(T)VW,WPI)) + (a( 5 )V?},Vq?l)
<Ch*+ Ch>72 + %leng. (4.13)

For a proper variant, we get

Uo 4 Lo Uo ULO =R
‘((a( ) —al “2 . ))VIhUl,wl)‘
Uo 4+ yto Uo ULO R
:‘((a( ) e ))(v¢1+va1+va1),w1)‘

<CRIT 2 ([l flo,4 + ll€"° — Ine*flo.a + [lu* — Inut{|o.a
+ 14N, IV lloa + C(||801’0||o,4 + [[9"lo,4 + ||¢0||0,4) Ve 0,4l Ve llo.a
+ (16"l + 14" lla + 140114 V& ol V6 lo

<Ch*+ Ch*r? + %leng. (4.14)

Then combining (4.12)-(4.14) with (4.10), implies that

1

—lle'l5 + IV [[5 < Ch* + Ch2r?.
For n > 2, we subtracte (4.1) from (2.3) gives

(a) @™, vn) — (€, Von) = =@, vn) + (0, Vo), (4.15a)

(b) (5 ,’Ujh) + (G(Uh)vana ’Ujh)
= (0", ah) — (@(@")Ve" @) — (a(@") = a(@) VLU @h).  (4.15b)
On one hand, taking v, = 3", W), = V3" in (4.15), we have
™13 — lle™ I3

2T
<ChH[BU" |3+ C2" |2 — (a(T")Ve", V") — ((a(T") — a(U}))VI, U™, VE").  (4.16)

+ull Ve 3

Similar to (4.13)-(4.14), we have
|(a@VE",v8") + (@@") = aT))VIT", V5" ) |
<CAIT™|2(I#" lo,4 + " = Ine" 0,4 + [[7" = 17" |0,4) [ VE" [lo,4
+ C(I%" ot + 117" l0,4) 172" lo,a V%" lo + C (17" llo + 18" 10 ) IV Z" o

<Ch* + CR2 7% + Or2|| V3" |2 + %nva"ng. (4.17)
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Thus

n
le™ 13 +7 > 1IV8™ 5

i=2
n . n j—1 .
<Cht+ O + [+ Cr Y [WIR +Cr2 S S VS
i=1 j=2 i=2
<Ch*+ Ch*7*. (4.18)
By Gronwall’s inequality, we have
n
le™3+ 7> IVE"|[3 < Ch* + Ch*r2. (4.19)

1=2
On the other hand, taking vy, = 04", W, = 0: V" in (4.15) yields
7 n 1 1 .5n n 1 Sn— n—
193 + 5= (lla? @)V 13 — lla? (T V"~ 3)
== @, 0") ~ (@), V") = ((0(T") - @)V}, BiVe")

—n —n—1 4

n (a(U )*TG(U )Vgonl,VgOnl) A ZAi' (4.20)

i=1

Obviously
a7 1= n 77 n—
|41 + A4| < CRYIOU™ 5 + 1100 15+ ClIOT " [lo.00 V" 13-
Similar to (4.17), we get
|As| < CRJIT™[2][2" l0,001: V" lo + CH* [T |2]10:V " o + CB* + C|[ V" |5 + Cl[ V™[

< O + O™ 3 + OV 2 + 118" (4.21)
as well as
|45] < CRIT™ Iz (17 lo.1 + Pll0.4) 139" o1 + C7 (I7 0,1 + P llo.4) 187" o
+C(I7llo + 1510 ) 13, 7" o
< O + OV R+ CIVe™ E + 118" 2 (4.22)
Consequently, we obtain
7Y 10’5 + V™[5 < Ch? + [V I3 + Cr Y IIVe'|I§ < Ch2. (4.23)
=2 =1

Using Gronwall’s inequality again, it follows that

7Y 10115+ V"Il < On. (4.24)

=2

Thus the proof is complete. O

Remark 4.1. Theorem 4.2 serves as a bridge for the following 7-independent superclose
analysis. Otherwise, we will need estimate (1.2), which results in certain time-step condition.

Now we are ready to state the main result of this paper.
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~n
Theorem 4.3. Let {u,q} and {U}’,Q,} be the solutions of (2.1) and (4.1)-(4.3) respectively.
Under the assumption of Theorem 4.2, we have

/;n
1€l + 16" llo = O(h* +72).

Proof. By (4.2) and (2.7), we have

— ~l — ~1

(a) (0, v) — (0 ,Vop) = — (0" vp) + (7, Vop) + (R}, vn) — (RS, Vug), (4.25a)
3 Uy’ +Up ~ JUNEN

(®) 0 @) + (a( g —2)VE, @) = =, @) — (a(@ )V, @)

U’ +U?
2

- ((a(al) —a( )whal,wh)) + (R3, Vo) + (R}, Vog).  (4.25b)

Taking vy, = i—l,ﬁh = ngl in (4.25) gives

ht+ 7t
T

H 2, 1 ¢ 2 ~1 U#O"’Uf? ~1 ve!
+ ZIVES + I =3 (0@ —a(E=2) VIt 22 ), (4.26)

13

1
M J—
113 + 22 1vel 3 < ontit 3 +

and

1,0
‘ ((a(ﬁl) - a(w))VIhal, VTE) ‘

2
U4+ u? vel U4+ up vel
((a@) - a2 P yonat -2, T )+ ((af@h) - o v, )
2 T 2 T
~1 0 1,0 1,0 1 1
<ChJa* 24 (In°llo + le"llo + 4"llo) = [1V€ o0
1
+ O (1Mo + 1™ llo + 14" llo + [l *llo) ~ V€ o
Tt 12
< — . 4.2
<O+ Vel 3 (4.27)
By (2.9), we obtain
1
P13+ e < Ol 7). (1.25)
From (2.2) to (4.1), it yields that
(@™ o) — (0, Vo) = —(@er" vn) + (7, Von) + (RY, o) — (BE, Von), (4.29a)
(0, ) + (a(T})VE", 5) (4.29D)

= = (7 Wn) — (@@)VF", @) - (@(@") — a(T}))VI@", @n) + (R, @n) + (RE, ).
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Taking v, = 0,47, Wy = 0:(VE™) in (4.29), we have
(026", 0:6™) + (a(T})VE", 0:(VE™)) = —(@m", 3:™) — (a(@) V", D:(VE™))
+ (B}, 9i€") + (R, 0:(VE™) = ((a(@") — a(U}) VI,u", 9, (VE"))
=— (0", 9:£") + De(a(@) V"), VE" ™) = Oy(a(@) V", VE™) + (RY, 0:€")
— (0u(R5), VE") + Bu(Ry, VE") = (Bu((a(@") — a(U},))VIu"), VE" )
_ . 8
+0y((a(@) — a(T},))VIa", VE™) £ 3 ;. (4.30)
=1

Then the left side of (4.30) can be estimated as

(D™, D:€™) + (a(T}) VE", e (VE™)) (4.31)
1 ,—n n _ % —n—1 n— —n _ —n—1
3|2 + laz (U,)VE" |13 !:—L U, Ve 3 _(a(Uh) Qj(Uh )Vgn_lygn_l).

It is easy to see that
[J2| < Cl(@" + 01" + 0T )VE" L, Ve | < Ch™ D" ol V€I + ClIVE" 5,
[ a] < ChY ]y + O+ 3 1007 B

By use of the mean-value technique, we deduce that

o) = ‘<a(ﬂ")(vﬁ” — V") + (a@") — a(@ 1)) Vit ’ anl) ‘

T

< Ch*0a™ 3 + Ch a2 + C|| Ve 2. (4.32)

It is not difficult to see that

a(@) —a(T;) ~ (a(@* ) — (T} )
@ 1) + O~
T T) b T - T
_au(y WO T T, L L (@) a0, )@~

]. —n —n— —n— = —n — —n T n n - —n
+ 50w (1)@ = U), — (U LT )@+ 8T + 5 (@uu (1) = auu(v2)) (01 )%,

—n—1

where v = 7" 4 A\ (@ — TN, 08 = U, + \(U), — UZ”),O < A1, A2 < 1. Since
lawu (V) = auwa (V3|12 < Cllv} — v3 I3
—n— -1 n(=n —n— TT 771 —n —n—
<Cla" =T, R+ CINy@ —a" =T, + U, HIF+Cl@ —a" )M — A3
<C|E"2 + C||E" Y2 + Ch* + O, (4.33)
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we have

pEl{CLE a(T}) — (@) - a(UZ*)))whu“{Wl) |

T

n—1

nCumtr

T

N(VIu" — Va1 V§"1> ‘

1 ,=-n-1 _ n—
<Ch*+Cr*+ ZHCM" 15+ CIVE G+ ClIveE 2|3 (4.34)
Noting that

n _ pn—1 . ~n _ von—1
RB R3 :(a(—n—l) _ a(un—1—2)) u Vu

(a(@") — a(u""2)) — (a(@" ") — a(u"~'"2))

+ v
-
+ (Vﬂ”*lfvunﬂf%)a(u"*a)fa(unfl,i)
T
(Var—Vun—3)—(Vir—! — vur—1-3)

n-
+a(u ) - ,

we have

|[J5| < C7* + CIVE 3.

Inserting the estimates of J; — Jg into (4.30), we have

_ FT)VE 3 — lla? (@, )ver2
||at§n||(2)+ Ha ( h)vf ”O ;‘j ( h )V§ ”O

<Cht +C7* 4+ Ch B ol V"3 + Bu( RS, VE") = Bula(@) V", VE™)

+0y((a(@)—a(U),) V1", VE")+C||VE | +C| Ve | +C| Ve 2|,
Summing up from 2 to n < N yields
Y 0I5+ IVEME < Ch* + C* + Ch ' Y (183 ol VE G + Cr > IIVE 5.
i=2 i=2 i=1

Note that
cnir Y [0 < onirt (S 1) <

=2 =2

This, together with (4.24) and the Gronwall’s inequality, gives

T 1102 + [VEn|E < Cht + o7t

=2

which implies the result

l€"lr = O(h? + 7). (4.35)
~n
With the estimates of (3.1) and (3.2), we take W, =6 in (4.29) to get

16 1lo = O(h* + ). (4.36)



Unconditionally Superclose Analysis of a New Mixed Finite Element Method 13
Then the proof is complete. O

Remark 4.2. We point out that the unconditional superclose results of Theorem 4.3 improve
the corresponding results of [25-30]. At the same time, Theorem 4.3 is also valid to some
other known finite element pairs, which satisfy the special properties (3.1) and (3.2). For
example, the conforming element pair P; /Py x Py (on triangular meshes), the nonconforming
pairs Q7°'/Q10 X Qo1 (on square meshes), EQ7°/Q10 x Qo1 (on rectangular meshes) and so
on. In this case, the above two nonconforming element pairs satisfy

(V(Ipu —u), Vo) =0, Yv eV, (4.37)
Z / (7 nopds| < Ch2H(ﬂ|2thHh, Yoy € Vh, (438)
KeT, OK

[N

where ||, = ( X |- |%K) , 7 denotes the outward unit normal vector to K. Thus our
K

€Ty
analysis can be regarded as a framework to deal with unconditional superclose estimates of the

low order mixed FEMs.

5. Numerical Results

We consider problem (1.1) with @ = [0,1] x [0,1], T'= 1, a(u) = sin(u) + 0.1. We choose
f so that the exact solution to (1.1) is u = e'zy(1 — z)(1 — y). Then, we have ¢ = —a(u)Vu =
(@.%) = (—(sin(etay(1 - 2)(1 — ) + 0.D)ely(1 — y)(1 — 20), —(sin(elay(l — 2)(1 — y)) +
0.1)etz(1 —z)(1 — 2y)).

Table 5.1: Numerical results of u at t = 0.5.

mxm |lu*=Up|ly Order | Iyu™—Up|l1 Order
4 x4 0.0618 - 0.0136 -
8 x 8 0.0308 1.0060 0.0035 1.9474
16 x 16 0.0154 1.0015 0.0009 1.9853
32 x 32 0.0077 1.0000 0.0002 1.9956

Table 5.2: Numerical results of u at ¢ = 0.75.

mxm |u®—=UP|ln Order ||Ipu™—U|1 Order

4 x4 0.0794 - 0.0188 -

8x8 0.0395 1.0063 0.0049 1.9352
16 x 16 0.0197 1.0016 0.0012 1.9814
32 x 32 0.0098 1.0073 0.0003 2.0000

Table 5.3: Numerical results of u at ¢t = 1.

mxm |lu*=Up|ly Order | Iyu™—Up|1 Order

4 x4 0.1019 - 0.0242 -
8§ x8 0.0507 1.0063 0.0064 1.9272
16 x 16 0.0253 1.0017 0.0016 1.9783

32 x 32 0.0126 1.0057 0.0004 2.0000
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Table 5.4: Numerical results of ¢ at ¢ = 0.5.

mxm ||q"— @Z”o Order  ||IInq"™ — QZHO Order
4 x4 0.0077 — 1.3306x 103 -
8 X8 0.0039 0.9783  0.3310x1073 2.0070
16 x 16 0.0020 0.9936 0.0827x10~2  2.0014
32 x 32 0.0010 1.0000  0.0207x1072  1.9983

Table 5.5: Numerical results of ¢ at ¢ = 0.75.

mxm ||§"— @Z”o Order ||IIng™ — QZHO Order
4 x4 0.0109 — 1.7471x 1073 -
8x8 0.0056 0.9556  0.4350x10~3  2.0059

16 x 16 0.0028 0.9879 0.1086x1073  2.0014

32 x 32 0.0014 1.0000  0.0272x1072  1.9973

Table 5.6: Numerical results of g at ¢t = 1.

mxm ¢ —Qllo Order |Hng" — Qylle Order
4 x4 0.0157 — 2.1713%x1073 -
8x8 0.0083 0.9285 0.5391x10~2  2.0099

16 x 16 0.0042 0.9814 0.1345x1073  2.0029

32 x 32 0.0021 1.0000  0.0336x1073  2.0054

Table 5.7: Errors of w in || - ||1 and errors of ¢'in || - ||o with 7 = kh.
17" = Q% llo [ = Ul
k=1 k=4 k=8 t k=1 k=4 k=8

0.0010 0.0010 0.0010 0.5 0.0077 0.0077 0.0077
0.0014 0.0014 0.0015 0.75 0.0099 0.0099 0.0099
0.0021 0.0021 0.0025 1 0.0127 0.0127 0.0127

In our computation, a uniform rectangular partition with m+1 nodes in each direction is
used and h = 57 is chosen for the linearized FEM. It can be seen from Tables 5.1-5.6 that
[u™ — UP||5 and ||@" — Q7|0 are convergent at rate of O(h), ||[Iyu™ — UM||y and ||TI,g" — Q7 lo
are convergent at rate of O(h?), which coincide with our theoretical analysis.

To reveal the unconditional stability, we solve the system with a fixed h = 3% and several
different time steps 7 = h, 4h, 8h. From the numerical results listed in Table 5.7, we can observe
that the errors of ||u"™ — U}||: and ||¢" — _’ZLHO tend to be a constant as £ — 0, respectively,
which implies that the time-restrictions are not necessary.

At the same time, we describe the error reduction results in Figs. 5.1-5.6, where J{* and
JY¥ denote |[u™ — Uy and || Iyu™ — Up||1, respectively, and J¢ and J¢ denote ||¢* — Q7o and
IT,q™ — @} lo, respectively.
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