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Abstract

In this paper, we couple the parareal algorithm with projection methods of the trajec-

tory on a specific manifold, defined by the preservation of some conserved quantities of

stochastic differential equations. First, projection methods are introduced as the coarse

and fine propagators. Second, we apply the projection methods for systems with conserved

quantities in the correction step of original parareal algorithm. Finally, three numerical

experiments are performed by different kinds of algorithms to show the property of con-

vergence in iteration, and preservation in conserved quantities of model systems.
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1. Introduction

Designing highly efficient algorithms is an important subject of numerical computation due

to the computational time and memory issues in the solution of large scale problems. The

technique of parallel algorithms attracted more and more attention in the past few years, con-

taining domain decomposition method in spatial direction and the parallel in time direction

generally. The parareal algorithm, our focus in the sequel, was first introduced by Lions et

al. [1], further work modified by Bal and Maday in [2], and has attracted vast attention in the

last decade. Compared with other parallel approaches, this algorithm belongs to time-parallel

category. The general idea of parareal algorithm contains roughly three steps as follows. First,

we obtain an approximate solution on a coarse time-step by a rough solver. Second, we use

another more accurate solver to get the approximation on each coarse time interval (splitting

the coarse time interval into more fine time domain) performed in parallel with initial values

computed in the first step. Finally, combining the values of the above two steps in the coarse

time grids, we obtain a new approximation value by a prediction and correction iteration. In
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general, this algorithm has better parallel performance and is easy to perform, which moti-

vates the development of efficient parallel methods for time dependent problems. Since the

parareal algorithm was proposed, many efforts have been made to analyze it theoretically [3]

and numerically, which verify the effectiveness of the parareal algorithm for a large various of

problems, including control theory [4], Navier-Stokes problem [5] and Hamiltonian differential

equations [6, 7] for instance.

Stochastic differential equations (SDEs) have attracted considerable attention in order to

obtain much more realistic mathematical models in many scientific disciplines, such as physics,

molecular biology, population dynamics and finance [8,9]. However, it is difficult to find explicit

solutions of SDEs analytically; therefore, there has been tremendous interest in developing

effective and reliable numerical methods for SDEs (e.g. [10–12] and references therein). It is

also a significant issue whether some geometric features of SDEs are preserved in performing

reliable numerical methods, especially for long-time simulation, which is as important as the

deterministic case [13,14]. In practice, they are time consuming, so the parallel techniques can

be considered to speed up the original integrator. For stochastic problem, the application of

parallel algorithm are relatively few. For example, the parareal algorithm has been applied

to stochastic ordinary differential equations with filter problems [15] and stochastic models in

chemical kinetics [16]. However, to the best of our knowledge, no results on parareal algorithm

focusing on stochastic differential equations with conserved quantities. In order to apply the

parareal algorithm to SDEs with conserved quantities, as mentioned in [6, 7, 17], the original

algorithm are not able to share this kind of conservative property, namely, the preservation

of conserved quantities along the sample path of the exact solution, even though when the

coarse and fine integrators all have adequate conservative properties. Therefore, the behavior

of long time numerical simulation is not enjoyed as the original system itself has. In this

paper, we mainly utilize the projection methods for SDEs with conserved quantities as the

basic propagators and the parareal algorithm with a projection corrector, which preserve some

conserved quantities of the exact flow as proposed in [6].

The rest of the paper is organized as follows. Section 2 briefly recalls the parareal algorithm

for general time-dependent problem. Section 3 discusses the procedure projection methods for

SDEs with conserved quantities, and gives the corresponding mean-square convergence. Next

in Section 4, we consider the parareal algorithm focusing on the SDEs with certain conserved

quantities, which combines the ideas of the previous two sections. Finally, three typical SDE

examples are chosen to perform numerical tests in Section 5.

2. The Original Parareal Algorithm

In this section, we first review the original parareal algorithm for a general initial-value

problem: {
u′(t) = f(t, u(t)), t ∈ [0, T ],

u(0) = u0,
(2.1)

where f : R × R
d → R

d is a suitable function to ensure the well-posedness of (2.1). To

perform the parareal algorithm, we first divide time interval [0, T ] into N uniform large time

intervals [Tn, Tn+1], with step-size ∆T = Tn+1 − Tn n = 0, 1, . . . , N − 1, and N = T
∆T . Then,

we further divide every large interval [Tn, Tn+1] into J small time intervals [tn+ j

J
, tn+ j+1

J
],

j = 0, 1, . . . , J − 1. With that, two numerical propagators, the coarse propagator G and the

fine propagator F , are needed here. In fact, G is usually easy to solve with low convergence
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order and F is of high order but more expensive to compute. The parareal algorithm can be

described as following.

• Initialization: use the coarse propagator G and time-step ∆T to compute initial values

{u0
n}

N
n=0 sequentially

{
u0
n+1 = G (Tn, u

(0)
n ,∆T ), n = 0, 1, . . . , N − 1,

u
(0)
0 = u0.

• For k = 0, 1, . . .

1. use the fine propagator F and small time-step ∆T/J to compute ûn+1 on each

sub-interval [Tn, Tn+1] independently, thus possibly in parallel

{
ûn+ j+1

J
= F (tn+ j

J
, ûn+ j

J
,∆T/J), j = 0, 1, . . . , J − 1,

ûn = u
(k)
0 .

2. perform sequential corrections

{
u
(k+1)
n+1 = G (Tn, u

(k+1)
n ,∆T ) + ûn+1 − G (Tn, u

(k)
n ,∆T ), n = 0, 1, . . . , N − 1,

u
(0)
0 = u0.

3. If {uk+1
n }Nn=1 satisfies the stopping criterion, break the iteration; otherwise continue

the iteration again.

Note that the parareal algorithm can be expressed compactly as follows:

u
(k+1)
n+1 = G (Tn, u

(k+1)
n ,∆T ) + F

J (Tn, u
(k)
n ,∆T/J)− G (Tn, u

(k)
n ,∆T ) (2.2)

where FJ means computing the value of F for J times sequentially. It is known that u
(k)
n →

u∗
n, n = 0, 1, . . . , N , as k → +∞ when iteration (2.2) converges, where u∗

n is actually the result

computed by the fine propagator F with small step-size ∆T/J [18]. Thus, the convergence

accuracy of this iterative algorithm after certain iterations is comparable to that of the fine

propagator F with the small step-size ∆T/J [2]. In other words, the fine propagator governs

the required final accuracy of the method with a fine time step, and the coarse propagator

support an computing efficiency in some sense in coarse time step.

3. Projection Methods for SDEs with Conserved Quantities

Consider the initial value problem for the general d-dimensional autonomous stochastic

differential equation (SDE) in the sense of Stratonovich:





dX(t) = f
(
X(t)

)
dt+

m∑

r=1

gr
(
X(t)

)
◦ dWr(t), t ∈ [0, T ],

X(0) = X0,

(3.1)

where X(t) is d-dimensional column-vector, Wr(t), r = 1, . . . ,m, are m independent one-

dimensional standard Wiener processes defined on a complete filtered probability space (Ω,F ,

P, {Ft}t≥0). f and gr are R
d-valued functions satisfying the conditions under which (3.1) has

a unique solution. X0 is F0-measurable random variable with E|X0|
2 < ∞.
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Definition 3.1. System (3.1) possesses l (l ≥ 1) independent conserved quantities Ii(x), i =

1, . . . , l, if
(
∇Ii(x)

)T
f(x) = 0 and

(
∇Ii(x)

)T
gr(x) = 0, r = 1, . . . ,m; i = 1, . . . , l.

If we define vector I(x) :=
(
I1(x), . . . , I l(x)

)T
, then

I′(x)f(x) = I′(x)gr(x) = 0, r = 1, . . . ,m,

where I′(x) is the Jacobian matrix of I(x). If system (3.1) possesses l conserved quantities

Ii(x), i = 1, . . . , l, then by Itô’s formula we have

dIi
(
X(t)

)
= ∇Ii

(
X(t)

)T
f
(
X(t)

)
dt+

m∑

r=1

∇Ii
(
X(t)

)T
gr
(
X(t)

)
◦ dWr(t) = 0.

Then

X(t) ∈ MX0
:=

{
x ∈ R

d | Ii(x) = Ii(X0), i = 1, . . . , l
}

t ∈ [0, T ], a.s.,

which implies that the solution X(t) of this system will be confined to the invariant submanifold

MX0
generated by Ii(x), i = 1, . . . , l.

Suppose that we have a supporting one-step method X̂t,x, the projection method, then the

process is

1. Compute the one-step approximation X̂t,x.

2. Compute λ ∈ R
l for X̄x,t = X̂t,x +Φλ, s.t. I(X̄x,t) = I(x).

Here the matrix Φ ∈ R
d×l defines the direction of the projection, and λ is a l-dimensional vector

chosen such that X̄t,x belongs to the invariant manifold MX0
. In fact Φ is not unique, and

here we choose Φ =
(
I′(X̂t,x)

)T
, which is transpose of the Jacobian matrix of I(·) at X̂x,t. The

general idea of the projection methods is shown in Fig. 3.1.

MX0
X0

X̂1

X̄1

X̂2

X̄2

X̂3

X̄3

Fig. 3.1. Basic idea of the projection methods.

The convergence in the mean-square of this kind of projection methods is listed below.

Theorem 3.1. ([19]) Suppose that system (3.1) possesses l independent conserved quantities

Ii(x), i = 1, . . . , l. Also assume that a supporting method X̂ applying to (3.1) satisfies

|E(Xt,x(t+ h)− X̂t,x(t+ h))| ≤ K(1 + |x|2)1/2hp+1, (3.2)
(
E|Xt,x(t+ h)− X̂t,x(t+ h)|2

)1/2
≤ K(1 + |x|2)1/2hp+ 1

2 , (3.3)

with mean-square order p. Assume that ∇Ii satisfies global Lipschitz condition and has uni-

formly bounded derivatives up to order 2, |∇Ii| has a positive lower bound and
(
|∇Ii|2

)−1

has bounded derivative near the invariant manifold. Then the projection method X̄ using the

supporting method X̂ will also have mean-square order p as well.
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4. Parareal Algorithm for SDEs with Conserved Quantities

For SDEs with conserved quantities, both theoretical and numerical results show that the

original parareal algorithm in Section 2 is unable to deal with this kind of problem in long

time simulation [7,15,17], so we need other technique to deal with it. Of course, the projection

method is a natural choice in order to preserve the conserved quantities of system. Even though

we can choose the projection methods described in Section 3 as propagators G and F in the

original parareal algorithm, after sequential corrections, the new iterations cannot preserve the

conversed quantities any longer. Thus, what we need is another projection step to ensure that

the approximations in every iteration preserve the conserved quantities as well.

To be precise, we list the corresponding parareal algorithm with projection for SDEs. As

in Section 2, we have the coarse propagator G and the fine propagator F for SDE (3.1), here

they converge in the mean-square sense.

• Initialization: use the coarse propagator G and time-step ∆T to compute initial value

{X0
n}

N
n=0 sequentially

{
X0

n+1 = G (Tn, X
(0)
n ,∆T ), n = 0, 1, . . . , N − 1,

X
(0)
0 = X0.

• For k = 0, 1, ...

1. use the fine propagator F and small time-step ∆T
J to compute X̂n+1 on each sub-

interval [Tn, Tn+1] independently




X̂n+ j+1

J
= F (tn+ j

J
, X̂n+ j

J
,∆T/J), j = 0, 1, . . . , J − 1,

X̂n = X
(k)
0

2. perform sequential corrections




X
(k+1)
n+1 = πMX0

(
G (Tn, X

(k+1)
n ,∆T ) + X̂n+1 − G (Tn, X

(k)
n ,∆T )

)
, n = 0, 1, . . . , N − 1,

X
(0)
0 = X0,

where πMX0
(·) denotes the projection operator.

3. If {Xk+1
n }Nn=1 satisfy the stopping criterion, break the loop; otherwise continue the

iteration again.

Note that, in the sequential correction step, we couple an additional projection operator

with the original parareal algorithm so that the new iteration confined on the same invariant

manifold, which implies it can preserves the conserved quantities of the system. Furthermore,

X
(k)
n converge to the solution computed by the fine propagator F with projection πMX0

,

denoted by FπMX0
, instead of the fine propagator F .

5. Numerical Experiments

In this section, we perform several typical numerical examples by utilizing different parareal

algorithms, with or without projection procedure. In order to investigate the convergence

property of these algorithms for SDEs with conserved quantities through numerical tests, we

consider the following schemes:
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• Euler-Maruyama scheme (Euler, EulerP)

• Milstein scheme (Mil, MilP)

• Mid-point scheme (Mid, MidP)

• Itô-Taylor order 1.5 scheme (T32, T32P)

• Itô-Taylor order 2 scheme (T2, T2P)

where the suffix P means the projection method introduced in Section 3. That is to say, we use

these schemes both for the coarse propagator G and the fine propagator F with different time

steps, respectively.

The mean-square error is applied as the stopping criterion of these parareal algorithms:

(E|X
(k)
N −X∗

N |2)1/2 ≤ 10−12, (5.1)

where X∗
N denotes the last step approximation computed with small step-size ∆T

J by the fine

propagator F for original parareal, or by F with projection for parareal with projection in

Section 4. The expectation here is simulated by computing the average of 1000 sample paths.

Table 5.1: Line styles.

Projection

Style Propagators Correction

× ×

× X

X ×

X X

In Table 5.1, we list four line styles to make a distinction among different algorithms in

figures later. × and Xdenote whether the projection technique is used in propagators (both

coarse and fine) and the sequential correction. For instance, if we check the type of Euler

scheme, then the solid line (the fourth style in Table 5.1) signifies that we apply the EulerP

scheme in G and F , and make use of the parareal algorithm with projection.

5.1. Kubo oscillator

Our first example is a two-dimensional linear SDEs of this form

{
dX1(t) = −X2(t)dt− cX2(t) ◦ dW (t),

dX2(t) = X1(t)dt+ cX1(t) ◦ dW (t),
(5.2)

where c is a real-valued parameter. Note that it is also called Kubo oscillator and is a typical

stochastic Hamiltonian system with multiplicative noise [20, 21]. It is easy to check that (5.2)

has a quadratic conserved quantity

I(x, y) =
1

2
(x2 + y2), (5.3)

which is also its Hamiltonian function and forms a circle as the invariant submanifold in its phase

space. In this example, we choose c = 0.5, and the initial value X(0) = (X1(0), X2(0)) = (1, 0).
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Fig. 5.1. Kubo oscillator (5.2) with c = 0.5, X0 = (X1(0), X2(0)) = (1, 0). Mean-square errors vs.

iteration number k for original parareal and parareal with projection algorithms using five propagators

as F and G (∆T = 0.1, J = 100). Left: T = 10. Right: T = 1000.

The convergence results of the parareal algorithms are shown in Figure 5.1. The left part

of this figure is the short time simulation (T=10), and the right part displays the long time

simulation (T=1000). Each row of Figure 5.1 corresponds to a particular scheme which acts as

the basic integrators (F and G ) in the parareal algorithm. In the case of short time test, we

observe that all the schemes (with or without projection) converge properly, and the parareal

algorithms with projection and using projection schemes as the G and F integrators, have

the fastest convergence rate (the solid line). For the long time case, the common Euler and

Milstein schemes without projection do not converge in the parareal algorithms, so we just plot

the results of parareal with projection and EulerP or MilP in the first two rows of the right side

of Figure 5.1. However, the other high order methods still work in the corresponding parareal

algorithms. Note that the Mid scheme preserves the quadratic conserved quantity (5.3); thus,

we do not need to use the MidP scheme in this test.

From Figure 5.1, it also shows that with the help of projection method, the convergence

rates for the original parareal and parareal with projection are similar if they both converge.

To compare these two algorithms, we then see the errors of the conserved quantity I(x) (5.3)

in Figure 5.2 where T = 10. Here EulerP are chosen as the fine and coarse propagators F

and G . Other parameters are the same as those in Figure 5.1. The left plot of Figure 5.2

shows the errors of the original parareal and the parareal with projection after k = 2 iterations,

while the right solely demonstrates the later one. Therefore, although they both have good

convergence property for SDEs with conserved quantity, the parareal with projection provides

a much better reproduction of the preservation of the conserved quantity I(x). In the case of

other high mean-square order schemes, the results are just similar, so we omit them here.
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Fig. 5.2. Errors in conserved quantity I(x) (5.3) along numerical approximations by two kinds of

parareal algorithms (F ,G = EulerP) after k = 2 iterations. Left: the original parareal. Right:

parareal with projection.

5.2. Stochastic pendulum

Next, we restrict to a two-dimensional mathematical pendulum perturbed by two multi-

plicative noises [20]

d

(
X1(t)

X2(t)

)
=

(
− sin

(
X2(t)

)

X1(t)

)(
dt+ c1 ◦ dW1(t) + c2 ◦ dW2(t)

)
, (5.4)

where c1 and c2 are real-valued parameters. It has a conserved quantity as follows

I(x, y) =
1

2
x2 − cos(y), (5.5)

which is a non-quadratic one unlike that of the first example.

Setting c1 = 0.5, c2 = 0.1, and X(0) = (X1(0), X2(0)) = (0.2, 1), we thus get the results

of convergence property in Figure 5.3. As before, the left and right part show the short time

case and long time case, respectively. It is obvious that the results are similar to that of Figure

5.1, except that Mid scheme can not preserve the conserved quantity (5.5) (non-quadratic), so

we consider the MidP scheme in the third row. In the case of T = 1000, the original parareal

algorithms without projection integrators are unable to reach proper error during the iteration

process. Instead, the projection parareal algorithms using projection schemes as the G and

F integrators converge properly. In addition, for Mid, T32P and T2 schemes with projection

technique, the corresponding iteration numbers are all less than 10.

In addition, Figure 5.4 displays the errors in conserved quantity (5.5) along the original

parareal and parareal with projection, where T = 10, and other parameters are the same as

those in the test of Figure 5.3. Here the fine and coarse propagators F ,G are all EulerP. The

left plot of Figure 5.4 shows the errors of the original parareal and the parareal with projection

after k = 3 iterations, while the right solely demonstrates the later one. Therefore, although

they both have good convergence property for SDEs with conserved quantity, the parareal with
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Fig. 5.3. Stochastic pendulum with two multiplicative noises (5.4) with c1 = 0.5, c2 = 0.1, X0 =

(X1(0), X2(0)) = (0.2, 1). Mean-square errors vs. iteration number k for original parareal and parareal

with projection algorithms using five propagators as F and G (∆T = 0.1, J = 100). Left: T = 10.

Right: T = 1000.

Fig. 5.4. Errors in conserved quantity I(x) (5.5) along numerical approximations by two kinds of

parareal algorithms (F ,G = EulerP) after k = 3 iterations. Left: the original parareal. Right:

parareal with projection

projection provides a much better reproduction of the preservation of the conserved quantity

(5.5).
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5.3. Stochastic cyclic Lotka-Volterra system

Last we consider a three-dimensional cyclic Lotka-Volterra model

d




X1(t)

X2(t)

X3(t)


 =




X1(t)
(
X3(t)−X2(t)

)

X2(t)
(
X1(t)−X3(t)

)

X3(t)
(
X2(t)−X1(t)

)




(
dt+ c ◦ dW (t)

)
, (5.6)

where c is also a real-valued constant parameter. This system represents a chaotic environment

consisting of three completing species [22,23]. And it is easy to check that system (5.6) possesses

two independent conserved quantities:

I1(x, y, z) = x+ y + z,

I2(x, y, z) = xyz.
(5.7)

By the conserved quantities above, the phase trajectory of the exact solution to (5.6) is

a closed curve in R
3. In this test, we choose parameter c = 0.5 and initial value X(0) =

(X1(0), X2(0), X3(0)) = (1, 2, 1). In contrast to the previous two examples, we set ∆T = 0.01

in order to investigate the long-term behavior of these methods. The convergence property for

the corresponding parareal algorithms with different schemes are shown in Figure 5.5. Form

the left part of it, we notice that all these algorithms are able to reach good convergence for

T = 10. However, figures in the right hand side show something different. First, for Euler and

Mil schemes, we only plot the solid lines, i.e., projection performed in both propagators (F

and G ) and correction step. Comparing these two figures, we observe that Mil type scheme can

Fig. 5.5. Stochastic cyclic Lotka-Volterra system (5.6) with c = 0.5, X0 = (X1(0), X2(0), X3(0)) =

(1, 2, 1). Mean-square errors vs. iteration number k for original parareal and parareal with projection

algorithms using five propagators as F and G (∆T = 0.01, J = 100). Left: T = 10. Right: T = 1000.
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Fig. 5.6. Errors in conserved quantity I(x) (5.7) along numerical approximations by two kinds of

parareal algorithms (F ,G = EulerP) after k = 5 iterations. Left: the original parareal. Right:

parareal with projection

reach the stopping criterion (5.1) faster than the Euler one. That is to say, the Mil type scheme

needs nearly one half of the iteration numbers compared to the Euler one, and achieve more

accuracy. The last three figures show the convergence property of the Mid, T32 and T2 type

schemes, respectively. Also, the original parareal algorithm with non-projection schemes are

unable to meet the stopping criterion (5.1) during iteration, but if we use the projection schemes

or parareal algorithm with projection, less than 10 iterations are needed for this example.

Errors in the two conserved quantities (5.7) along the original parareal and parareal with

projection algorithms are shown in Figure 5.6, where T = 10, and other parameters are the

same as those in the test of Figure 5.5. Also the F and G all choose the EulerP scheme same as

the previous examples. The left plot of Figure 5.6 shows the errors of the original parareal and

the parareal with projection after k = 5 iterations, while the right solely demonstrates the later

one. Therefore, although they both have good convergence property for SDEs with conserved

quantity, the parareal with projection provides a much better reproduction of the preservation

of the conserved quantity (5.7).

6. Conclusion

In conclusion, we investigate the possibility of applying parallel-in-time technique to SDEs

with conserved quantities by combing the projection methods and a version of the parareal

algorithm. For this kind of system, projection methods can be used to guarantee that the

numerical approximations preserve certain conserved quantities exactly. However, the long-

time simulation of this problem is still challenging, and it is inevitable to take the parallel

algorithms into consideration. With the help of the parareal algorithm with projection, we

obtain an effective parallel-in-time approach which maintains the geometric property to simulate

SDEs with conserved quantities. In the numerical experiments, three systems, linear or non-

linear, are performed by parareal algorithm with and without projection technique, respectively.

From the numerical results, we can conclude that the parareal algorithm is of fast convergence
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with few iterations, and with the help of projection method it shows advantages in preserving

conserved quantities. This paper mainly focuses on the numerical simulation of this efficient

parareal algorithm for SDEs with conserved quantities. However, there are lack of corresponding

theoretical analysis of this algorithm. Thus, we will continue to study the convergence property

and other numerical behaviors in the further works.
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