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Abstract

We study a numerical method for solving a system of Volterra-renewal integral equa-

tions with space fluxes, that represents the Chapman-Kolmogorov equation for a class of

piecewise deterministic stochastic processes. The solution of this equation is related to

the time dependent distribution function of the stochastic process and it is a non-negative

and non-decreasing function of the space. Based on the Bernstein polynomials, we build

up and prove a non-negative and non-decreasing numerical method to solve that equation,

with quadratic convergence order in space.
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1. Introduction

In this paper we analyze a numerical method for solving the following system of Volterra-

renewal integral equations with space fluxes [6]

ui(x, t) = fi(x, t) +

S
∑

j=1

qij

∫ t

0

kj(t− η)uj(gj(x, t, η), η)dη, (1.1)

where fi(x, t) =

S
∑

j=1

qijF̃j(gj(x, t, 0))kj(t), (1.2)

for i = 1, . . . S, t ≥ 0 and x ∈ Ω ⊂ R. This system of equations is part of a special form of

the Chapman-Kolmogorov equation for a very wide cathegory of stochastic processes named

Piecewise Deterministic Processes (PDPs) [13, 14].

Briefly, a PDP is generated from the random switching in time of deterministic motions,

taken randomly from a discrete set of given functions. It can be considered as an extension of

the “point processes” used in queue theory and renewal processes [27]. From the theoretical

side, PDPs are known by experts working in probability calculus and operation research (e.g.

see [7, 11, 16]). Within the general category of the PDPs, those characterized by a motion
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switching randomly between deterministic states driven by a semi-Markov process S(t), are

significative. An initial work was made in [22] for Markov processes. A semi-Markov process

is a discrete state and continuous time stochastic jump process where the influence of the past

is erased at the epochs of jumps. These kind of stochastic processes have potentally a huge

amount of applications, we quote Stochastic Hybrid Systems [10, 30] and systems driven by

dichotomous noise [26]. Further applications and details of the definition of these PDPs can be

found in [5,6], here we give some basic definitions in order to provide a little explanation of the

meaning of the terms in Eq. (1.1).

The semi-Markov process is defined as: a discrete Markov process with S states, a stochastic

transition matrix q̂ := {qij}, with 0 ≤ qij ≤ 1,
∑S

i=1 qij = 1, jointly to a set of probability

density functions ki(t) ≥ 0,
∫∞

0
ki(t)dt = 1, describing the statistics of switching time events.

The semi-Markov process S(t) drives the ordinary differential equation

dX(t)/dt = ĀS(t)(X), (1.3)

where the function Āi, is one from a set of {Ā1, . . . , ĀS} given functions. The resulting motion of

the state functionX(t) is a random sample path composed of pieces of deterministic trajectories,

each of them within two switching events of the semi-Markov process.

The meaningful information of a stochastic process is provided by the marginal probability

distribution functions. In this case it is defined as

Fi(x, y, t) := P
(

X(t) ≤ x, y < Y ≤ y + dy, i = S(t)
)

,

i.e. the probability that at the time t the process X(t) is in the dynamical state i, for the

sojourn time y, and its value is not greater than x. Usually, a probability distribution function

is computed by applying Monte Carlo methods directly to the stochastic equation model, like

(1.3). This choice is motivated by the easy implementation of the method on computers, but it

suffers of a notorious slow convergence rate that scales as the inverse of the square root of the

number of samples, although it is robust with respect to the dimension of the spatial domain.

Whenever the governing equation of the distribution function is known, it is possible to solve this

one by deterministic methods [5, 12], and, if needed, Monte Carlo methods for the validation

of theoretical findings (see e.g. [1, 2, 29]). Thus, we search for the probability distribution

function by solving the related Chapman-Kolmogorov equation. In the case of PDP described

by equation (1.3), the Chapman-Kolmogorov assumes the form of a system of hyperbolic partial

differential equations with nonlocal boundary condition [5], or equivalently [6] as the system of

Volterra-renewal equation (1.1)-(1.2). Eq. (1.2) is the initial condition of the problem, where

F̃j(x) represent the distribution functions for the inital data of (1.3). The distribution functions

Fi(x, y, t) have the fundamental properties to be monotonically increasing in x and positive in y

for all t > 0. In order to calculate them, we first solve (1.1)-(1.2), then apply the transformation

Fi(x, y, t) = ui(gi(x, t, t− y), t− y) e−
∫

y

0
λi(τ)dτ , 0 < y < t, (1.4)

where λi(t) = ki(t)/
∫∞

t
ki(τ)dτ and the functions gj(x, t, η) represent the inverse fluxes of

the solutions of the ODE (1.3). Moreover, if we are interested in the probability distribution

without the dependence on the length of the sojourn time y in the state, we integrate it as

follows

Fi(x, t) =

∫ t

0

Fi(x, y, t) dy. (1.5)
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The problem formed by Eqs. (1.1), (1.2), (1.4) and (1.5) is the subject of our investigation.

Kernels of the type such as in the integral of (1.1), derive from renewal processes, a well

investigated subject in the field of stochastic processes. In fact, Eq. (1.1) takes the form of

a renewal equation when the dependence on x and on the flux function g are neglected. The

literature on renewal type equations is wide and extensive [15, 17], and includes investigations

both from an analytical and numerical point of view. Significant is the case of Lebesgue-Stieltjes

integral [31], since the probability measure may have both discrete and continuous components.

The function gj(x, t, η) in (1.1) returns the value of the position of the process at the time

η when the coordinate x at time t > η is given for the j−th discrete state of the system. Here

we consider gj(x, t, η) monotone in x [33].

The first numerical approach to Eq. (1.1) is reported in [3] where we prove a basic theorem

for existence and uniqueness of the solution and propose and analyse a numerical method based

on quadrature in time, and interpolation in space. In [4], we investigate the asymptotic behavior

of the solution and correspondingly the asymptotic stability of the numerical method.

Here, we want to provide a different discretization scheme which, by using Bernstein poly-

nomials for approximation in space and exploiting their positivity and monotonicity properties,

is able to preserve, in the numerical solution, the monotonicity and positivity of the continuous

one. We note that, with the exception of the degree 1 case, which coincides with the first degree

Bernstein polynomial, Lagrangian interpolation used in [3] and [4] does not possess analogous

properties and hence does not allow an analysis like the one carried out in this paper. The use

of Bernstein polynomials in the numerical solution of Volterra integral equations is documented

in literature, see for example [21,28,32]. However, in our case, the very special form of Eq. (1.1)

and the application of Bernstein approximation to the spatial variable of the Volterra equation

with flux, makes our analysis new.

The paper is organized as follows: Section 2 is devoted to the study of the analytical

solution of a single Volterra-renewal equation (1.1). In Section 3 the discretization scheme with

Bernstein polynomials is built. Its monotone preserving properties and quadratic convergence

are proved. Furthermore, it is proved that these properties hold also after the application of

the transformations (1.4) and (1.5). In Section 4 numerical experiments are reported for the

validation of our theoretical findings. Finally, Section 5 concludes the paper with some remarks.

2. Analytical Results

Here and in the following sections we restrict our analysis to the scalar equation (S = 1),

u(x, t) = f(x, t) +

∫ t

0

k(t− η)u(g(x, t, η), η) dη, t > 0. (2.1)

In this case, for the flow solution gt(X0) of an ordinary differential equation, a monotonic

property holds as follows. Let gt1 and gt2 be two solutions of dX/dt = A(X) in the interval [t0, t]

to the initial value problem X(t0) = X0. Supposing that gt01 < gt02 and that A(X) is (weakly)

increasing or decreasing in X , then (i) gt1 < gt2 in [t0, t] and (ii) the difference gt2−gt1 is increasing

or decreasing, respectively. The generalization of these properties to the multi-dimensional case

has been proved in the Müller-Kamke theorem [33, 34]. As mentioned in Section 1, we define

the function g(x, t, η) as representative of the inverse flux solution of the single ODE of Eq.

(1.3), i.e.

g(x, t, η)|x=X := g−1,η(X).
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We start to recall the following theorem (see [3]), which states the conditions for the exis-

tence, uniqueness and regularity properties of the solution of (2.1) for any interval I ⊂ R+.

Theorem 2.1. Suppose that the functions g(x, t, η) ∈ C r̄,q̄,q̄(Ω× I× I), k(t) ∈ C q̄(I), f(x, t) ∈

C r̄,q̄(Ω× I), then the integral equation (2.1) has an unique solution u(x, t) ∈ C r̄,q(Ω× I), with

q = min(r̄, q̄).

From now on, we assume that the following hypotheses on the functions involved in (2.1),

for the existence and boundedness of the solution, are satisfied (see [3, 4] and the bibliography

therein):

h1) f(x, t) ∈ C(Ω× R+)
⋂

L1(Ω× R+);

h2)
∫ +∞

0 |f(x, t)|dt < α < +∞, ∀x ∈ Ω;

h3) k(t) ∈ C(R+)
⋂

L1(R+), k(t) ≥ 0,
∫ +∞

0 k(t)dt = 1;

h4) g(x, t, η) ∈ C(Ω× R+ × R+) and g(x, t, η) ∈ Ω, for x ∈ Ω, t ≥ η ≥ 0;

h5)
∫ +∞

0
t k(t)dt = µ > 0;

h6) f(x, t) ≥ 0 for x ∈ Ω, t ≥ 0;

h7) f(x+ y, t)− f(x, t) ≥ 0 for x ∈ Ω, y > 0, x+ y ∈ Ω;

h8) g(x+ y, t, η)− g(x, t, η) ≥ 0, for x ∈ Ω, y > 0, x+ y ∈ Ω.

These hypotheses are consistent with the model described in Section 1.

Theorem 2.2 (Non-negativity) Assume that h1)− h6) hold then the solution u(x, t) of Eq.

(2.1) is non-negative for all x ∈ Ω and t ≥ 0.

Proof. As proved in [3], the solution u(x, t) is continuous, so it is bounded. Further-

more, limt→∞ maxx∈Ω |u(x, t)| < ∞, as proved in [4]. Set ū(t) = minx∈Ω u(x, t), and f̄(t) =

minx∈Ω f(x, t): it is well defined because f is continuous in the bounded set Ω. Then from Eq.

(2.1), since k is non-negative, we get:

u(x, t) ≥ f̄(t) +

∫ t

0

k(t− η)ū(η)dη (2.2)

for all x ∈ Ω, t ≥ 0. Therefore,

ū(t) ≥ f̄(t) +

∫ t

0

k(t− η)ū(η)dη. (2.3)

So, since f̄ ≥ 0 for h6), we can write

ū(t) ≥ f̄(t) +

∫ t

0

r(t− η)f̄ (η)dη (2.4)

([8, pg. 80, Theorem 2.1.16]), where r(t) is the resolvent for k(t). Finally, by taking into account

that k ≥ 0 implies r non-negative, we obtain ū(t) ≥ 0, for all t ≥ 0 and hence

u(x, t) ≥ ū(t) ≥ 0, ∀x ∈ Ω, t ≥ 0.

This completes the proof of the lemma. �
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Theorem 2.3 (Monotonicity) Assume that h1)− h5) and h7)− h8) hold, then the solution

u(x, t) of Eq. (2.1) is non-decreasing in space, i.e. u(x+ y, t)− u(x, t) ≥ 0, for y > 0.

Proof. Let consider the following functions: E(x, y, t) := f(x+ y, t)− f(x, t), G(x, y, t, η) :=

g(x + y, t, η) − g(x, t, η), U(x, y, t) := u(x + y, t) − u(x, t), all of them defined on the domain

(x, y) ∈ Ω × {y ≥ 0}, x + y ∈ Ω, t ≥ 0, η ≥ 0, t − η ≥ 0. According to the hypothesis the

following properties hold:

2b) E(x, y, t) ≥ 0 for (x, y) ∈ Ω× {y ≥ 0}

2c) E(x, 0, t) = 0, for x ∈ Ω

3b) G(x, y, t, η) + g(x, t, η) ∈ Ω for (x, y) ∈ Ω× {y ≥ 0}, x+ y ∈ Ω

4b) G(x, y, t, η) ≥ 0 for (x, y) ∈ Ω× {y ≥ 0}, t, η ≥ 0

4c) G(x, 0, t, η) = 0 for x ∈ Ω.

We replace x with x+ y in Eq. (2.1) and subtract it side by side, so

U(x, y, t) = E(x, y, t) +

∫ t

0

k(t− η)[u(g(x+ y, t, η), η)− u(g(x, t, η), η)]dη, (2.5)

and by using 3b), we get

U(x, y, t) = E(x, y, t) +

∫ t

0

k(t− η)U(g(x, t, η), G(x, y, t, η), η)dη. (2.6)

For any fixed positive value of y, we define the set Ωy := {x : x+y ∈ Ω} ⊂ Ω, and the functions:

E(y, t) = min
x∈Ωy

E(x, y, t) ≥ 0, U(y, t) = min
x∈Ωy

U(x, y, t) ≥ 0

that exists for y ≥ 0, because it is the difference of regular functions u(x, t). Further, g(x, t, η)+

G(x, y, t, η) ∈ Ω, for x+ y ∈ Ω, so that

U(x, y, t) ≥ E(y, t) +

∫ t

0

k(t− η)U(G(x, y, t, η), η)dη. (2.7)

Where, since G ≥ 0 for 4b), it belongs to the definition domain of U(y, t). Let

E(t) = min
y≥0

E(y, t) ≥ 0, U(t) = min
y≥0

U(y, t) ≥ 0.

Then

U(x, y, t) ≥ E(t) +

∫ t

0

k(t− η)U(η)dη. (2.8)

We have already mentioned in Theorem 2.2 that the resolvent r(t) for the kernel k(t) is non

negative, furthermore E ≥ 0 for h7), so we conclude that

U(x, y, t) ≥ U(t) ≥ E(t) +

∫ t

0

r(t − η)E(η)dη ≥ 0.

This completes the proof of the theorem. �
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3. Bernstein Discretization Analysis

In this section we propose a discretization of Eq. (2.1) based on Bernstein approximation in

space, with the aim to obtain a numerical solution which preserves the structural characteristics

of the continuous one.

Consider a spatial mesh for Ω, i.e. Ωh := (x0, x1, . . . , xM ) of size h and a time discretization

t0, t1, . . . with constant stepsize τ . Let

Bl
mi(x) = h−m

(

m

i

)

(x− xl)
i(xl+1 − x)m−i (3.1)

denote the i−th Bernstein polynomial of degree m in the interval [xl, xl+1]. Further, for each

interval [xl, xl+1], we introduce a finer mesh at the points xl,i = xl + ih/m, i = 0, . . . ,m, note

that xl,m = xl+1,0. In the following we shall use the short notation xl = xl,0. The m-th degree

Bernstein polynomial for a function f(x), defined on [xl, xl+1], is given by

m
∑

i=0

Bl
mi(x)f(xli). (3.2)

For the theory about Bernstein polynomials we refer, for example, to [20, 25]. Here we mainly

use non-negativity, monotonicity and the partition of unity properties. So, for all m, l ≥ 0 and

x ∈ [xl, xl+1],

Bl
mi(x) ≥ 0,

m
∑

i=0

Bl
m,i(x)f1(xl,i) ≥

m
∑

i=0

Bl
m,i(x)f2(xl,i)

when f1(x) ≥ f2(x) and
∑m

i=0 B
l
mi(x) = 1.

To discretize (2.1), we write down the equation on the mesh points (xsk, tn), s = 0, . . . ,M,

k = 1, . . . ,m and n ≥ 0, then we integrate along time by the classical n0-step DQ (Direct

Quadrature) method with convolution weights ωn−j (see, e.g., [9]) and approximate u(g(xsk, tn,

tj , )), 0 ≤ j ≤ n, by Bernstein polynomials as in (3.2). This yields,

usk,n = fsk,n + τ

n
∑

j=0

ω̃njkn−j

m
∑

i=0

Bl
mi(g(xsk, tn, tj))uli,j , n = n0, n0 + 1, . . . , (3.3)

where τ is the constant time stepsize. Here, kn−j = k(tn − tj) and, for each n ≥ n0,

ω̃nj =

{

wnj , for 0 ≤ j < n0,

ωn−j , for n0 ≤ j ≤ n,

where wnj are the starting weights. For s = 0, . . . ,M, k = 1, . . . ,m and n ≥ n0, fsk,n =

f(xsk, tn), and the starting values usk,0 = f(xsk, 0), usk,1, . . . , usk,n0−1 are given. Furthermore,

l is chosen such that g(xsk, tn, tj) ∈ [xl, xl+1], and usk,n represents an approximation to the

exact solution u of (2.1) at point (xsk, tn), i.e. usk,n ≈ u(xsk, tn). From now on we make the

following assumptions on the starting values, ∀j = 0, . . . , n0 − 1,:

• usk,j ≥ 0, ∀ s = 0, . . . ,M, k = 1, . . . ,m, and

• usk+1,j − usk,j ≥ 0, ∀ s = 0, . . . ,M, k = 0, . . . ,m− 1,

and on the weights, ∀n ≥ n0, 0 ≤ j ≤ n:
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• ω̃nj > 0,

• supn,j ω̃nj ≤ Z < ∞.

Now we define the Bernstein piecewise interpolation operator as follows:

B(f(·);x) :=

M
∑

l=0

m
∑

i=0

Bl
mi(x)Il(x)f(xl,i) x ∈ Ω, (3.4)

where Il(x) is the indicator function on the interval [xl, xl+1). Given a function f(x), then

B(f ;x) ≈ f(x) and f(xl) = B(f ;xl), so xl are continuity points for l = 0, . . . ,M. Furthermore,

if f(x) is non-decreasing then B(f ;x) is also non-decreasing and the partition of unit property

reads as B(1;x) = 1.

By using (3.4), the discrete Volterra equation recasts to

usk,n = fsk,n + τ

n
∑

j=0

ω̃njkn−j B(uj(·); g)sk,n,j . (3.5)

Here uj(x) is the step function defined as uj(x) =
∑

l,i uli,jχli(x), where χli is the indicator

function on the interval (xli−1, xli]. In (3.5), B(uj(·); g)sk,n,j=B(uj(·); g(xsk, tn, tj)) is the short

notation for the evaluated Bernstein operator on the mesh, that includes the transformation of

the coordinates induced by the flux g.

The boundedness of the solution of Eq. (3.3) for all n = 0, 1, . . . , is provided by Theorem

12 in [4] under hypotheses h1)− h5) and

h9) k(t) and max
x∈Ω

|f(x, t)| asymptotically decreasing in time.

The following theorem represents the discrete equivalent of Theorem 2.2 in Section 2 about the

positivity of the solution.

Theorem 3.1 (Discrete non-negativity) Assume that h1) − h6) and h9) hold, then the

solution ul,n of Eq. (3.3) (i.e. (3.5)) is non-negative for all l = 0, . . . ,M and n ≥ 0.

Proof. The solution ul,n of Eq. (3.5) is bounded and limn→∞ maxl=0,...,M |uln| < ∞, as

proved in [4]. Set ūj = minr,k urk,j, and f̄n = minr,k frk,n. Then from Eq. (3.5), since f̄ , k and

Bl
mi are non-negative, we get:

usk,n ≥ f̄n + τ

n
∑

j=0

ω̃njkn−j ūjB(1; g)sk,n,j,

for all s = 0, . . . ,M, k = 1, . . . ,m. Therefore, for the partition of unity property,

ūn ≥ f̄n + τ
n
∑

j=0

ω̃njkn−j ūj .

So we can write

ūn ≥ f̄n +

n
∑

j=0

rn−j f̄j

([18, Cor. 1.6.1, pg.15]), where rj is the discrete resolvent for k(t). Finally, by taking into

account that k ≥ 0 implies r non-negative, we obtain ūn ≥ 0, for all n ≥ n0 and hence

usk,n ≥ ūn ≥ 0, ∀s = 0, . . . ,M, k = 1, . . . ,m, n ≥ n0.

This completes the proof of this theorem. �
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Theorem 3.2 (Discrete monotonicity) Assume that h1)−h5) and h7)−h9) hold. Then the

solution usk,n of Eq. (3.3) (i.e. Eq. (3.5)) is non-decreasing in space, i.e. usk+1,n − usk,n ≥ 0,

for all s = 0, . . . ,M, k = 0, . . . ,m.

Proof. We distinguish two cases.

When k0 = 0 the discrete equation (3.5) is explicit, hence by using the monotonic property

of the operator B and the monotony of the forcing term fsk,n we get that the values uks,n are

monotonic with respect to k and s for all n ≥ 0.

When k0 > 0, the equation is implicit to the unknown uks,n. If we suppose that all uks,j , j <

n are monotone, then
∑n−1

j=0 ω̃n−jkn−1B(uj, g)ks,n,j is monotone because sum of monotone

operators with positive weights. Hence the system of equation for usk,n has monotone known

vector, and since also τω0k0B(un, xsk) is monotone, then the solution is monotone. �

Theorem 3.3 (Convergence order of the numerical method) Assume that h1)−h5) hold.

Furthermore, let k, f and g be continuous functions that are r̄ ≥ 2 times continuously differen-

tiable with respect to x on Ω and q̄ times continuously differentiable with respect to t on I ⊆ R+.

Let q ≤ min(q̄, r̄) be the order of the DQ method and m the degree of the Bernstein polynomials

used in (3.3). Then, the global error en = maxs,k |u(xsk, tn)− usk,n| of Eq. (3.3) satisfies

max
n=0,...,N

en = C1τ
q + C2h

2 + τC3δ(h, τ), (3.6)

for h → 0, τ → 0 and Nτ = T, Mh = b − a. C1, C2 and C3 are positive constants, with

C2 ∝ m−1, and

δ(h, τ) = max
s,k

n0−1
∑

j=0

|u(xsk, tj)− usk,j |

contains the starting errors.

Proof. From (2.1) and (3.3) we have

u(xsk, tn)− usk,n = Tn(ξ, τ) + τ
n
∑

j=0

ω̃n−jkn−jθm(ξ),

for any n = 0, . . . , N and s = 0, . . . ,M, k = 1, . . . ,m. Here, ξ = g(xsk, tn, tj) ∈ [xl, xl+1], and

Tn(ξ, τ) =

∫ tn

0

k(tn − η)u(g(xsk, tn, η), η)dη − τ

n
∑

j=0

ω̃n−jkn−ju(ξ, tj), (3.7)

θm(ξ) = u(ξ, tj)−

m
∑

i=0

Bl
mi(ξ)uli,j . (3.8)

From Theorem 2.1 u is q = min(r̄, q̄) times continuously differentiable with respect to t and r̄

times with respect to x, since q ≤ min(q̄, r̄), the consistency of DQ methods (see for example

[19]) gives

|Tn(ξ, τ)| ≤ cτq, (ξ, τ) ∈ Ω× I, (3.9)

with c independent on tn, tj , xsk. Furthermore,

θm(ξ) = u(ξ, tj)−

m
∑

i=0

Bl
mi(ξ)u(xli, tj) +

m
∑

i=0

Bl
mi(ξ)(u(xli, tj)− uli,j). (3.10)
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Consider [20, p.21, Th.1.6.2], taking into account that ξ belongs to the interval [xl, xl+1] of

length h, let ξ = xl +
s
m
h, s ∈ [0,m], xli = xl +

i
m
h, i = 0, 1, . . . ,m and define

βmi(z) =

(

m

i

)

zi(1 − z)m−i, (3.11)

for z ∈ [0, 1], as the Bernstein polynomials related to the interval [0, 1]. One can easily check

that

Bl
mi(ξ) = βmi

( σ

m

)

, σ ∈ [0,m]. (3.12)

For the properties of Bernstein polynomials (see [25]), (3.12) holds and
∑m

i=0 βmi(z) = 1,

∀ z ∈ [0, 1], then
∣

∣

∣

∣

∣

u(ξ, tj)−

m
∑

i=0

Bl
mi(ξ)u(xli, tj)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

m
∑

i=0

(

u
(

xl +
σ

m
h, tj

)

− u

(

xl +
i

m
h, tj

))

βmi

( σ

m

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

m
∑

i=0

(

σ

m
−

i

m

)

h
∂u

∂x

(

xl +
si
m
h, tj

)

βmi

( σ

m

)

∣

∣

∣

∣

∣

,

where si belongs to the interval with endpoints σ and i. The last equality in the previous

expression has been obtained by using the mean value theorem for u(xl+
σ
m
h, tj)−u(xl+

i
m
h, tj),

since r̄ ≥ 2 and thus ∂u
∂x

(x, t) is differentiable in Ω with respect to x. From there, by adding

and subtracting the same quantity we get
∣

∣

∣

∣

∣

m
∑

i=0

(

σ

m
−

i

m

)

h
∂u

∂x

(

xl +
si
m
h, tj

)

βmi

( σ

m

)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

m
∑

i=0

(

σ

m
−

i

m

)

h
∂u

∂x

(

xl +
σ

m
h, tj

)

βmi

( σ

m

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

m
∑

i=0

(

σ

m
−

i

m

)

h

(

∂u

∂x

(

xl +
si
m
h, tj

)

−
∂u

∂x

(

xl +
σ

m
h, tj

)

)

βmi

( σ

m

)

∣

∣

∣

∣

∣

. (3.13)

The first term in the sum is 0. As a matter of fact,

m
∑

i=0

σ

m
βmi

( σ

m

)

=
σ

m
,

m
∑

i=0

i

m
βmi

( σ

m

)

=
σ

m

m
∑

i=1

βm−1i−1

( σ

m

)

=
σ

m
.

For the second term in (3.13), we use once again the mean value theorem, this time for
∂u
∂x

(

xl +
si
m
h, tj

)

− ∂u
∂x

(

xl +
σ
m
h, tj

)

, to obtain finally
∣

∣

∣

∣

∣

u(ξ, tj)−

m
∑

i=0

Bl
mi(ξ)u(xli, tj)

∣

∣

∣

∣

∣

≤

m
∑

i=0

(

σ

m
−

i

m

)2

h2Ūβmi

( σ

m

)

≤ h2 Ū

4m
,

where Ū is a bound for
∣

∣

∣

∂2u
∂x2 (x, t)

∣

∣

∣
in Ω×I and 1

4m is the maximum for
∑m

i=0

(

σ
m

− i
m

)2
βmi

(

σ
m

)

,

as a function of σ/m. Since ω̃nj and kj are positive and h3) holds, then

τ

n
∑

j=0

ω̃njkj ≤ 1− ϕ(τ),
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where ϕ(τ) is the quadrature error satisfying ϕ(τ) → 0 as τ → 0. So, we obtain

en ≤ cτq +
h2Ū

4m
(1− ϕ(τ)) + τ

n
∑

j=0

ω̃n−jkn−jej,

where, once again, we have used the fact that
∑m

i=0 B
l
mi(x) = 1. Then, the discrete Gronwall

lemma ([8], p. 81)) leads to

en ≤
cτq + Ū

4m (1− ϕ(τ))h2 + τZKδ(h, τ)

1− τω0k0
e

ZKT
1−τω0k0 , (3.14)

with K = max0≤t≤T k(t). So, (3.6) comes true with

C1 =
c

1− τω0k0
e

ZKT
1−τω0k0 , C2 =

Ū
4m (1− ϕ(τ))

1− τω0k0
e

ZKT
1−τω0k0 , C3 =

ZK

1− τω0k0
e

ZKT
1−τω0k0 .

This completes the proof of the theorem. �

Remark 3.1. From the error estimate (3.14) it is clear that, if the starting values are computed

with sufficiently high accuracy, the maximum order attainable for the method (3.3) is 2. We

note that, the first degree interpolating polynomial used in [1] coincides with the case m = 1

here, therefore the convergence order of the numerical method is stated in Theorem 2.2 in

[1]. Here, we have extended the investigation to polynomials of degree m > 1 and we have

shown that, while (3.14) gives optimal convergence rates in the time steps, the contribution of

the spatial part in the error converges if the polynomial degree is increased, with fixed spatial

stepsize. In practice, the degree m of Bernstein polynomials in (3.14) has a not negligible

influence on the error in terms of magnitude of the error constant C2. In conclusion, high order

Bernstein polynomials produce smaller errors and, at the same time, preserve the positivity

and monotonicity properties in the numerical approximation. This effect will be shown later in

the experiments.

Finally, we conclude the numerical analysis by proving that the Bernstein polynomial dis-

cretization is able to preserve the monotonicity and the positivity of Eq. (1.4) for the trans-

formation of the solution of the Volterra equation back to the probability distribution of the

original problem

F (xsk, tn, tj) = u(ξ, tn − tj)e
−

∫ tj

0
λ(s)ds,

where ξ = g(xsk, tn, tn − tj) ∈ [xl, xl+1]. Set b(t) =
∫ t

0
λ(s)ds (λ(t) ≥ 0, so b(t) is positive and

increasing),

Fsknj = e−b(tj)B(un−j(·); ξ), (3.15)

is the approximation of F (xsk, tn, tj) by Bernstein polynomials. The error of this approximation

is given by

F (xsk, tn, tj)− Fsknj = e−b(tj)θm(ξ),

where θm(ξ) is defined in (3.10) and, in the hypotheses of Theorem 3.3,

|θm(ξ)| ≤ C1τ
q +D2h

2 + τC3δ(h, τ),

for all 0 ≤ j ≤ n ≤ N, with T = Nτ, τ → 0, h → 0, with D2 = C2 +
Ū
4m . Thus also

|F (xsk, tn, tj)− Fsknj | ≤ C1τ
q +D2h

2 + τC3δ(h, τ).
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Furthermore, since B is a monotone operator with respect to the components of un, then F is

monotone.

Let F(xsk, tn) =
∫ tn

0
F (xsk, η, tn)dη, we approximate the integral by the quadrature formula

used in (3.3) and the F samples F (xsk, tj, tn), by Fsknj defined in (3.15)

Fsk,n = τ

n
∑

j=0

ωn−jFsknj .

Then

F(xsk, tn)−Fsk,n

=

∫ tn

0

F (xsk, η, tn)dη − τ

n
∑

j=0

ωn−jF (xsk, tj, tn) + τ

n
∑

j=0

ωn−j(F (xsk, tj , tn)− Fsknj),

|F(xsk, tn)−Fsk,n| ≤ Cτq + (C1τ
q +D2h

2 + τC3δ(h, τ))τ
n
∑

j=0

ωj .

For n → ∞, τ, h → 0, Nτ = T, we have

|F(xsk, tn)−Fsk,n| ≤ D̄1τ
q + D̄2h

2 + τD̄3δ(h, τ),

with D̄1, D̄2 and D̄3 positive constants. Thus, the convergence order of the discretization is

preserved.

4. Numerical Tests

4.1. Convergence test

In this paragraph we perform a test to show the convergence order of the numerical method

with trapezoidal quadrature formula and second degree Bernstein polynomials.

For this reason we choose the following setting for the single Eq. (2.1): k(t) = e−t,

g(x, t, η) = x+x2(eη−t−1), f(x, t) = e−2t[(x−1)(2x3+et(−1−x−tx2+(t−2)x3))+x4 sinh(t)],

in the domain Ω = [0, 1], for η < t ∈ [0, T ], then the solution is

u(x, t) = 1− x2e−t.

We solve this problem up to time T = 1, by using the Bernstein polynomials of second degree

as described in Eq. (3.3). We report the error of the calculated solution with respect to the

true solution versus computation with variable time and space mesh sizes, that confirms the

theoretical finding of the second order convergence.

N M maxsk |u(xsk, T )− usk,N |

31 20 2.00 · 10−4

61 40 4.84 · 10−5

121 80 1.19 · 10−5

241 160 2.95 · 10−6

481 320 7.36 · 10−7
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4.2. The statistics of a filtered telegraph signal.

Although the analysis described in the previous sections is confined to the scalar equation

(2.1), a generalization to systems is possible. Here we perform a test for a complete model of

real application with S = 2. We study the statistics of a filtered random telegraph signal with

the McFadden setting [23]. The two dynamical states are described by the ODEs

Ẋ(t) = −γiX +Wi X(t0) = X0, i = 1, 2. (4.1)

The forward flux solutions, denoted with Φi, are

Φi(t;x0, t0) = (x0 −Wi/γi) e
−γi(t−t0) +Wi/γi

and the inverse are

Φ−1
i (t0;x, t) = (x−Wi/γi) e

γi(t−t0) +Wi/γi.

We set W1 = W , W2 = −W and γ1,2 = γ, from that it is easy to recognize the invariant domain

of the process is Ω := [−W/γ,+W/γ]. In fact, from the forward map we see that X(t) ∈ Ω

if the initial data is into the same domain X0 ∈ Ω. Since the codomain must be equal to the

domain, from the inverse maps we define

gi(x, t, η) = min(W/γ,max(−W/γ,Φ−1
i (η;x, t))).

The driving semi-Markov process is set with the stochastic matrix q11 = q22 = 0, q12 = q21 = 1,

and with the switching time distributions k1(t) = k2(t) = 3e−t(1− e−t)2. We set smooth initial

distributions of (1.2) as follows

F̃1(ξ) =
(ξ +W/γ)2

2(2W/γ)2
, F̃2(ξ) =

1

2
−

(W/γ − ξ)2

2(2W/γ)2
.

Thus, Eq. (1.1) reads as

u1(x, t) = F̃2(g2(x, t, 0)) k2(t) +

∫ t

0

u2(g2(x, t, η), η) k2(t− η) dη, (4.2a)

u2(x, t) = F̃1(g1(x, t, 0)) k1(t) +

∫ t

0

u1(g1(x, t, η), η) k1(t− η) dη. (4.2b)

In this function settings, all hypotheses h1)− h5) and h8) are accomplished for each equation

in (4.2), hence we expect a positive and monotone behavior in the solution components.

When the solution of this system of integral equations is found, the marginal probability

distribution functions are determined by (1.4). Then by using (1.5) and taking the derivative

Pi(x, t) = ∂xFi(x, t), the meaningful probability density distribution are determined.

We solve numerically Eq. (4.2), with W = 1 and γ = 1, i.e. Ω = [−1, 1], according to the

numerical scheme proposed in this paper. The total probability density distribution function

P(x, T ) = P1(x, T ) + P2(x, T ), at the time T = 1, is plotted in Fig. 4.1.

Since we have no analytical solution available, we perform the convergence error test by

numerically calculating a reference solution with a finer mesh, M = 129, on the space, then the

error is evaluated with the numerical solution with coarses meshes. We note from Fig. 4.1 that

there are two points where the required continuity C2 of the solution F(x, T ) is not satisfied.

However, this fact does not affect the convergence results, because when evaluating the error

on the coarses meshes these points are almost surely excluded.
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Table 4.1: Errors maxsk |F(xsk, T )− Fsk,N | of the numerical solution for the convergence test.

M �m 1 2 3 10

17 1.63 · 10−4 8.78 · 10−5 6.06 · 10−5 1.83 · 10−5

33 4.15 · 10−5 2.06 · 10−5 1.37 · 10−5 4.18 · 10−6

65 8.16 · 10−6 4.11 · 10−6 2.76 · 10−6 8.32 · 10−7

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Fig. 4.1. Numerical solution of the probability distribution function F(x, T ) (left) and its density

P(x, T ) (right) at the final time T = 1, for the integral formulation of the Chapman-Kolmogorov

equation related to the filtered random telegraph signal with the McFadden switching time interval

distribution. Degree of the Bernstein’s polynomials m = 2, M = 129, N = 400.

In the following table we report such errors in the maximum norm, for the degrees of

Bernstein’s polynomials m = 1, 2, 3, 10.

From the values we can see that according to (3.6) and Remark 3.1, the second order

convergence error is confirmed as well as the improvement of constant C2 as the degree m of

the Bernstein polynomial grows. Furthermore, Figure 4.1 show that, as expected from the

theory developed in Section 3, the properties of positivity and monotonicity of the continuous

solution are preserved.

5. Conclusions

This paper is devoted to the analysis of a Volterra-Renewal equation with space fluxes

which represents an equation for the distribution function of a class of piecewise deterministic

stochastic processes.

We have proved the positivity and monotonicity of its solution and we have carried out an

analogous study on the numerical approximation obtained by a direct quadrature method along

time and approximation via Bernstein polynomials in space. The quadratic convergence of the

numerical method and the influence of the polynomial degree on the global error are proved

both theoretically and by numerical experiments.

All the analysis carried out in this paper has been performed on a scalar equation, how-

ever a generalization to systems is straightforward. This motivates our experiments on more
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significative test examples such as the one related to the filtered random telegraph signal.
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