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Abstract

For nonsymmetric saddle point problems, Huang et al. in [Numer. Algor. 75 (2017),

pp. 1161-1191] established a generalized variant of the deteriorated positive semi-definite

and skew-Hermitian splitting (GVDPSS) preconditioner to expedite the convergence speed

of the Krylov subspace iteration methods like the GMRES method. In this paper, some

new convergence properties as well as some new numerical results are presented to validate

the theoretical results.
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1. Introduction

Consider the solution of large sparse saddle point problems of the form

Au ≡
(

A BT

−B 0

)(
x

y

)
=

(
f

−g

)
≡ b, (1.1)

where A ∈ R
n×n, the matrix B ∈ R

m×n is of full row rank with m ≤ n, BT denotes the

transpose of the matrix B. Moreover, x, f ∈ R
n and y, g ∈ R

m. We are especially interested in

cases that the matrix A is symmetric positive definite or nonsymmetric with positive definite

symmetric part (i.e., A is real positive). When A = AT , the linear system (1.1) is called the

symmetric saddle point problem and, when A 6= AT , it is called the nonsymmetric saddle point

problem. According to Lemma 1.1 in [7] the matrix A is nonsingular.

In the last decade, there has been tremendous efforts to develop fast solution methods

for solving the saddle point problems. As is well-known, Krylov subspace methods [15] are

the most effective methods for solving the saddle point problems of the form (1.1). But the

convergence rate of these methods depend closely on the eigenvalues and the eigenvectors of the
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coefficient matrix [1,15] and they tend to converge slowly when are applied to the saddle point

problem (1.1). In general, favourable rates of convergence of Krylov subspace methods are often

incorporated with a well-clustered spectrum of the preconditioned matrices (away from zero).

Therefore, many kinds of preconditioners have been studied in the literature for saddle point

matrix, e.g., HSS-based preconditioners [2, 4, 5, 7], block diagonal preconditioners [17], block

triangular preconditioners [3, 17], shift-splitting preconditioners [6, 10], and so on.

Zhang and Gu in [18] established a variant of the deteriorated positive semi-definite and

skew-Hermitian splitting (VDPSS) preconditioner as follows

MVDPSS =

(
A 1

α
ABT

−B αI

)
, (1.2)

for the problem (1.1). Recently, Huang et al. in [13] proposed a generalization of the VDPSS

(GVDPSS) preconditioner of the form

PGVDPSS =

(
A 1

α
ABT

−B βI

)
. (1.3)

The difference between PGVDPSS and A is given by

RGV DPSS = PGVDPSS −A =

(
0 1

α
ABT −BT

0 βI

)
.

It follows from the latter equation that as β −→ 0+, the (2, 2)-block of RGVDPSS tends to zero

matrix and as α −→ +∞, the (1, 2)-block of R tends to −BT . So, it seems that the GVDPSS

preconditioner with proper parameters α and β is more closer to the coefficient matrix A than

the VDPSS preconditioner due to the independence of the parameters and, as a result, the

corresponding preconditioned matrix will have a well-clustered spectrum.

It can be seen that by choosing different values for the parameters α and β, the GVDPSS

preconditioner coincides with some existing preconditioners such as the RHSS preconditioner

[11], the REHSS preconditioner [16], the RDPSS preconditioner [9] and the VDPSS precondi-

tioner [18].

The GVDPSS preconditioner can be derived from the GVDPSS iteration method. Huang

et al. have presented the convergence properties of the GVDPSS iteration method and the

spectral properties of the corresponding preconditioned matrix in [13], but nothing about the

optimal values of the involved parameters. In this paper, we present new convergence properties

and the optimal parameters, which minimize the spectral radius of the iteration matrix of the

GVDPSS iteration method.

2. New Convergence Results for the GVDPSS Iteration Method

The GVDPSS preconditioner PGVDPSS can be induced by a fixed-point iteration, which is

based on the following splitting of the coefficient matrix A:

A = PGVDPSS −RGV DPSS

(
A 1

α
ABT

−B βI

)
−
(

0 1
α
ABT −BT

0 βI

)
. (2.1)

Based on this splitting, the GVDPSS iteration method can be constructed as
(

A 1
α
ABT

−B βI

)
u(k+1) =

(
0 1

α
ABT −BT

0 βI

)
u(k) +

(
f

−g

)
, (2.2)
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where α > 0 and β > 0 are the iteration parameters and u(0) is an initial guess. Note that the

iterative method can also be written as a fixed point form uk+1 = Γuk + c, where

Γ =

(
A 1

α
ABT

−B βI

)−1 (
0 1

α
ABT −BT

0 βI

)
, (2.3)

is the iteration matrix and c = P−1b.

Theorem 2.1. Let A ∈ R
n×n be symmetric positive definite and Γ be the iteration matrix (2.3)

of the iteration method (2.2). Then, ρ(Γ) < 1 if one of the following two conditions holds true.

(i) If α > 0 and β ≥ max{λmax(Q), 0}, where λmax(Q) is the largest eigenvalue of the matrix

Q ≡ B(12A
−1 − 1

α
I)BT .

(ii) If β ≥ 0 and α < 2λmin(A), where λmin(A) is the smallest eigenvalue of A.

Proof. From Lemma 2.1 in [13], we get

Γ = P−1R = P−1(P −A) = I − P−1A

= I −
(

A−1 − 1
α
BTS−1BA−1 − 1

α
BTS−1

S−1BA−1 S−1

)(
A BT

−B 0

)

= I −
(

I A−1BT − 1
α
BTS−1BA−1BT

0 S−1BA−1BT

)

=

(
0 Ã

0 I − Â

)
, (2.4)

where S = βI + 1
α
BBT , Ã = −A−1BT + 1

α
BTS−1BA−1BT and Â = S−1BA−1BT . Therefore,

if λ is an eigenvalue of the iteration matrix Γ, then λ = 0 or λ = 1− µ, where µ is the solution

of the eigenvalue problem

S−1BA−1BTx = µx. (2.5)

Since S = βI + 1
α
BBT , Eq. (2.5) is equivalent to

BA−1BTx = µ

(
βI +

1

α
BBT

)
x. (2.6)

It is clear that x 6= 0. Without loss of generality, we suppose that ‖x‖2 = 1. Since BTx 6= 0,

multiplying the above equation by x∗ on both sides yields

µ =
x∗BA−1BTx

β + 1
α
x∗BBTx

> 0.

Therefore, |λ| < 1 if and only if
x∗BA−1BTx

β + 1
α
x∗BBTx

< 2,

which is equivalent to

β >
1

2
x∗BA−1BTx− 1

α
x∗BBTx. (2.7)

To prove part (i), let α be an arbitrary positive constant. From above discussion, it is easy

to know that a sufficient condition to have |λ| < 1 is that

β > λmax(Q) = max
‖y‖2=1

y∗Qy > x∗Qx =
1

2
x∗BA−1BTx− 1

α
x∗BBTx,
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which completes the proof of (i).

Now, we prove the part (ii). If the right-hand side of the inequality (2.7) is less than zero

then for every β ≥ 0 the inequality (2.7) holds true and, as a result, we get ρ(Γ) < 1. Hence,

the parameter α must be chosen such a way that

1

2
x∗BA−1BTx− 1

α
x∗BBTx < 0,

which is equivalent to

α <
2y∗y

y∗A−1y
,

where y = BTx. For the above relation to be held, it is enough to have

α < 2λmin(A) =
2

λmax(A−1)
= 2min

y 6=0

y∗y

y∗A−1y
<

2y∗y

y∗A−1y
, (2.8)

which completes the proof. �

Now, we consider the GVDPSS iteration method (2.2) from another point of view. Let

ω ≥ 0 be a fixed constant. Consider the parameters α > 0 and β ≥ 0 such that ω = αβ. In

this case, the iteration matrix Γ of the GVDPSS iteration method (2.2) is given by

Γ =

(
0 A−1BT − 1

α
BTS−1BA−1BT

0 I − α(ωI +BBT )−1BA−1BT

)
. (2.9)

It follows from Eq. (2.9) that the spectral radius of the iteration matrix Γ is

ρ(Γ) = max
1≤i≤m

|1− αµi|, (2.10)

where µi, i = 1, . . . ,m, are the eigenvalues of the matrix (ωI + BBT )−1BA−1BT . Since

(ωI +BBT )−1BA−1BT is similar to (ωI +BBT )−
1

2BA−1BT (ωI +BBT )−
1

2 , then, in fact, the

spectral radius (2.10) is the same as that of the stationary Richardson iteration when applied

to the following linear system

(ωI +BBT )−
1

2BA−1BT (ωI +BBT )−
1

2 x = b.

Therefore, it is expected that the convergence properties of the Richardson iteration method

and the GVDPSS iteration method (2.2) with β = ω/α are the same. Then, using the above

results and an argument like Theorem 3.1 in [11], we can deduce the following theorem.

Theorem 2.2. Let A ∈ R
n×n be symmetric positive definite and Γ be the iteration matrix (2.3)

of the GVDPSS iteration method (2.2). Let ω ≥ 0 be a constant and consider the parameters

α > 0 and β ≥ 0 such that ω = αβ. Then,

ρ(Γ) = max
1≤i≤m

|1− αµi|,

where µi, i = 1, . . . ,m, are the eigenvalues of (ωI + BBT )−1BA−1BT . Let µm and µ1 be the

smallest and largest eigenvalues of (ωI +BBT )−1BA−1BT , respectively. For every ω ≥ 0, if

0 < α <
1

µ1
,



22 D. HEZARI, V. EDALATPOUR, H. FEYZOLLAHZADEH AND D.K. SALKUYEH

and β = ω/α then the GVDPSS iteration method is convergent. The optimal value of α which

minimizes the spectral radius ρ(Γ) is given by αopt = 2/(µ1 + µm), which yields βopt = ω/αopt.

The corresponding optimal convergence factor is given by

ρ(Γ) =
µ1 − µm

µ1 + µm

.

Remark 2.1. If ω = 0 then β = 0 and, as a result, the preconditioner PGVDPSS reduces to

the RHSS preconditioner. Hence, the corresponding optimal value α∗ is exactly the same as

that of the RHSS preconditioner (Theorem 3.1 in [11]).

Theorem 2.3. Let A ∈ R
n×n be symmetric positive definite, the preconditioner PGVDPSS

be defined in (1.3) and α > 0 and β ≥ 0. Let λmin and λmax be the smallest and largest

eigenvalues of A, respectively. Let σm and σ1 be the smallest and largest singular values of

matrix B, respectively. Then, the preconditioned matrix P−1
GVDPSSA has an eigenvalue 1 of

algebraic multiplicity at least n. The remaining eigenvalues are positive real and the solution of

the generalized eigenvalue problem:

BA−1BTx = µ(βI +
1

α
BBT )x.

In addition, the non-unit eigenvalues µ satisfy

α

λmax(A)(1 + αβ)
≤ µ ≤ α

λmin(A)(1 + αβ)
. (2.11)

Proof. It follows from Eq. (2.4) that

P−1A =

(
I A−1BT − 1

α
BTS−1BA−1BT

0 S−1BA−1BT

)
=

(
I Ã

0 Â

)
, (2.12)

where S = βI + 1
α
BBT . It follows from Eq. (2.12) that the preconditioned matrix P−1

GVDPSSA
has an eigenvalue 1 of algebraic multiplicity at least n, and the remaining eigenvalues are the

solution of the following generalized eigenvalue problem

BA−1BTx = µ

(
βI +

1

α
BBT

)
x. (2.13)

Since BBT and BA−1BT are symmetric and positive definite, β ≥ 0 and α > 0, the solution of

the generalized eigenvalue problem (2.13) is positive real. This completes the proof of the first

part of the theorem. Let (µ, x) be an eigenpair of the generalized eigenvalue problem (2.13). If

we set x̂ = x/‖BTx‖2 then (µ, x̂) is also an eigenpair of (2.13). As seen in the proof of Theorem

2.1, we can write

µ =
x̂∗BA−1BT x̂

β + 1
α
x̂∗BBT x̂

=
x̂∗BA−1BT x̂

β + 1
α

. (2.14)

According to Theorem 1.22 of [15], we have

x̂∗BA−1BT x̂ ≤ λmax(A
−1)x̂∗BBT x̂ =

1

λmin(A)
,

1

λmax(A)
= λmin(A

−1)x̂∗BBT x̂ ≤ x̂∗BA−1BT x̂,

that prove (2.11). �
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Remark 2.2. It immediately follows from Eq. (2.11) that if β −→ 0+ then the non-unit

eigenvalues µ of the preconditioned matrix P−1A satisfy

α

λmax(A)
≤ µ ≤ α

λmin(A)
,

and if α −→ +∞, then
1

βλmax(A)
≤ µ ≤ 1

βλmin(A)
.

Theorem 2.4. Let A ∈ R
n×n be nonsymmetric and positive definite and Γ be the iteration

matrix (2.3) of the GVDPSS iteration method (2.2). Let ω ≥ 0 be a fixed constant and consider

the parameters α > 0 and β ≥ 0 such that ω = αβ. Then,

ρ(Γ) = max
1≤j≤m

|1− α(γj + iηj)|,

where γj + iηj, j = 1, . . . ,m, are the eigenvalues of (ωI +BBT )−1BA−1BT and i =
√
−1. Let

γ1 and γm, and η1 and ηm be the upper and lower bounds of the real, the absolute values of the

imaginary parts of the eigenvalues of (ωI +BBT )−1BA−1BT , respectively. For every ω ≥ 0, if

0 < α <





2γm

γ2
m
+η2

1

, if η1 ≥ √
γ1γm,

2γ1

γ2

1
+η2

1

, if η1 <
√
γ1γm,

and β = ω/α then the GVDPSS iteration method is convergent. The optimal value of α which

minimizes the spectral radius ρ(Γ) is given by

αopt =





γm

γ2
m
+η2

1

, if η1 ≥ √
γ1γm,

2
γ1+γm

, if η1 <
√
γ1γm,

which yields βopt = ω/αopt. The corresponding optimal convergence factor is given by

ρopt(γ) =





η1√
γ2
m
+η2

1

, if η1 ≥ √
γ1γm,

√
(γ1−γm)2+4η2

1

γ1+γm

, if η1 <
√
γ1γm.

Proof. As seen before, when β = ω/α, the iteration matrix Γ is of the form (2.9). It shows

that the spectral radius of the iteration matrix Γ is

ρ(Γ) = max
1≤j≤m

|1− α(γj + iηj)|, (2.15)

where γj + iηj , j = 1, . . . ,m, are the eigenvalues of (ωI + BBT )−1BA−1BT . The rest of the

proof is similar to that of Theorem 2.2 in [9] and is omitted. �

Remark 2.3. If ω = 0, then β = 0 and, as a result, the preconditioner PGVDPSS reduces to

the RDPSS preconditioner. Hence, the corresponding optimal value α∗ is exactly the same as

that of the RDPSS preconditioner (Theorem 2.2 in [9]).
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Fig. 3.1. Eigenvalue distribution of the saddle point matrix A for Example 3.1 with q = 32 (left) and

for Example 3.2 with 32× 32 grid (right).

3. Numerical Experiments

In this section, we use two examples to validate the theoretical analysis of the previous

section and illustrate the feasibility and effectiveness of the GVDPSS preconditioner (1.3) when

it is applied to accelerate the convergence rate of Krylov subspace iteration methods such as

GMRES for solving saddle point problems (1.1), from the point of view of both the number

of iterations (denoted by IT) and and the elapsed CPU time in seconds (denoted by CPU).

As mentioned before, the GVDPSS preconditioner (1.3) covers the RHSS preconditioner [11]

and the REHSS preconditioner [16] when it is applied to solve the symmetric saddle point

problems as well as the DPSS preconditioner [14] and the VDPSS preconditioner [18] when it is

applied to solve the nonsymmetric saddle point problems. The first and second examples lead

to a symmetric and nonsymmetric saddle point problem, respectively. The Krylov subspace

methods such as GMRES incorporated with RHSS preconditioner, REHSS preconditioner, the

GVDPSS preconditioner, the PHSS preconditioner [5] and the AHSS preconditioner [2] are

applied to solve the symmetric saddle point problem in the first example, and then their results

are compared with each other. In addition, the RPDSS and VDPSS preconditioners as well

as the GVDPSS preconditioner are applied to solve the nonsymmetric saddle point problem in

the second example, and then their results are compared with each other.

All tests are performed in MATLAB on a Laptop with Intel Core i7 CPU 1.8 GHz, 6GB

RAM. In all the tests, the right-hand side vector b is chosen so that the exact solution of

the saddle point problem (1.1) is a vector of all ones. Besides, all runs are started from a

null vector, and are terminated if the current iteration satisfies ‖rk‖2 ≤ 10−6‖r0‖2, where

rk = b−Au(k) is the residual at the kth iteration. At each step of applying the preconditioners,

it is required to solve the sub-linear systems which can be done by direct methods. In Matlab,

this corresponds to computing the Cholesky or LU factorization in combination with AMD or

column AMD reordering.

Example 3.1. ([5]) We consider the Stokes problem

− µ△u+∇p = f̃ , in Ω, (3.1a)

∇.u = g̃, in Ω, (3.1b)

u = 0, on ∂Ω, (3.1c)
∫

Ω

pdx = 0, (3.1d)
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Fig. 3.2. Eigenvalue distribution of the preconditioned matrix for Example 3.1 (q = 32).
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Fig. 3.3. Non-unit eigenvalue distribution of the preconditioned matrix for Example 3.1 (q = 32).

where Ω = (−1, 1) × (−1, 1), ∂Ω is the boundary of the domain Ω, △ is the componentwise

Laplace operator, u is a vector-valued function representing the velocity, and p is a scalar

function representing the pressure. By discretizing (3.1) by the upwind scheme, we obtain the

system of linear equations (1.1) where

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R

2q2×2q2 , BT =

(
I ⊗ F

F ⊗ I

)
∈ R

2q2×q2 ,

T =
µ

h2
.tridiag(−1, 2,−1) ∈ R

q×q, F =
1

h
.tridiag(−1, 1, 0) ∈ R

q×q,

with ⊗ being the Kronecker product symbol and h = 1/(q+1) the discretization meshsize. For

this example, we have n = 2q2 and m = q2. Hence, the total number of variables is m+n = 3q2.

Here, we consider µ = 1.
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Fig. 3.4. Eigenvalue distribution of the preconditioned matrix with optimal parameters for Example

3.1 (q = 32).

From [2], we know that the AHSS preconditioner is given by

M(α, β) =




α+1
2 A α+1

2α BT

− 1
2B

β
2C


 ,

where C is an arbitrary Hermitian positive definite matrix. It is noted that the PHSS precondi-

tioner is a special case of the AHSS preconditioner when α = β. A natural choice of the matrix

C is C = BÂ−1BT , where Â is a good approximation of the matrix block A. For this example,

we take Â = 2µ
h2 I + I ⊗T the block-diagonal matrix A. Based on Theorem 3.2 in [5] and [2], we

can obtain the optimal parameters α∗ and (α∗, β∗) of the PHSS and AHSS iteration methods,

respectively. In Table 3.1, these optimal parameters and the corresponding numerical results

with respect to iteration step and CPU time, for various problem sizes q, are listed. In Table 3.2,

we list the optimal parameters α∗ and β∗ of the GVDPSS preconditioner, determined by the

formula given in Theorem 2.2, and the corresponding numerical results with respect to iteration

step and CPU time for different values of ω and q. For each q, it is seen that by changing ω, the

changes of the corresponding optimal parameter β∗ in comparison with optimal parameter α∗

is significantly slow (for new preconditioner). It should be noted that if ω = 0 then β = 0 and,

as a result, the preconditioner PGVDPSS reduces to the RHSS preconditioner which its results

were shown in boldface type. It is also noticed that α∗ corresponding to ω = 0 plays the role

of the optimal parameter of the RHSS preconditioner. As seen, the preconditioner PGVDPSS

with optimal parameters is more effective than the RHSS, PHSS and AHSS preconditioners in

terms of both the iteration steps and the CPU time. Moreover, by increasing the value of ω, the

preconditioner PGVDPSS with corresponding optimal parameters has a considerable reduction

in the number of the iteration steps.

To further investigate the influence of the new parameter in the convergence speed of the

Table 3.1: The optimal parameters of the PHSS and AHSS preconditioners and the corresponding

numerical results for Example 3.1 with different q.

Method q 16 32 48 64

PHSS-GMRES α∗ 1.8718 2.5657 3.1113 3.5753

IT 46 94 149 209

CPU 0.106 5.049 51.01 266

AHSS-GMRES α∗ 1.5026 1.9482 2.3115 2.6256

β∗ 2.3317 3.3789 4.1879 4.8685

IT 43 84 131 184

CPU 0.097 4.424 43.57 235
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Table 3.2: The optimal parameters of the GVDPSS preconditioner and the numerical results for the

corresponding preconditioned GMRES method for Example 3.1 with different ω and q.

q ω α∗ β∗ IT CPU

0 49.25 0 23 0.0178

1 56.91 0.0176 23 0.01795

101 104.32 0.0959 21 0.01602

16 102 307.61 0.3251 15 0.01195

103 1966 0.5086 10 0.0094

104 18473 0.5413 9 0.0087

0 51.19 0 36 0.1151

1 59.18 0.0169 36 0.1097

101 107.34 0.0932 34 0.10290

32 102 321.8 0.3108 26 0.0769

103 2044 0.4892 15 0.0470

104 19175 0.521 10 0.0343

0 51.82 0 47 0.5210

1 59.90 0.0167 46 0.5153

101 108.06 0.0925 44 0.4892

48 102 324.5 0.3081 36 0.3931

103 2076 0.4817 19 0.2146

104 19461 0.5138 11 0.1338

0 52.13 0 56 1.950

1 60.25 0.0166 56 1.926

101 108.36 0.0923 54 1.884

64 102 325.48 0.3072 45 1.561

103 2093 0.4776 23 0.799

104 19616 0.5098 11 0.406

preconditioned GMRES method, we present the numerical results for different values of α and

β in Table 3.3 with respect to iteration step and CPU time (in parentheses). It should be noted

that when β = 0 the preconditioner PGVDPSS reduces to the RHSS preconditioner which its

results were shown in boldface type, and when α = 1 it coincides with the REHSS preconditioner

which its results were underlined. Table 3.3 indicates that the GVDPSS preconditioner is more

effective than the RHSS, REHSS, PHSS and AHSS preconditioners. Specially, for β ≥ 1, the use

of the GVDPSS preconditioner with some large values of α results in a considerable reduction

in the number of iteration steps.

We plot the eigenvalue distribution of the matrix A in Fig 3.1 and that of the preconditioned

matrix P−1
GVDPSSA in Fig 3.2. As mentioned, if β = 0 then the PGVDPSS preconditioner re-

duces to the RHSS preconditioner and if α = 1 then the PGVDPSS preconditioner reduces to the

REHSS preconditioner. The non-unit eigenvalue distribution of the preconditioned matrices in

Fig 3.2 are drawn in Fig 3.3. Fig 3.4 depicts the eigenvalue distribution of the preconditioned

matrix P−1
GVDPSSA with optimal parameters. These figures show that the use of the precondi-

tioner PGVDPSS leads to a well-clustered spectrum away from zero which in turn results in a

faster convergence of GMRES. In addition, Fig 3.2 verifies our statement in Theorem 2.3 that

the preconditioned matrix P−1
GVDPSSA has at least n eigenvalues 1 and the remaining non-unit

eigenvalues are positive real.

Example 3.2. Consider the Oseen problem which is obtained from the linearization of the

following steady-state Navier-Stokes equation by the Picard iteration with suitable boundary
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Table 3.3: Numerical results for the GMRES method incorporated with the GVDPSS preconditioner

for Example 3.1 with different q.

q
HHHHHα

β
0 10−1 1 10 102

10−1 27(0.0189) 27(0.0199) 27(0.0184) 27(0.0193) 26(0.0199)

1 25(0.0178) 25(0.0193) 25(0.0182) 24(0.0191) 19(0.0145)

16 10 24(0.0170) 24(0.0166) 23(0.0163) 18(0.0142) 11(0.0099)

102 22(0.0160) 21(0.0150) 16(0.0125) 11(0.0096) 9(0.0085)

103 21(0.0166) 15(0.0122) 9(0.0086) 7(0.0077) 8(0.0081)
HHHHHα

β
0 10−1 1 10 102

10−1 43(0.1393) 43(0.1393) 43( 0.1359) 43(0.1336) 41(0.1263)

1 41(0.1243) 41(0.1243) 41(0.1242) 39(0.1230) 32(0.0994)

32 10 38(0.1142) 38(0.1142) 37(0.1176) 30(0.1014) 18(0.0578)

102 34(0.1059) 34(0.1059) 28(0.0866) 16(0.0515) 10(0.0369)

103 26(0.0811) 26(0.0811) 15(0.0557) 10(0.0362) 8(0.0291)
HHHHHα

β
0 10−1 1 10 102

10−1 56(0.6560) 56(0.6456) 56(0.7553) 56(0.7061) 54(0.6389)

1 53(0.6176) 53(0.6288) 53(0.6974) 51(0.6233) 44(0.5325)

48 10 50(0.5898) 50(0.6024) 48(0.5910) 42(0.5024) 23(0.3170)

102 46(0.5609) 45(0.5408) 38(0.4549) 22(0.2665) 11(0.1349)

103 44(0.5493) 36(0.4043) 19(0.2428) 11(0.1366) 9(0.1194)
HHHHHα

β
0 10−1 1 10 102

10−1 68(2.550) 68(2.495) 68(2.488) 68(2.501) 66(2.449)

1 64(2.334) 64(2.347) 64(2.340) 62(2.277) 54(1.962)

64 10 60(2.154) 60(2.162) 58(2.119) 51(1.842) 28(1.005)

102 55(1.962) 54(1.952) 48(1.743) 26(0.919) 13(0.484)

103 53(1.921) 44(1.590) 23(0.840) 12(0.444) 9(0.347)

condition on ∂Ω 



−ν△u+ (w.∇)u+∇p = f, in Ω,

divu = 0, in Ω,

u = g, on ∂Ω,

(3.2)

where ν > 0, △, ∇, div, u, and p stand for the Laplace operator, the gradient operator,

the divergence, velocity and pressure of the fluid, respectively. Here the vector field w is the

approximation of u from the previous Picard iteration.

Many approximation schemes can be applied to discretize the Oseen problem (3.2) leading

to a saddle point system of type (1.1). We consider a leaky two-dimensional lid-driven cavity

problem discretized by Q2-P1 finite element on uniform grids on the unit square. The test

problem was generated by using the IFISS software package written by Elman et al. [12]. We

use the viscosity value ν = 1 to generate linear systems corresponding to 16×16, 32×32, 64×64

and 128× 128 meshes. The numerical results for optimal parameters α∗ and β∗, determined by

the formula given in Theorem 2.4, corresponding to different valuses of ω on 16× 16, 32× 32,

64 × 64 uniform grids are given in Table 3.4. For each grid, we can see that by changing ω,

the corresponding optimal values β∗ is almost constant while the optimal values α∗ changes

increasingly. In addition, it is observed that the values of optimal parameters of the grid 32×32
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Table 3.4: The optimal parameters of the GVDPSS preconditioner and the numerical results for the

corresponding preconditioned GMRES method for Example 3.2 with different uniform grids.

Grids ω α∗ β∗ IT CPU

0 0.1909 0 27 0.0557

0.1 3.846 0.0260 20 0.0396

16× 16 1 33.018 0.0303 20 0.0397

5 161.28 0.0310 20 0.0399

10 321.13 0.0311 20 0.0401

0 0.0488 0 42 0.2778

0.1 13.156 0.008 21 0.1631

32× 32 1 128.54 0.008 20 0.1452

5 640 0.008 20 0.1491

10 1280 0.008 20 0.1517

0 0.0123 0 66 2.893

0.1 14.339 0.007 20 0.925

64× 64 1 138.04 0.007 20 0.933

5 689 0.007 20 0.933

10 1379 0.007 20 0.906

are significantly close to that of the grid size 64×64 . It should be noted that if ω = 0 then β = 0

and, as a result, the preconditioner PGVDPSS reduces to the RDPSS preconditioner which its

results were shown in boldface type. It is also noticed that α∗ corresponding to ω = 0 plays

the role of the optimal parameter of the RDPSS preconditioner. As seen, the performance

of the preconditioner PGVDPSS with optimal parameters is better than that of the RDPSS

preconditioner in terms of both iteration steps and CPU time. Moreover, it is known that the

efficiency of the preconditioner PGVDPSS with optimal parameters corresponding to nonzero ω

is often the same.

Further, in Table 3.5, we present the numerical results with respect to iteration step and

CPU time (in parentheses) for different values of α and β to analyze the influence of the

GVDPSS parameter in the convergence speed of the preconditioned GMRES method. It should

be noted that when β = 0 the preconditioner PGVDPSS reduces to the RDPSS preconditioner

which its results were shown in boldface type, and when α = β it reduces to the VRDPSS

preconditioner which its results were underlined. This table indicates that the performance

of the new preconditioner PGVDPSS is often better than that of the RDPSS and VRDPSS

preconditioners. Specially in the case of small values of β, the use of preconditioner PGVDPSS

with some large value of α results in a considerable reduction in the number of iteration steps,

while the other two preconditioners are difficult to implement efficiently. For large value of β,

the GVDPSS preconditioner has the best performance and is no longer sensitive to the value

of the parameter α, in the sense that the number of iteration does not change drastically. It is

also noted that the GVDPSS preconditioner is not competitive in the case of large β.

We plot the eigenvalue distribution of the matrix A in Fig 3.1, the eigenvalue distribution

of the preconditioned matrix P−1
GVDPSSA in Fig 3.5, and the eigenvalue distribution of the

preconditioned matrix P−1
GVDPSSA with optimal parameters in Fig 3.6. As mentioned, if β = 0

then the preconditioner PGVDPSS reduces to the RDPSS preconditioner and if α = β then

the preconditioner PGVDPSS reduces to the VDPSS preconditioner. It is evident that the

preconditioner matrix P−1
GVDPSSA is of a well-clustered spectrum around (1, 0) away from zero.

In addition, these figures verify the our statement in Theorem 2.3 that the preconditioned
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Table 3.5: Numerical results for the GMRES method incorporated with the GVDPSS preconditioner

for Example 3.2 with different uniform grids.

Grids
@
@
@α

β
0 10−3 10−2 10−1 1 102

10−3 31(0.0579) 31(0.0541) 31(0.0511) 31(0.0531) 30(0.0568) 26(0.0437)

10−2 29(0.0473) 29(0.0522) 29(0.0545) 28(0.0463) 28(0.0478) 22(0.0406)

16× 16 10−1 27(0.0454) 27(0.0498) 26(0.0446) 27(0.0501) 23(0.0423) 21(0.0388)

1 26(0.0447) 24(0.0428) 25(0.0432) 21(0.0389) 20(0.0374) 21(0.0404)

102 31(0.0498) 25(0.0454) 23(0.0405) 18(0.0357) 19(0.0394) 21(0.0389)

@
@
@α

β
0 10−3 10−2 10−1 1 102

10−3 48(0.3312) 48(0.3218) 47(0.3258) 47(0.3405) 50(0.3308) 26(0.1854)

10−2 44(0.3037) 44(0.2948) 44(0.3038) 47(0.3254) 34(0.2439) 22(0.1586)

32× 32 10−1 41(0.2866) 41(0.2827) 43(0.2879) 31(0.2077) 23(0.1682) 22(0.1586)

1 40(0.2905) 42(0.2807) 28(0.1982) 22(0.1579) 19(0.1393) 22(0.1597)

102 48(0.3346) 24(0.1729) 21(0.1455) 18(0.1329) 19(0.1348) 22(0.1558)

@
@
@α

β
0 10−3 10−2 10−1 1 102

10−3 71(3.336) 71(3.311) 76(3.489) 78(3.598) 52(2.386) 24(1.166)

10−2 67(3.063) 71(3.304) 72(3.299) 49(2.247) 29(1.368) 20(0.984)

64× 64 10−1 62(2.854) 66(3.031) 45(2.047) 27(1.312) 21(1.127) 20(0.9856)

1 63(2.893) 42(1.951) 25(1.178) 20(0.979) 18(0.906) 20(0.984)

102 76(3.692) 23(1.099) 20(0.997) 17(0.854) 18(0.898) 20(0.978)

@
@
@α

β
0 10−3 10−2 10−1 1 102

10−3 108(28.91) 120(31.55) 121(31.63) 78(20.45) 20(5.64) 8(2.82)

10−2 100(26.08) 113(29.71) 74(19.65) 19(5.53) 12(3.73) 7(2.62)

128 × 128 10−1 96(25.04) 66(17.10) 17(4.93) 11(3.60) 7(2.57) 7(2.61)

1 97(25.31) 16(4.70) 10(3.31) 7(2.62) 6(2.35) 7(2.59)

102 118(30.97) 10(3.22) 7(2.62) 6(2.35) 6(2.38) 7(2.72)

matrix P−1
GVDPSSA has at least n eigenvalues 1.

4. Conclusion

We have presented new convergence properties of the GVDPSS method and the optimal

parameters, which minimize the spectral radius of the iteration matrix of the GVDPSS itera-

tion method. The GVDPSS preconditioner, which involves two parameters, covers the relaxed

versions of the HSS preconditioner [11, 16] when it is applied to solve the symmetric saddle

point problems as well as the RDPSS preconditioner [9] and the VDPSS preconditioner [18]

when it is applied to solve the nonsymmetric saddle point problems. Some numerical exam-

ples have been presented to validate the theoretical analysis and show the effectiveness of the

method. Numerical performances have shown that the GVDPSS preconditioner is superior to

the RHSS, REHSS and RDPSS preconditioners at accelerating the convergence rates of Krylov

subspace iteration methods such as GMRES. The performance of the GVDPSS preconditioner

is better than that of the VDPSS preconditioner for small value of the parameter β, but it is
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Fig. 3.5. Eigenvalue distribution of the preconditioned matrix for Example 3.2 ( 32× 32 grid).
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Fig. 3.6. Eigenvalue distribution of the preconditioned matrix with optimal parameters for Example

3.2 ( 32× 32 grid).

not competitive in the case of large β.
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